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Benefits of an AI that can Program

• Accelerate software development

• Quickly verify theoretical work

• Arbitrary capability voice assistants

• Much More



Description-Based Neural Program Synthesis

• Use an artificial neural network to generate or aid in the automatic 
generation of a program given some text description of what it should 
do

Ex.

“You are given an array a. 
Find the smallest element 
in a which is strictly 
greater than the 
minimum element in a”.

NPS Model

(reduce (filter a
(partial0 (reduce a inf min) <)) 
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AlgoLisp Dataset

• Dataset of 100 thousand English-text problem statements and model 
solutions

• Input-output pairs to test against
• 10% of programs don’t pass their I/O pairs so it is common to use a cleaned 

version of the dataset

• Complexity and Large Search Space
• Impractical to derive programs from test data



AlgoLisp Dataset

• Solutions are written in a Lisp-inspired DSL
• Prefix notation

• Programs have a natural tree structure
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Basic Model



output vector

Simple LSTM Model (Seq2Seq)

• Goal: Try to predict just the next token in the program
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Simple LSTM Model (Seq2Seq)

• Goal: Try to predict just the next token in the program
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Simple LSTM Model (Seq2Seq)

• Goal: Try to predict just the next token in the program
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Simple LSTM Model (Seq2Seq)

• Goal: Try to predict just the next token in the program
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Simple LSTM Model (Seq2Seq)

• Repeat
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Simple LSTM Model (Seq2Seq)

• Try to find top K (beam size) most likely candidates
• Greedily keep track of K most likely candidates at each level
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Simple LSTM Model (Seq2Seq)

• But these do not work that well
• It’s hard to effectively encode the text in one sweep

• Syntax rules are hard for neural networks to learn

• Forces programs into a linear structure

Attempt to resolve via more complex recurrence structure
Ex. Seq2Tree (Polosukhin, Skidanov 2018)
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Our Modifications



Our Approach

forgetting information during encoding

syntactically invalid programs

linear structure

1. Attention Mechanisms

2. Learned Syntax Layer

3. Token Pairing (novel)



Attention Mechanisms

• Mechanism that allows decoder to focus in on specific sections of 
the text
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Learned Syntax Layer [1]

• Jointly trained LSTM that is motivated to recognize syntactically 
invalid options
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[1] Bunel, Hausknecht, Devlin, Singh, Kohli 2018



Token Pairing

• Similar to the practice of Byte Pair Encoding common in NLP

• Create new tokens to represent common patterns in the code trees
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Token Pairing

• Repeatedly combine most common pair of adjacent tokens

# replace tokens with integers 0 ... (number of unique tokens – 1)
training_programs = encode(TRAINING_PROGRAMS)

for _ in range(NUM_ITERATIONS):
# dict of (pair, int)
freq_dict = create_adjacency_freq_dict(training_programs)

most_freq_pair = max(freq_dict, key=freq_dict.get)
training_programs = [

replace_pair(program, most_freq_pair, num_unique_tokens)
for program in training_programs

]
num_unique_tokens += 1

Simplified for your viewing pleasure



Token Pairing

• Sub-procedures that consist of tokens not adjacent in the in-order 
traversal are easier for the model to recreate

• Programs can become shorter
• Training is more stable in earlier stages

• Can be circumvented with curriculum training

• Less depth to the beam search
• But also more branching at each level



Experiments



Performance

Model Dev Accuracy Test Accuracy Parameters

Model_81 (No Token Pairing) 97.7% 97.1% 6.39M

SketchAdapt [2] 95.0% 95.8% ~7M

SAPS [1] 93.2% 92.0% 5.73M

Trained and evaluated on the cleaned dataset
Using a beam size of 10
Evaluated on I/O pairs

[1] Bunel, Hausknecht, Devlin, Singh, Kohli 2018
[2] Nye, Hewitt, Tenenbaum, Solar-Lezama 2019
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Performance

Model Dev Accuracy Test Accuracy Parameters

Model_81 (No Token Pairing) 97.7% 97.1% 6.39M

Model_200 99.0% 98.9% 6.47M

Model_300 99.0% 98.7% 6.52M

SketchAdapt [2] 95.0% 95.8% ~7M

SAPS [1] 93.2% 92.0% 5.73M

Trained and evaluated on the cleaned dataset
Using a beam size of 10
Evaluated on I/O pairs

[1] Bunel, Hausknecht, Devlin, Singh, Kohli 2018
[2] Nye, Hewitt, Tenenbaum, Solar-Lezama 2019



I/O Pair Evaluation vs Golden Program

Model Dev Accuracy Test Accuracy

Model_200 - I/O Pair Evaluation 99.0% 98.9%

Model_200 - Golden Program Evaluation 98.9% 98.5%

Trained and evaluated on the cleaned dataset
Using a beam size of 10



State of NPS

• ML Models can pretty reliably produce working code in a DSL
• Can be procedurally converted to another language or machine code

• Code works but it is often slow
• Many DSLs don’t take advantage of  the RAM model of computing

• ML models have yet to demonstrate algorithmic thinking



Conclusion

• We addressed issues with previous NPS models
• Attention – difficulty of single sweep encoding

• Syntax Layer  – difficulty of learning language syntax

• Token Pairing – difficulty of linear structure (novel)

• Our model significantly outperforms previous work
• 98.9% vs 95.8%

• Writing fast code is still hard



Areas for Future Investigation

• Modifying the architecture to implicitly perform token pairing
• Currently experimenting with using the Euler tour of the program tree

• Transfer learning – using pretrained encodings/weights from NLP 
models

• Algorithmic Thinking
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Bonus Experiment With Algorithmic Thinking

• Can a model predict the algorithms that a certain programming task 
may require?

• Scraped codeforces.com for programming problems tagged with the 
algorithms they involve

• After cleaning the dataset, we have about 5000 problems on which to 
train a classification model



Bonus Experiment With Algorithmic Thinking

Model Test Accuracy (Macro F1 Score)

Bag of Words Feed-Forward Model 28.7%

Transformer Model [1] 24.0%

[1] Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin 2017


