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Benefits of an Al that can Program

* Accelerate software development
* Quickly verify theoretical work

 Arbitrary capability voice assistants

e Much More



Description-Based Neural Program Synthesis

e Use an artificial neural network to generate or aid in the automatic

zZgjleneration of a program given some text description of what it should
0

Ex.

“You are given an array a.
Find the smallest element (reduce (filter a

in a which is strictly NPS Model (partial® (reduce a inf min) <))
greater than the inf min)

minimum element in a”.




AlgoLisp Dataset

* Dataset of 100 thousand English-text problem statements and model
solutions

* Input-output pairs to test against

* 10% of programs don’t pass their I/O pairs so it is common to use a cleaned
version of the dataset

* Complexity and Large Search Space
* Impractical to derive programs from test data



AlgoLisp Dataset

* Solutions are written in a Lisp-inspired DSL
* Prefix notation
* Programs have a natural tree structure

filter a lambdal and < argl 100 is prime argl

lambdal

v

(filter a (lambdal (and (< argl 100) (is_prime argl))))

is_prime




Basic Model



Simple LSTM Model (Seq2Seq)

e Goal: Try to predict just the next token in the program
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Simple LSTM Model (Seg2Seq)

e Goal: Try to predict just the next token in the program
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“You are given an array a.Find the smallest element in a which is strictly greater than the minimum element in a”.



Simple LSTM Model (Seq2Seq)

e Goal: Try to predict just the next token in the program
Probability

distribution
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<BEGIN CODE> reduce filter a partiale

(reduce (filter a (partiale ? . . .



Simple LSTM Model (Seg2Seq)

e Goal: Try to predict just the next token in the program

97% (reduce (filter a (partiale (reduce

0.5% (reduce (filter a (partiale (lambda2

(reduce (filter a (partiale

0.3% (reduce (filter a (partiale (filter



Simple LSTM Model (Seg2Seq)

* Repeat

97% (reduce (filter a (partiale (reduce

0.5% (reduce (filter a (partiale (lambda2

(reduce (filter a (partiale

0.3% (reduce (filter a (partiale (filter



Simple LSTM Model (Seg2Seq)

* Try to find top K (beam size) most likely candidates
* Greedily keep track of K most likely candidates at each level

97% (reduce (filter a (partiale (reduce

0.5% (reduce (filter a (partiale (lambda2

(reduce (filter a (partiale

0.3% (reduce (filter a (partiale (filter



Simple LSTM Model (Seg2Seq)

* But these do not work that well
* It’s hard to effectively encode the text in one sweep
* Syntax rules are hard for neural networks to learn
* Forces programs into a linear structure

v

reduce

Attempt to resolve via more complex recurrence structure
Ex. Seq2Tree (Polosukhin, Skidanov 2018)

...(reduce (code for calculating x) © +)...



Our Modifications



Our Approach

1. Attention Mechanisms forgetting information during encoding
2. Learned Syntax Layer syntactically invalid programs
3. Token Pairing (novel) linear structure



Attention Mechanisms

 Mechanism that allows decoder to focus in on specific sections of
the text

Attention “dictionary”

Key-value pairs
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Learned Syntax Layer [1]

* Jointly trained LSTM that is motivated to recognize syntactically
invalid options

Eliminate Probability
Invalid Distribution

A A A A 3

<BEGIN CODE> reduce filter a partiale

Attention Mechanism

W m ec W Dec W Dec 1 bec It Dec

“given” <BEGIN CODE> reduce filter partiale

[1] Bunel, Hausknecht, Devlin, Singh, Kohli 2018



Token Pairing

 Similar to the practice of Byte Pair Encoding common in NLP
* Create new tokens to represent common patterns in the code trees

reduce

...(reduce (code for calculating x) @ +)... ...(reduce_sum (code for calculating x))...



Token Pairing

* Repeatedly combine most common pair of adjacent tokens

# replace tokens with integers 0 ... (number of unique tokens - 1)

training programs = encode(TRAINING PROGRAMS)

for _ in range(NUM_ITERATIONS):

# dict of (pair, int)
freq_dict = create _adjacency freq dict(training programs)

most freqg pair =

training programs = [
replace _pair(program, most freq pair, num_unique_tokens)

for program in training_programs

max(freq_dict, key=freq_dict.get)

]

num_unique_tokens += 1
Simplified for your viewing pleasure



Token Pairing

* Sub-procedures that consist of tokens not adjacent in the in-order
traversal are easier for the model to recreate

* Programs can become shorter
* Training is more stable in earlier stages
e Can be circumvented with curriculum training

* Less depth to the beam search
* But also more branching at each level



Experiments



Performance

Model Dev Accuracy Test Accuracy Parameters
Model 81 (No Token Pairing) 97.7% 97.1% 6.39M
SketchAdapt [2] 95.0% 95.8% ~7M

SAPS [1] 93.2% 92.0% 5.73M

Trained and evaluated on the cleaned dataset
Using a beam size of 10
Evaluated on I/O pairs

[1] Bunel, Hausknecht, Devlin, Singh, Kohli 2018
[2] Nye, Hewitt, Tenenbaum, Solar-Lezama 2019
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Performance

Model Dev Accuracy Test Accuracy Parameters
Model 81 (No Token Pairing) 97.7% 97.1% 6.39M
Model_200 99.0% 98.9% 6.47M
Model_300 99.0% 98.7% 6.52M
SketchAdapt [2] 95.0% 95.8% ~7M

SAPS [1] 93.2% 92.0% 5.73M

Trained and evaluated on the cleaned dataset
Using a beam size of 10
Evaluated on I/O pairs

[1] Bunel, Hausknecht, Devlin, Singh, Kohli 2018
[2] Nye, Hewitt, Tenenbaum, Solar-Lezama 2019



/O Pair Evaluation vs Golden Program

Model Dev Accuracy Test Accuracy
Model_200 - I/O Pair Evaluation 99.0% 98.9%
Model 200 - Golden Program Evaluation 98.9% 98.5%

Trained and evaluated on the cleaned dataset
Using a beam size of 10




State of NPS

* ML Models can pretty reliably produce working code in a DSL
e Can be procedurally converted to another language or machine code

e Code works but it is often slow

 Many DSLs don’t take advantage of the RAM model of computing
* ML models have yet to demonstrate algorithmic thinking



Conclusion

* We addressed issues with previous NPS models
» Attention — difficulty of single sweep encoding
* Syntax Layer — difficulty of learning language syntax
e Token Pairing — difficulty of linear structure (novel)

* Our model significantly outperforms previous work
* 98.9% vs 95.8%

* Writing fast code is still hard



Areas for Future Investigation

* Modifying the architecture to implicitly perform token pairing
* Currently experimenting with using the Euler tour of the program tree

 Transfer learning — using pretrained encodings/weights from NLP
models

* Algorithmic Thinking
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Bonus Experiment With Algorithmic Thinking

* Can a model predict the algorithms that a certain programming task
may require?

* Scraped codeforces.com for programming problems tagged with the
algorithms they involve

* After cleaning the dataset, we have about 5000 problems on which to
train a classification model



Bonus Experiment With Algorithmic Thinking

Bag of Words Feed-Forward Model 28.7%
Transformer Model [1] 24.0%

[1] Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin 2017



