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Run arbitrary functions on private data

Applications: medical, security, cloud computing, etc.

Fully Homomorphic Encryption
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Pros and Cons of Fully Homomorphic Encryption
● At no point is your data known to anyone 

except yourself
● At no point are your results known to 

anyone except for yourself
● At no point is the computation known to 

anyone except the receiver

● Theoretically, ability to translate any 
existing program into an encrypted 
program

● FHE libraries are unwieldy and 
complicated to learn and use

● Not as widespread as other encryption 
methods

● Tools for fully homomorphic encryption 
(FHE) still in early stages

● Homomorphically encrypted programs 
must be constructed from primitives like 
binary gates, addition, and multiplication

● Very slow compared to other encryption 
methods because of the need for 
high-level and low-level optimizations 
(scheduling etc.)



The Current State of FHE Libraries
● Currently popular libraries: SEAL, HELib, PALISADE
● FHE operations are called using library functions, one primitive at a time
● Different libraries for different schemes
● No cross-operation optimization

○ PRIMES project last year: enabled cross-operation optimization in the GSW (2013) scheme 
using Halide

○ Still difficult to write complicated functions
○ Limited to bit-wise optimizations



MLIR
● A compiler, not a library
● An SSA-based Multi-Level Intermediate Representation that sits on top of the 

LLVM IR
● A multi-level optimizer
● Language-independent
● Language-specific



Levels of Optimization
● Normal compiler optimizations (incl. language-specific)
● DAG rewrites (highly language- and scheme-specific)
● Loop scheduling
● Parallelization
● Overall, three levels: syntax/high level, HE level, low (scheduling) level



How Does MLIR Work?
● Opaque operations, not instructions
● Dialects: sets of operations at a similar level
● Progressive lowering: translating from a higher-level dialect to a lower-level 

dialect (lowest is LLVM IR) and optimizing along the way
● Can mix and match dialects within a single MLIR module
● Example:

HE Dialect

LinAlg

Affine

Loop

Standard

Standard

LLVM IR



High Level (Input Code)

MLIR Standard Dialect

Custom FHE Dialect(s)

LLVM IR

// add x + x, unoptimized

func @add(%x : i64) -> i64 {

    %0 = addi %x, %x : i64

    return %0

}

// add x + x, optimized

// x + x = x << 1

func @add_opt(%x : i64) -> i64 {

    %cst_1 = constant 1 : i64

    %0 = shift_left %x, %cst_1 : (i64, i64) -> i64

    return %cst_1

}



Mid Level (FHE)

MLIR Standard Dialect

Custom FHE Dialect(s)

LLVM IR

// Take the NAND of a ciphertext with itself

func @self_nand(%input : memref<20x20xi128>) {

    "HE.NAND" (%input, %input, %input) {mod = 11 : 

i128} : (memref<20x20xi128>, memref<20x20xi128>, 

memref<20x20xi128>) -> ()

    return

}

// optimized: NAND(a, a) = NOT(a)

// removes two unnecessary operations under the hood

// (aka 1 modular matrix multiplication)

func @self_nand_opt(%input : memref<20x20xi128>) {

    "HE.NOT" (%input, %input) {mod = 11 : i128} : 

(memref<20x20xi128>, memref<20x20xi128>) -> ()

    return

}



Low Level (Scheduling)

MLIR Standard Dialect

Custom FHE Dialect(s)

LLVM IR

// regular loop nest

func @regular() {

  ...

  ...

  loop.for %arg0 = %c0 to %c200 step %c1 {

    loop.for %arg1 = %c0 to %c200 step %c1 {

      loop.for %arg2 = %c0 to %c200 step %c1 {

        %3 = load %1[%arg2, %arg1] : memref<200x200xi128>

        %4 = load %0[%arg0, %arg2] : memref<200x200xi128>

        %5 = muli %4, %3 : i128

        %6 = load %2[%arg0, %arg1] : memref<200x200xi128>

        %7 = addi %6, %5 : i128

        store %7, %2[%arg0, %arg1] : memref<200x200xi128>

      }

    }

  }

  return

}

// GPU loop nest

func @gpu {

  ...

  ...

  gpu.launch blocks(%arg0, %arg1, %arg2) in (%arg6 = %3, %arg7 = %c1_0, %arg8 = %c1_0) threads(%arg3, 

%arg4, %arg5) in (%arg9 = %4, %arg10 = %c1_0, %arg11 = %c1_0) {

    %5 = addi %c0, %arg0 : index

    %6 = addi %c0, %arg3 : index

    loop.for %arg12 = %c0 to %c200 step %c1 {

      %7 = load %1[%arg12, %6] : memref<200x200xi128>

      %8 = load %0[%5, %arg12] : memref<200x200xi128>

      %9 = muli %8, %7 : i128

      %10 = load %2[%5, %6] : memref<200x200xi128>

      %11 = addi %10, %9 : i128

      store %11, %2[%5, %6] : memref<200x200xi128>

    }

    gpu.terminator

  }

  return

}



Language, Scheme, Hardware-Independent
Think about f, 

not F!!
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Current Work & Results
● GSW (2013) and B/FV (2012) FHE schemes: custom dialects and lowering 

implemented
○ Custom dialects allow for highly optimized, custom high-level operations such as 

“HE.identity_minus”, “HE.flatten”, and “BFV.ntt”

● Optimizations across operations, including DAG rewrites: building off my 
previous work with Walden Yan

● Language- and scheme-specific optimizations, e.g. removing redundant 
flatten’s and NTT’s



Future Work
● Write dialects and lowering for more FHE schemes such as BFV RNS and 

CKKS
● Implement “raising” step for all Standard dialect operations - this will allow 

encryption of any arbitrary program with just one or two compiler flags
● Implement parallelization / multithreading



Conclusion
● The MLIR compiler framework can be used to easily encrypt any program in 

any compatible programming language by simply passing a flag
● MLIR also provides a powerful framework for language-specific optimizations 

- we can take advantage of this to speed up FHE
● The entire system is modular, allowing you to swap out the FHE scheme that 

you use, the set of lowering passes, and/or the architecture that you are 
targeting
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Questions?


