A Penney for Our Thoughts
The Story of a Series of Games and an Avaricious Duo

PRIMES STEP Senior Group Isha Agarwal, Matvey Borodin, Aidan Duncan, Kaylee Ji, Shane Lee, Boyan Litchev, Anshul Rastogi, Garima Rastogi, Andrew Zhao

Mentor: Dr. Tanya Khovanova
June 6th, 2020

Warning! Cheesy puns dead ahead!
Introduction
A Game Coincerning Penneys

This is the original conflict our current research cleverly continues off of:

Alice and Bob possess a stack of pennies they do not settle on how to split.

To put a stop to the penny problem for once and for all, they decide to play the one and only...

Penney’s Game!!!!

(fanfare plays)
A Game Coincerning Penneys (Continued)

They each select a string of heads and tails of a given length $n$.

For example, if $n = 3$:

Alice could pick $\text{HHH}$:

Bob could pick $\text{THH}$:
A Game *Coincerning Penneys (Coincluded)*

Then, they totally start tossing a terribly troubling penn*ey* and coin*tinue until the sequence of tosses coin*tains one of their selected sequences:

H H T H T H H

Bob’s string T H H of pen*ney* flips appears before Alice’s string H H H does, so he wins!!

MUHAHAHAHAHA!

YIPPEE!!!
A Fairly Fair Argument

For some reason, the friends find from Alice keeping HHH and Bob keeping THH as their strings and then playing Penney’s Game plenty of times...

...Bob continuously won around 7 times as much as Alice did!
“NAY,” Alice exclaimed as Bob lay claim to yet another penney, “for this simply cannot be! “Each sequence has an equal \( \frac{1}{8} \) chance of occurring, you see?”

“Aye, it is so,” Bob replied, “But by fanciful whim, it seems your chances are slim! Why is this so?!”

Why the Fairness Argument Doesn’t *Fair* Very Well

After a completely comprehensively *coin*versing curtly with Google, Alice and Bob had figured out that the game was *NOT* fair, along with the reasoning behind it.

But why?
Why the Argument Doesn’t Fair Very Well (Continued)

The string THH isn’t self-overlapping: THHTHH

If, perchance, Bob’s sequence is rudely “interrupted”...

H T T H T

...in truth, his progress is never gutted!

If only Bob got an H.
If only.
Why the Argument Doesn’t Fair Very Well (Continued)

Alice’s seemingly sassy string HHH is certainly self-overlapping: HHHH

If Alice’s treacherous penney resorts to “interrupting”...

...she must start again from the very beginning!
Why the Argument Doesn’t Fair Very Well (Coincluded)

So, say snide Alice’s sequence is stopped at some point by an interrupting T:

```
  H H T
```

Now, she can’t win without giving Bob a win first:

```
  H H T H H
```

She needs to get her sequence HHHH right away in every game, or Bob will win. Bob clearly has a much higher probability of winning!
Pathways, Driveways, and **Coinways**

The long-awaited liberating leap:

**Conway leading numbers** (developed by John H. Conway)

**Coinway leading numbers**, denoted $C_\alpha$ for a string $\alpha$, are measurements of how self-overlapping a string is!

- $C_{\text{HHH}}$: 7
- $C_{\text{HHT}}$: 4
- $C_{\text{HTH}}$: 5
- $C_{\text{HTT}}$: 4

Oh, the many ways and weighs of life...
I Expected to Have to Wait Less, Dear

The expected wait time of a serenely selected string is simply stated as the average number of flips that occur before the string first appears completely in the series of tosses.

Calculating it correctly could covertly cause a cantankerously calamitously catastrophic carnival if not for convenient Coin way leading numbers:

$$E_a = 2C_a$$

So, $$E_{HTT} = 2C_{HTT} = 2(4) = 8.$$
“Aha! Strings bearing greater expected wait times appear last. So, the other string is best!” Bob exclaimed.

Sadly, he is incorrect

For HHH vs HHT...

Both strings need HH, but the flip after will determine the winner. If it is H, then HHH wins, and if it is T, then HHT wins. This is a ½ chance, even though HHH has a higher expected wait time.
Bob’s Optimal Solution

The game is unfair. Bob can always choose a sequence that gives him an advantage over Alice.

<table>
<thead>
<tr>
<th>Alice’s string</th>
<th>Bob’s best choice</th>
<th>Bob’s odds</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHH</td>
<td>THH</td>
<td>7 to 1</td>
</tr>
<tr>
<td>HHT</td>
<td>THH</td>
<td>3 to 1</td>
</tr>
<tr>
<td>HTH</td>
<td>HHT</td>
<td>2 to 1</td>
</tr>
<tr>
<td>HTT</td>
<td>HHT</td>
<td>2 to 1</td>
</tr>
</tbody>
</table>

A table of Bob’s best choice for strings of length 3
Transitive vs Non-transitive

\[ a > b > c \Rightarrow a > c \]
The Non-transitive Cycle

Alice and Bob carefully calculated all the odds for all of the games and simply stumbled upon a certainly seriously stunning non-transitive cycle:

THH loses to TTH, TTH loses to HTT, HTT loses to HHT and HHT loses to THH. It’s like a game of rock-paper-scissors.
Our Cointinuation
Alice Kinda Loses It

“This is simply not fair for either in this pair,” Alice cried out of frustration.

Bob proposed a potential solution: “What if you began with an extra toss? Will it alleviate this equality loss?”

And so the two tried this new game— but will it shift the odds enough to make them even?
Head-Start Penney’s Game

Alice and Bob attempt this new game, where Alice gets an extra toss at the beginning.

- First extra toss only gives Alice an advantage when she gets her string of length \( n \) in the first \( n \) tosses
- Otherwise, this game becomes Penney’s game
- Bob’s optimal solution is the same
- String with the longer expected wait time can still win
- Bob still has an advantage over Alice, but the odds are better
Post-aBobalyptic Game

Alice, furious at how the game wasn’t fair, devised a new idea. What if she got an extra toss, but it only counted at the end? In other words, if Bob won, Alice would get one final toss to try and tie things up.

As long as the last n-1 elements of Bob’s string aren’t the same as Alice’s first n-1 elements, the probabilities are the same as the normal Penney’s game.

Otherwise, they tie with probability $\frac{1}{2}$

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
<th>Odds</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHH</td>
<td>THH</td>
<td>7 to 2</td>
</tr>
<tr>
<td>HHT</td>
<td>THH</td>
<td>3 to 2</td>
</tr>
<tr>
<td>HTH</td>
<td>TTH</td>
<td>5 to 3</td>
</tr>
<tr>
<td>HTT</td>
<td>HHT, HTH, THH</td>
<td>1 to 1</td>
</tr>
</tbody>
</table>
A Game With Two Coins

- The situation is as follows:
  - They now each have their own coin
  - Each turn they toss their coins simultaneously
  - Whoever gets their chosen sequence of tosses first wins
A Game With Two Coins: An Overview

- The probability of winning at each turn can be summed to get the final probability of winning.
- It suffices to say that this game is completely computationally complicated.
- Notable observations:
  - A tie is now possible.
  - The win/tie/loss probabilities are based only on expected wait time.

Wait, expected wait times matter now... no one expected that coming.
A Game With Two Coins: The Coinvincing Reason

- There isn’t really much to say, we used a computer to find these:

<table>
<thead>
<tr>
<th></th>
<th>HHH</th>
<th>HTH</th>
<th>THH</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHH</td>
<td>435</td>
<td>435</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>913</td>
<td>913</td>
<td>913</td>
</tr>
<tr>
<td>HTH</td>
<td>1643</td>
<td>3289</td>
<td>473</td>
</tr>
<tr>
<td></td>
<td>2897</td>
<td>8691</td>
<td>8691</td>
</tr>
<tr>
<td>THH</td>
<td>45409</td>
<td>23327</td>
<td>4321</td>
</tr>
<tr>
<td></td>
<td>73057</td>
<td>73057</td>
<td>73057</td>
</tr>
</tbody>
</table>

- (In order, these are the probabilities of Alice winning, Bob winning, and a tie)

Bob wins at most ½ of the time for all of these
Second-Occurrence Game

- Logically, there will be more even odds
  - Self-repeating strings do better
  - For example HHH vs THH will have odds of 11/16 instead of 14/16
A Strange Case

- Consider the case HHT vs THH
  - After you get HHT, you must get THH next
  - After you get THH, you must get HHT next
Now, Alice only loses with odds of about 60%, instead of 66%
  - Alice’s best choices are HTH and HTT
No-Flippancy Game

NO COINS!
No-Flippancy Game

Introduction

Alice and Bob look at their sequences, pick the letter that they need to progress forward. Alternate turns.

Alice - HTH and Bob - THH

Alice string = Bob string

Possible Outcomes:

Alice wins - Bob wins - Alice/Bob tie - Infinite
No-Flippancy Game

Definitions

Forced Outcome:
One player picks their string; other wants particular outcome.

Alternating String:
HTHTHTHT

Complementary String:
HTH; THT
HHHTHTH; TTTHTHT
No-Flippancy Game

Summary

Forcing Outcomes:

Bob can force infinite games unless Alice has H, HT, HTH, HTHT, or their complements.

Alice can force infinite games unless Bob has H, HT, HTH, HTHT, HTHTH, or their complements.

Bob can force a win for himself unless Alice has an H or T.

Alice can always force a win.
Blended Game

- If Alice and Bob want the same letter, then they will get it.
- Logically, Bob should pick a string with the opposite first letter of Alice, followed by Alice’s first two letters:
  - HHH -> THH
- If Alice picks HTH, at best Bob can win with at most $\frac{5}{8}$ probability.

A picture of Bob’s best choice given Alice’s string.
Contributors to Acknowledge

We are grateful to the following:

- The PRIMES STEP program for this amazing opportunity
- MIT for allowing us to use their space
- Dr. Tanya Khovanova for her wonderful mentorship
- Our parents for their unending love and support
- The blackboard for the numerous scribbles and erasures it silently endured
Guys this is bothering me but it's also oddly satisfying

AND FINALLY, VIEWERS LIKE YOU THANK YOU!
QUESTIONS?
Works Consulted


