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Abstract. People’s safety is a primary concern in autonomous driving.
There exist efficient methods for identifying static obstacles. However,
the prediction of future trajectories of moving elements, such as pedes-
trians crossing a street, is a much more challenging problem. A promising
direction of research is the use of machine learning algorithms with lo-
cation bias maps. Our goal was to further explore this idea by training
an interchangeable location bias map, a location-specific feature that is
added into the middle of a convolutional neural network. For different
locations, we used different location bias maps to allow the network to
learn from different setting contexts without overfitting to a specific set-
ting. Using pre-annotated video footage of pedestrians moving around in
crowded areas, we implemented a pedestrian behavior encoding scheme
to generate input and output volumes for the neural network. Using this
encoding scheme, we trained our neural network and interchangeable lo-
cation bias map. Our research demonstrates that the network with an
interchangeable location bias map can predict realistic pedestrian tra-
jectories even when trained simultaneously in multiple settings.

1 Introduction

The movement of pedestrians largely depends on their surroundings, whether
these are physical barriers in their way (i.e. walls, poles, train tracks, etc.) or
other pedestrians surrounding them. These factors shape the behavior of pedes-
trians. Therefore, in order to be able to predict pedestrian movement, it is crucial
to understand the relationships among pedestrians and their environment.

Autonomous vehicles must be able to predict the future trajectories of dy-
namic agents, such as pedestrians and cyclists, in order to navigate safely, with-
out having to suddenly swerve or stop. Moving vehicles must avoid pedestrians
in a constantly-changing scenery. Though there are plenty of works using deep
learning to predict pedestrian movement, the use of trainable location-specific
features is limited.

As a result, networks often overfit to the location of the training dataset,
requiring the use of a completely new network for a different dataset. We suggest
using an interchangeable location bias map, which is the only part of the network
that is changed when a new dataset is used.

To analyze the effect of the interchangeable location bias map, we use pre-
annotated videos from two static vantage points. We use an encoding scheme
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that avoids ambiguity by creating displacement volumes [14], making up the
input and output of our network.

In summary, the contributions of our work are 1. the creation of a new archi-
tecture that uses location specific maps, 2. integration of ETH and Hotel datasets
for using in Behavior-CNN, and 3. experimentation with evaluation metrics of
the architecture.

2 Related work

Older techniques exist that use non-deep learning algorithms for pedestrian be-
havior prediction [11–13, 15]. More recently, there has been an abundance of
research that uses deep learning to predict pedestrian behavior [1–4,9].

Pedestrian behavior often depends on the other pedestrians around them.
There have been a lot of approaches to take this into account [5, 6, 16].

Most prediction networks are forced to output only one predicted path for
a pedestrian. However, a pedestrian may have more than one choice for where
to turn. Modeling this uncertainty and multi-modality can yield more successful
prediction networks [8].

Though networks that take context into account exist [7], trainable location
features have not been fully explored.

One approach explored a location bias map with a behavioral convolutional
neural network [14], but this implementation did not utilize an interchangeable
feature.

3 Methodology

3.1 Dataset: Displacement Volume

Our two datasets were created from the two annotated video files from the BIWI
Walking Pedestrians dataset collected by Stefano Pellegrini and Andreas Ess at
ETHZürich [10]. One dataset, Hotel, was collected from a hotel window over-
looking the a bus stop on a busy city street. People walked by on the sidewalk, as
well as entered and exited buses that occasionally pulled up. The other dataset
was collected from the ETHZürich building and overlooked the busy entrance to
the building. The annotations included the position of every pedestrian present
at each time step.

Though this data differs from that which a car might see because of (1) the
top-down perspective and (2) the static surroundings, this data can be used to
analyze the validity of a location bias map in general.

Figure 1 illustrates the movement of a single pedestrian. The process of cre-
ating input volumes from all pedestrians for a given time interval is depicted in
Figure 2.
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Fig. 1: Three consecutive frames illustrating progression of pedestrian in blue
square.

Fig. 2: Displacement vectors are created based on the position of each pedestrian
at the final frame for a total time M (a-b). They are then placed in a singular
volume based on their final position (c-d). Adapted from [14].

First, we re-scale the pedestrian positions so that they fall in the [0, 1] range.
The correct position of pedestrian i at time step m, pi, [xm

i , ymi ]. We re-scale all
the positions so that the new pi’s position follows the following formula:

[xm
i , ymi ] = [

xm
i − xmin

xmax − xmin
,
ymi − ymin

ymax − ymin
] (1)

Then, we create each displacement vector based on the displacement of each
pedestrian from their position at the final time step, m. The displacement for pi
over M time steps a vector of length 2 ×M is:

di = [xM
i − x1

i , y
M
i − y1i , x

M
i − x2

i , y
M
i − y2i , . . . , x

M
i − xM

i , yMi − yMi ] (2)

Next, the displacement vectors are placed into a displacement volume (D
with dimensions X by Y by 2M initially set to contain only zeros) based on the
final positions of the pedestrian. D(X × xm

i , Y × ymi , :) is set to di + 1T , where
12M is a vector of all ones of length 2M . This inserts the displacement vector
into the displacement volume and changes the scale of the values to be in the
range [0, 2], making it easier to separate the pedestrians from non-pedestrians.

The above process describes the creation of the input displacement volumes.
Output volumes are based on the final position of each pedestrian in the input
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volume. Otherwise, the process is the same. Figure 2 demonstrates this method-
ology.

Fig. 3: The input of the network, shown in (a-b) are based on the final position
of the pedestrians. The output (c-d) is the volume of future displacements of
the pedestrians. It is also based on the final positions in the output. Adapted
from [14].

3.2 Network Architecture

Following the network architecture of Figure 3, we create three convolution lay-
ers, one element-wise addition layer (location bias map), a max-pooling layer,
three more convolution layers, and one deconvolution layer that brings the di-
mensions back to that of the input volume. ReLU layers are used after the first
five convolution layers.

Fig. 4: Convolution layers (b and d) are used around the interchangeable location
bias map and max-pool features (c). The deconvolution layer (e) changes the
dimensions back to the required size. Adapted from [14].

The convolution layers are used to take into account surrounding pedestrians.
The max-pool feature is used to double the receptive field and increase the
influence of a pedestrian’s neighbors on their behavior.

A padding of zeros is used to keep the spatial size unchanged. This network
is expected to learn human walking behavior based on their past trajectory, the
immovable objects around them, and surrounding pedestrians.

3.3 Loss Function and Optimizer

The cost function of the training is the Euclidean distance between the predicted
and expected displacement volumes only for the location with a pedestrian:

L =
1

N

1

M

N∑
n=1

M∑
m=1

(dn[2m]2 − d̂n[2m]2) + (dn[2m + 1]2 − d̂n[2m + 1]2) (3)
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L, or loss, is the average of all losses between each pedestrian’s predicted
and expected displacement vector in a given time frame, where N is the total
number of pedestrians, M is the number of time steps, di is the ground truth
displacement vector for pedestrian i, and d̂i is the predicted displacement vector
for pedestrian i.

Adam is the optimizer we use to train the network weights since it adjusts
the learning curve as training progresses, speeding up the optimization.

3.4 Training Scheme

The datasets were each divided into three sections: 70% for training, 10% for
validation during training, and 20% for evaluation. Next, the corresponding sec-
tions between the two datasets were combined. The validation set was used to
verify that the network would not overfit to the training data. The evaluation
set was used to test the trained network.

The training was split up into two phases: first, we trained just the first three
convolution layers, and then, we added the rest of the network, which included
the bias map. This by-part training method allowed for faster training of the
bias map, as it was added to an already partially trained network.

4 Experimental Setup

4.1 Hyperparameter Tuning

The number of epochs, dimensions of the displacement volumes, and batch sizes
were set as tunable hyperparameters.

Epochs. Even with epochs as large as 20 or 30, the model did not overfit.
This is likely due to the complex nature of the data; some pedestrians often took
turns while others stood in the same spot for a long time. The upper bound of
epochs was determined solely by computation time.

Dimensions of volumes. Time frames between three and five were used.
This meant the model was predicting a few seconds of movement into the future –
similar to average amount of time a driver has to see and react to a pedestrian.
However, experiments with larger time frames (10-12) demonstrated that the
model could still predict accurately.

Volume height and width were set to 20. Higher values slowed down compu-
tation too much and did not yield significantly better results.

Batch size. A batch size of 100 was used, as it yielded the fastest run time.

4.2 Other cost functions

We tried out various cost functions such as Mean Squared Error, which compared
the entire predicted and expected displacement volumes, but this did not work
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well because the model focused too much on predicting zeros for places without
pedestrians.

We also tried a cost function that was based only on the final position of each
pedestrian in the expected and predicted displacement vectors, ignoring zeros
and any other positions of the pedestrians. However, the network still learned
poorly. Acknowledging that this error is very important for realistic assessment
of the model, we calculated it on the training data as we went to verify that the
network was accurately predicting the final position.

5 Results

The learning curve in Figure 4 demonstrates a successful trial where the training
loss is just below the validation loss as both plateau at a value close to zero.

Fig. 5: Learning curve on the top (red: training; blue: validation). Final error on
the bottom.

5.1 Graphs

Figures 5 and 6 are visualizations of some of the input (red), expected output
(blue), and predicted output (green) vectors from the evaluation datasets. They
have been collected from various trials so they have varying hyperparameters.
The losses are calculated as the average displacement error described in 3.3.

Figure 5 demonstrates that the interchangeable location bias map can accu-
rately predict pedestrian trajectories. This is true for varying time frames.

Figure 6 suggests that a multi-modal approach should be considered. The
path predicted is realistic, but it is not correct. However, we cannot know the
certainty with which the network picked this path over the correct path with
implementing multi-modality.
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(a) L = 0.0008 (b) L = 0.0003

Fig. 6: Fairly accurate and realist predictions.

(a) L = 0.0085 (b) L = 0.0102

Fig. 7: Realistic, but not accurate predictions.

6 Conclusions and future work

We will continue to investigate the effectiveness of the interchangeable location
bias map. Though the results thus far are promising, it is still not clear how
large an advantage it provides for autonomous driving, as the location constantly
changes.

Additionally, the location bias map can be turned into its own layer in the
network or it can be concatenated with the previous layer instead of the current
element-wise addition. This could increase its influence over the network, which
would help us better understand its effect on performance.

Furthermore, since the destination of a pedestrian is more import than their
path, a loss function that more significantly emphasizes final position error would
likely help the network learn better.

Finally, cars must be able to avoid not only pedestrians, but other drivers,
cyclists, buses, and scooterists. Our work can be extended to all of these dynamic
elements.
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