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Abstract

The issue of identifying defects in a set with as few tests as possible has many applications, including

in maximum efficiency pool testing during the COVID-19 pandemic. This research aims to determine

the rate of growth of the number of tests required relative to the logarithm of the size of the set. In

particular, we focus on the case where there are exactly two defects in the set, which is equivalent to

the problem of determining the zero-error capacity of a two-user binary adder channel with complete

feedback. The channel capacity is given by a non-linear optimization problem involving entropy functions,

whose optimal value remains unknown. In this paper, using the linear dependence technique, we are able

to reduce the complexity of the optimization problem significantly. We also gather numerical evidence

for the conjectured optimal value.

1 Introduction

A major issue governments face during the COVID-19 pandemic is the problem of how to test people

efficiently in order to quickly isolate and treat the infected in order to prevent further spread. One promising

approach is to test larger pools of people by combining batches of samples, commonly known as “pooled

testing”. When the proportion of infected patients is low, this approach is extremely efficient compared to

the naive approach of individually testing every person–meaning that pooled testing can be very useful in

situations where there are testing equipment shortages or where testing can be extremely costly. This makes

testing a large number of people much more efficient.

Unfortunately, in the real world, COVID-19 tests do not have infinite accuracy or precision, so there is

an upper bound to the number of samples that can be batched together. Also, while scientists can determine

whether a batch tests positive, it is more difficult to tell how many samples in the batch are positive. In

practice, this means that once a test comes back positive, each sample is tested one by one–which is inefficient

if the proportion of positive samples is high. However, it is of interest to study the ideal case, where we can

combine any combination of arbitrarily many samples at once and have perfect tests.

We can model the pooled testing as follows. Assume that we have n people who we wish to test. We

can choose any subset of these n people and test their pooled samples, determining how many people inside

this subset are infected. We wish to minimize the number of tests needed to identify with certainty which

patients are infected. In this paper, we focus on the case that two out of n people are infected, and we study

the minimum number, denoted by w(n), of tests needed to conclusively identify these two people.
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Under the guise of “quantitative group testing”, a lot of research, which dates back to the 80s, has been

devoted to the determination of the asymptotic behavior of w(n). See [Aig86, ZBM87, GMSV92, BL87].

The best bound on w(n) was given by Gargano [GMSV92]. He introduced a recursive algorithm based on

the related quantity w(m,n), the minimum number of weighings to identify two defects in disjoint sets of

size m,n, to raise the lower bound to w(n) ≥ 2.28 log n. (We let the base of log be 2 unless otherwise stated.)

In [JPV19], a connection between the group testing problem and the multiple-access channel with com-

plete feedback was mentioned — w(n) is asymptotic to 2(log n)/c holds, where c is the maximum total

zero-error capacity of two-user adder channel with complete feedback. This zero-error capacity is character-

ized by Dueck [Due85] as the following non-linear optimization problem involving entropy functions.

Maximize: H(X | U) +H(Y | U)

Subject to: I(U,Z∗) ≥ H(X∗, Y ∗ | U,Z∗).

Here, H(· | ·) is the conditional entropy, and I(·, ·) is the mutual information. U,X, Y are random variables

on finite sets U ,X ,Y, respectively, and Z is a finite set. Furthermore, P(U,X, Y ) is the set of triples of

random variables (X∗, Y ∗, Z∗) on X ×Y ×Z, such that PX|U = PX∗|U , PY |U = PY ∗|U , and P (Z∗ = z|Y ∗ =

y,X∗ = x) = 0 if and only if P (z|y, x) = 0 in the multiple-access channel.

The optimal value of the above optimization problem is central in both group testing and information

theory, and it is a long-standing problem to determine precisely the exact optimal value. In this paper, we

make a significant progress on reducing the complexity of the optimization problem.

The rest of the paper is organized as follows. In Section 2, we transform the above non-linear optimization

problem into a more concrete one involving undetermined number of variables. The number of variables is

also called the cardinality of the optimization problem. In Section 3, we review a bound on the cardinality,

and we show this bound can be further reduced. The proof relies crucially on a uniqueness result, which is

shown in Section 4. In Section 5, we consider the case where n = 1 and work to determine the optimal rate.

In Section 6, we discuss the results of numerical experiments performed to explore the conjectured optimal

value.

2 Connection to two-user binary adder channel

For the entirety of the paper, we denote 1− x by x̄. Furthermore, the entropy function H, when used on a

set of nonnegative reals rather than a random variable, is defined as

H(x1, ..., xn) := −
n∑
i=1

xi log xi.

We reformulate Dueck’s optimization in the following more down-to-earth form. Our proof follows Be-

lokopytov’s computation in [BL87].

Theorem 1. Dueck’s optimization problem is equivalent to the following optimization problem OPT∗n:

Maximize:

n∑
i=1

pi(H(ai, āi) +H(bi, b̄i))

Subject to:

n∑
i=1

pi = 1, pi ≥ 0, ai, bi ∈ [0, 1] for all i ∈ [n],
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∑n
i=1 pi(aibi − ci)∑n

i=1 pi(aib̄i + āibi + 2ci)∑n
i=1 pi(āib̄i − ci)

 ≥ n∑
i=1

piH

(
aibi − ci aib̄i + ci

āibi + ci āib̄i − ci

)
,

for all ci that make the terms inside H(·, ·, ·, ·)non-negative.

Proof. Define finite sets U = {1, 2, ..., n},X = {0, 1},Y = {0, 1},Z = {0, 1, 2}. Let U,X, Y be random

variables on U ,X ,Y, respectively. To define U , for every i ∈ U set p(U = i) = pi ∈ [0, 1], where
∑n
i=1 pi = 1.

For convenience of notation, let pi(S) be the probability that event S occurs given that U = i. To define X

and Y , set pi(X = 0) = ai, pi(X = 1) = āi, pi(Y = 0) = bi, pi(Y = 1) = b̄i, where ai, bi ∈ [0, 1].

We define triples of random variables (X∗, Y ∗, Z∗) on X × Y ×Z, that belong to P(U,X, Y ). First, the

conditions PX∗|U = PX|U , PY ∗|U = PY |U are equivalent to pi(X
∗ = 0) = ai, pi(X

∗ = 1) = āi, pi(Y
∗ = 0) =

bi, pi(Y
∗ = 1) = b̄i for all i ∈ U . This already defines the random variables X∗, Y ∗. The last condition,

pi(Z
∗ = z|X∗ = x, Y ∗ = y) is nonzero if and only if x + y = z, can be used to completely define Z∗ once

we set pi(Z
∗ = 0|X∗ = 0, Y ∗ = 0) = aibi − ci for some ci. First, pi(Z

∗ = 1|X∗ = 1, Y ∗ = 0) = pi(Y
∗ =

0)−pi(Z∗ = 0|X∗ = 0, Y ∗ = 0) = bi−(aibi−ci) = āibi+ci. Similarly, pi(Z
∗ = 1|X∗ = 1, Y ∗ = 0) = b̄iai+ci

and pi(Z
∗ = 2|X∗ = 1, Y ∗ = 1) = āib̄i − ci. These four probabilities together define the random variable

Z∗. Note that varying over all (X∗, Y ∗, Z∗) ∈ P(U,X, Y ) is the same as varying over all real ci that make

these probabilities nonnegative.

With the probability distributions of the random variables, we can rewrite the maximized quantity as:

H(X|U) +H(Y |U) =
∑
i∈U

∑
x∈X

piH(pi(X = x)) +
∑
i∈U

∑
y∈Y

piH(pi(Y = y))

=

n∑
i=1

1∑
x=0

piH(pi(X = x)) +

n∑
i=1

1∑
y=0

piH(pi(Y = y))

=

n∑
i=1

(piH(ai) + piH(āi)) +

n∑
i=1

(piH(bi) + piH(b̄i))

=

n∑
i=1

pi(H(ai, āi) +H(bi, b̄i)).

Thus, maximizing H(X|U) +H(Y |U) is equivalent to maximizing
∑n
i=1 pi(H(ai, āi) +H(bi, b̄i)).

Now, we rewrite the inequality constraint, first simplifying the difference:

I(Z∗;U)−H(X∗, Y ∗|U,Z∗) = H(Z∗)−H(Z∗|U)−H(X∗, Y ∗|U,Z∗)

= H(Z∗)− (H(Z∗|U) +H(X∗, Y ∗, U, Z∗)−H(U,Z∗))

= H(Z∗)− (H(X∗, Y ∗, U, Z∗)−H(U))

= H(Z∗)− (H(X∗, Y ∗, U)−H(U))

= H(Z∗)−H(X∗, Y ∗|U),

where the second to last line follows because the probability distribution of Z∗ is completely dependent on

those of X∗, Y ∗, U . We form an equivalent expression for this difference by using our definitions of random

variables Z∗, X∗, Y ∗:

H(Z∗)−H(X∗, Y ∗|U) =
∑
z∈Z

H(p(Z∗ = z))−
∑
i∈U

∑
x∈X

∑
y∈Y

piH(pi(X
∗ = x, Y ∗ = y))
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=

2∑
z=0

H

(
n∑
i=1

pipi(Z
∗ = z)

)
−

n∑
i=1

1∑
x=0

1∑
y=0

piH(pi(X
∗ = x, Y ∗ = y))

= H

(
n∑
i=1

pi(aibi − ci)

)
+H

(
n∑
i=1

pi(aib̄i + āibi + 2ci)

)
+H

(
n∑
i=1

pi(āib̄i − ci)

)

−
n∑
i=1

pi
(
H(aibi − ci) +H(aib̄i + ci) +H(āibi + ci) +H(āib̄i − ci)

)
= H

(
n∑
i=1

pi(aibi − ci),
n∑
i=1

pi(aib̄i + āibi + 2ci),

n∑
i=1

pi(āib̄i − ci)

)

−
n∑
i=1

piH(aibi − ci, aib̄i + ci, āibi + ci, āib̄i − ci).

Therefore, the minimum of I(Z∗;U)−H(X∗, Y ∗|U,Z∗) over all (X∗, Y ∗, Z∗) ∈ P(U,X, Y ) being nonnegative

is equivalent to:

H

(
n∑
i=1

pi(aibi − ci),
n∑
i=1

pi(aib̄i + āibi + 2ci),

n∑
i=1

pi(āib̄i − ci)

)
≥

n∑
i=1

piH(aibi−ci, aib̄i+ci, āibi+ci, āib̄i−ci)

for all ci that make all parameters of H nonnegative. As the inequalities and maximized quantities in Dueck’s

optimization problem and OPT∗n are equivalent, with necessary conditions
∑n
i=1 pi = 1 and pi, ai, bi ∈ [0, 1]

for all i ∈ U = [n] included in the latter, Dueck’s optimization problem is equivalent to OPT∗n.

We now transform this optimization problem to another optimization problem.

Theorem 2. The optimization problem OPT∗n is equivalent to the following optimization problem OPTn.

Maximize: F (a, b,p) :=

n∑
i=1

pi(H(ai, āi) +H(bi, b̄i)),

over all points a = (a1, ..., an), b = (b1, ..., bn),p = (p1, ..., pn) in [0, 1]n such that

n∑
i=1

pi = 1, (1)

L

(
n∑
i=1

pi(aib̄i + āibi + 2ci)

)
≥

n∑
i=1

piH
(
aibi − ci, aib̄i + āibi + 2ci, āib̄i − ci

)
, (2)

for all points c = (c1, ..., cn) that make the terms inside H(·, ·, ·) non-negative, where

L(x) := H

(
1− x

2
, x,

1− x
2

)
.

Proof. Let the maximum value of the objective function be M∗ for OPT∗n, achieved with points a0, b0,p0,

and M for OPTn, achieved with points a1, b1,p1. We wish to show M∗ = M .

First, we showM∗ ≥M . Because x 7→ −x log x is convex, for any nonnegative a, b, c such that a+b+c = 1,

H(a, b, c) ≥ H(b) +H
(
1−b
2

)
+H

(
1−b
2

)
= L(b). Hence,

H

(
n∑
i=1

pi(aibi − ci),
n∑
i=1

pi(aib̄i + āibi + 2ci),

n∑
i=1

pi(āib̄i − ci)

)
≥ L

(
n∑
i=1

pi(aib̄i + āibi + 2ci)

)
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so a1, b1,p1 immediately satisfy the inequality constraint of OPT∗n. Since the objective function does not

change between the two optimization problems, OPT∗n can achieve a maximum of M for these points, which

immediately implies M∗ ≥M .

Now, we show M ≥M∗. It suffices to construct points a, b,p from a0, b0,p0 that satisfy the conditions of

OPTn and yield a value of M∗ in the objective function. Let a0, b0,p0 = (a1, ..., an), (b1, ..., bn), (p1, ..., pn),

respectively, where
∑n
i=1 pi = 1. Now define a = (a1, ..., an, ā1, ..., ān) and b = (b1, ..., bn, b̄1, ..., b̄n), which

each have length 2n. Furthermore, define p =
(
p1
2 , ...,

pn
2 ,

p1
2 , ...,

pn
2

)
, so that the elements still sum to one

and the first condition still holds. Note that

F (a, b,p) =

n∑
i=1

pi
2

(H(ai, āi) +H(bi, b̄i)) +

n∑
i=1

pi
2

(H(āi, ai) +H(b̄i, bi)) =

n∑
i=1

pi((H(ai, āi) +H(bi, b̄i)).

Thus, a, b,p yield a value of M∗ = F (a0, b0,p0) in the objective function. All that remains is to check that

they satisfy the conditions of OPTn, which can be shown by noting that the H and L expressions are equal

for a, b,p:

H

(
n∑
i=1

pi
2

(aibi − ci) +

n∑
i=1

pi
2

(āib̄i − ci), 2
n∑
i=1

pi
2

(aib̄i + āibi + 2ci),

n∑
i=1

pi(āib̄i − ci) +

n∑
i=1

pi
2

(aibi − ci)

)

= H

(
n∑
i=1

pi
2

(aibi + āib̄i − 2ci),

n∑
i=1

pi(aib̄i + āibi + 2ci),

n∑
i=1

pi
2

(aibi + āib̄i − 2ci)

)

= L

(
n∑
i=1

pi(aib̄i + āibi + 2ci)

)
.

Because a, b,p satisfy the conditions of OPTn and yield a value of M∗, the maximum in this optimization

problem is M ≥M∗.
Finally, we combine M ≥ M∗ and M∗ ≥ M to get M∗ = M . Since optimization problems OPT∗n and

OPTn yield the same maximum, they are equivalent.

We now show that the inequality constraint (2) may be replaced with an equality constraint while

preserving the optimal value, using a continuity argument. For convenience, we define

Ga,b,p(c) := L

(
n∑
i=1

pi(aib̄i + āibi + 2ci)

)
−

n∑
i=1

piH
(
aibi − ci, aib̄i + ci, āibi + ci, āib̄i − ci

)
.

Proposition 3. The optimal value of OPTn will not change if (2) is replaced by

Ga,b,p(c) = 0. (3)

Proof. Assume that for some points p,a, b we have an optimal value of the objective function. Furthermore,

assume that there is at least one coordinate of a or b which is not 0.5. If

Ga,b,p(c) > 0,

then we can perturb this coordinate by some sufficiently small positive ε in the direction of 0.5 while

continuing to satisfy Ga,b,p(c) > 0. (We can guarantee the constraint remains satisfied because Ga,b,p(c) is

continuous.) This will increase our objective function, giving an even more optimal value of the objective

function, which is a contradiction.
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Now, it is straightforward to show that it is impossible for all coordinates of a and b to be 0.5, because

(2) will not be satisfied. This implies that any optimal values of p,a, b must occur at equality in (2), as

desired.

For the rest of the paper, we shall assume (3) as the constraint instead of (2).

3 Bounding cardinality of optimization problem

With the following uniqueness theorem, we can let n = 3 in OPTn without loss. As in the previous section,

we define

Ga,b,p(c) := L

(
n∑
i=1

pi(aib̄i + āibi + 2ci)

)
−

n∑
i=1

piH
(
aibi − ci, aib̄i + ci, āibi + ci, āib̄i − ci

)
. (4)

Because (3) must be satisfied for all c, we only have to check the point c which minimizes Ga,b,p,c.

Definition 4. Fix points p = (p1, ..., pn), a = (a1, ..., an), b = (b1, ..., bn). The minimum point c is defined

to be the point (c1, ..., cn) for which Ga,b,p(c) is minimized.

Now, we begin to characterize these minimum points. We postpone the proof of this characterization to

Section 4.

Theorem 5 (Characterization of minimum points). Assume p,a, b satisfying the conditions in OPTn give

an maximum value of the objective function. Then there is a unique minimum point c. Furthermore, this

point satisfies ∂G
∂ci

= 0 for all i ∈ [n].

With the following theorem, as long as n ≥ 4, we can always create a solution for n − 1 that is at least

as optimal any solution for n. Thus, we can eventually set n = 3 in our optimization problem.

Theorem 6. Let p = (p1, ..., pn), a = (a1, ..., an), b = (b1, ..., bn) be points satisfying the conditions of

OPTn, where n ≥ 4, such that a, b,p result in the maximum possible value of the objective function F .

There exist points p̂ = (p̂1, ..., p̂n−1),â = (â1, ..., ân−1),b̂ = (b̂1, ..., b̂n−1) that also satisfy these conditions

and F (â, b̂, p̂) ≥ F (a, b,p).

Proof. We will provide a construction of such â, b̂, p̂ starting from a, b,p. Let c∗ = (c∗1, ..., c
∗
n) be the

minimum point of a, b,p, which is unique by Theorem 5. We shall define a nonzero point v := (v1, ..., vn)

such that

n∑
i=1

vi = 0,

n∑
i=1

vi(aib̄i + āibi + 2c∗i ) = 0,

n∑
i=1

viH(aibi − c∗i , aib̄i + c∗i , āibi + c∗i , āib̄i − c∗i ) = 0,

n∑
i=1

vi(H(ai, āi) +H(bi, b̄i)) ≥ 0.

Because there are n ≥ 4 variables, we can find infinite solutions to the three linear equations in v1, ..., vn.

Thus, one of these solutions has at least one nonzero vi. If this solution satisfies the inequality, we have

found a valid v; otherwise, simply reverse the signs of all vi, as the the first three equations will still hold

and the inequality will become true.
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Consider the point pt = p+ vt for any t. Note that
∑n
i=1(pi + vit) =

∑n
i=1 pi + t

∑n
i=1 vi = 1, so a, b,pt

satisfy (1) of OPTn. Now let ct = (c1t, ..., cnt) be the minimum point of pt,a, b. Theorem 5 tells us that for

all i ∈ [n], (∂Ga,b,p/∂ci)|ci=cit = 0 as the optimal value of the objective function is conserved, which after

simplification yields the system(
1−X

2X

)2

=
(aibi − cit)(āib̄i − cit)
(aib̄i + cit)(āibi + cit)

and X =

n∑
i=1

(pi + vit)(aib̄i + āibi + 2cit).

We claim that ct = c∗ is the unique solution. It suffices to substitute cit = c∗i and verify the equalities:(
1−X

2X

)2

=
(aibi − c∗i )(āib̄i − c∗i )
(aib̄i + c∗i )(āibi + c∗i )

X =

n∑
i=1

pi(aib̄i + bib̄i + 2c∗i ) + t

n∑
i=1

vi(aib̄i + āibi + 2c∗i ) =

n∑
i=1

pi(aib̄i + āibi + 2c∗i ).

Note that the last step follows from the definition of vi. These equalities are exactly the same as
∂Ga,b,p

∂ci
(c∗i ) =

0 for all i ∈ [n], which is immediately true by Theorem 5 on points a, b,p. This solution is unique, so ct = c∗.

Thus, Ga,b,pt
(ct) = Ga,b,pt

(c∗). Also, from the second and third equations in the definition of vi,

Ga,b,pt(c
∗) = L

(
n∑
i=1

(pi + vit)(aib̄i + āibi + 2c∗i )

)
−

n∑
i=1

(pi+vit)H
(
aibi − c∗i , aib̄i + c∗i , āibi + c∗i , āib̄i − c∗i

)
= L

(
n∑
i=1

pi(aib̄i + āibi + 2c∗i )

)
−

n∑
i=1

piH
(
aibi − c∗i , aib̄i + c∗i , āibi + c∗i , āib̄i − c∗i

)
= Ga,b,p(c∗).

Combining these two equations with Ga,b,p(c∗) = 0, which follows from (3) of OPTn, we obtain Ga,b,pt
(ct) =

0. As ct is the minimum point of a, b,pt, this immediately implies Ga,b,pt(c) = 0 for valid c, i.e. a, b,pt

satisfy (3) of OPTn.

Finally, linearly increase t until some element of pt becomes zero, at t = t0. Say the ith element is zero.

Let â, b̂, p̂ be the point formed when the ith elements of a, b,p are removed, with length n−1. These points

still satisfy (1), (3) of OPTn, and F (â, b̂, p̂) = F (a, b,pt) ≥ F (a, b,p), so our construction is complete.

4 Uniqueness of minimum point in the constraint

The entirety of this section is devoted to proving Theorem 5. We first follow the steps shown in Section 4

of [BL87] to show that the minimum point given optimal p,a, and b cannot lie on the boundary and they

must satisfy ∂G
∂ci

= 0 for each i. We then demonstrate the uniqueness of the minimum point for n = 1 and

use a key lemma to prove uniqueness for n ≥ 2. At the end of the section, we combine these results to prove

Theorem 5.

Proposition 7. The optimal values for ci, assuming a, b,p give an optimal value, are where ∂G
∂ci

= 0, and

are not on the boundary of the region.

Remark. The condition for p,a, b being optimal is necessary, because there are cases where ai, bi are close

to 0 or 1, causing the value for ci given by the derivative being zero to fall outside of the possible range. For

example, letting p = (0.3, 0.3, 0.4),a = (0.22, 0.98, 0.11), b = (0.28, 0.96, 0.33) causes the partial derivative

formula for c to output c = (−0.0113,−2.02,−0.011), with c2 clearly being outside the possible range.
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Proof. We begin by noting the following for all i:

aibi − ci ≥ 0 =⇒ ci ≤ aibi, aib̄i + ci ≥ 0 =⇒ ci ≥ aibi − ai,

āibi − ci ≥ 0 =⇒ ci ≥ aibi − bi, āib̄i − ci ≥ 0 =⇒ ci ≤ (1− ai)(1− bi).

Therefore, we have two cases where a value of ci is on the boundary. Either ci = max(aibi − ai, aibi − bi) or

ci = min(aibi, (1− ai)(1− bi)).
We assume without loss of generality that pi 6= 0 for all i. Define

Y :=
∑
i

pi(aib̄+ ābi + 2ci), Jp,a,b(c, i) :=
∂Gp,a,b(c)

∂ci
= pi

(
2 log

1− Y
2Y

− log
(aibi − ci)(āib̄i − ci)
(aib̄i + ci)(āibi + ci)

)
.

We shall assume for the sake of contradiction that for some i we have ci is on the boundary, that this

choice of c minimizes G, and Gp,a,b(c) = 0.

First, assume that ci = max(aibi − ai, aibi − bi) for some fixed i. We create a new point c′ such that

c′i = ci+ε for an arbitrarily small value of ε > 0, with all other indices j 6= i satisfying c′j = cj . Then because

c results in the global minimum of the function G, we must have ∂G
∂c′i

= Jp,a,b,c′(i) > 0. But we have that

lim
ε→0

log
(aibi − c′i)(āib̄i − c′i)
(aib̄i + c′i)(āibi + c′i)

=∞.

The combination of these facts implies that we must have

lim
ε→0

Y = 0.

Because we assumed pj 6= 0 for all j, we have that for all j, 2cj = 2ajbj − aj − bj . But we have for all cj

that 2cj ≥ 2 max(ajbj − aj , ajbj − bj) ≥ 2ajbj − aj − bj , with equality if and only if aj = bj for all j.

We assumed that c results in G having a global minimum, so we then have the following:

L(0)−
∑
i

piH(ai, 1− ai) ≤ L

(∑
i

pi
(
2ai − 2a2i

))
−
∑
i

piH
(
a2i , ai(1− ai), ai(1− ai), (1− ai)2

)
= L

(∑
i

pi
(
2ai − 2a2i

))
− 2

∑
i

piH(ai, 1− ai).

This results in

R1 = R2 =
∑
i

piH(ai, 1− ai) ≤ L

(∑
i

pi
(
2ai − 2a2i

))
− L(0) ≤ log 3− 1 = 0.5850.

This is worse than the construction a = 〈0.23684〉, b = 〈0.23684〉, c = 〈0.04071〉 resulting in R1 = R2 =

0.78974.

Now, assume that ci = min(aibi, 1− ai − bi − aibi) for some fixed i. We redefine c′ such that c′i = ci − ε
for an arbitrarily small ε > 0 with all j 6= i satisfying c′j = cj . Here, we have that ∂G

∂c′i
= Jp,a,b,c′(i) < 0,

along with:

lim
ε→0

log
(aibi − c′i)(āib̄i − c′i)
(aib̄i + c′i)(āibi + c′i)

= −∞.

This then implies limε→0 Y = 1. Because G = 0 and L(Y ) = 0, we must have for all j

H(ajbj − cj , aj b̄j + cj , ājbj + cj , āj b̄j) = 0.

This implies all four of ajbj−cj , aj b̄j+cj , ājbj+cj , āj b̄j−cj are integers. Namely, ajbj−cj+aj b̄j+cj = aj and

ajbj−cj+ājbj+cj = bj must also be integers, so we have aj , bj ∈ {0, 1} for all j. This gives R1 = R2 = 0.
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Now, we prove that the minimum point c is unique when the cardinality is 1.

Proposition 8. For all a, b ∈ [0, 1], there is a unique x ∈ (0, 1) which is a zero of the function

f(x) = ab̄+ āb+ 2c(x)− x

where c(x) is defined as the unique solution to

(ab− c(x))(āb̄− c(x))

(ab̄+ c(x))(āb+ c(x))
=

(
1− x

2x

)2

satisfying max(−ab̄,−āb) ≤ c(x) ≤ min(ab, āb̄).

Proof. Solving for c(x), we find

c(x) =
x

2
− a

2
− b

2
+ ab.

Substituting, we find that we want to show h(x) := (2x)2(a + b − x)(2 − a − b − x) − (1 − x)2(a − b +

x)(−a + b + x) has a unique root. It suffices to show that when h′(x) = 0 we always have h(x) > 0. Now,

2h(x)− xh′(x) = 2((a− b)2 + 3x2)(1− x) is positive for x ∈ (0, 1) as desired.

We now proceed to the case where the cardinality is 2. First, we will present a lemma regarding the

behavior of f ′

f .

Lemma 9. When (a, b) 6= (0, 0),
f ′(x)

f(x)
6= 1

x
for x ∈ (0, 1).

Proof. We first have:

f(x) =

{
x <

1

3
: −x− k0 (x) +

√
s0 (x), x ≥ 1

3
: −x− k0 (x)−

√
s0 (x)

}
,

where

k0(x) = − 4x2

(3x− 1)(x+ 1)

k1(x) = − 8x(x− 1)

(x+ 1)2(3x− 1)2

s0(x) = (a− b)2 + k0(x)2 + 2k0(x)(a+ b− 2ab)

s1(x) = 2k0(x)k1(x) + 2k1(x)(a+ b− 2ab).

We wish to show there are no (non-corner) solutions to the equation

f(x)− xf ′(x) = 0.

We split into two cases.

First, we examine the case where 0 < x < 1
3 . Here,

f(x) = −x− k0 (x) +
√
s0 (x).

Then

f ′(x) = −1− k1 (x) +
s1(x)

2
√
s0 (x)

.
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Again, we want to show that

0 = −x− k0 (x) +
√
s0 (x) + x+ xk1(x)− x · s1(x)

2
√
s0 (x)

= −k0 (x) +
√
s0 (x) + xk1(x)− x · s1(x)

2
√
s0 (x)

has no solutions.

Rearranging gives us that we want to show

2s0(x)− x · s1(x) = 2(k0 (x)− xk1(x)) ·
√
s0(x).

Cross multiplying then gives

8(3x4 + x2)
√
s0(x) = (x+ 1)2(3x− 1)2(xs1(x)− 2s0(x)).

Further expansion then gives:

64x4 (1− x)

(x+ 1) (1− 3x)
− 32x4 − 2 (a− b)2 (x+ 1)

2
(1− 3x)

2
+ 16x3 (3x+ 1) (a+ b− 2ab)

= 8x2
(
3x2 + 1

)√
s0 (x),

where s0(x) = (a− b)2 + (k0 (x))
2

+ 2k0 (x) (a+ b− 2ab) and k0(x) = 4x2

(1−3x)(x+1) . Since

64x4 (1− x)

(x+ 1) (1− 3x)
− 32x4 − 2 (a− b)2 (x+ 1)

2
(1− 3x)

2
+ 16x3 (3x+ 1) (a+ b− 2ab)

≤ 64x4 (1− x)

(x+ 1) (1− 3x)
− 32x4 + 16x3 (3x+ 1) (a+ b− 2ab) ,

we can also try to show

64x4 (1− x)

(x+ 1) (1− 3x)
− 32x4 + 16x3 (3x+ 1) (a+ b− 2ab) ≤ 8x2

(
3x2 + 1

)√
s0 (x).

Dividing through by 8x2 gives

8x2 (1− x)

(x+ 1) (1− 3x)
− 4x2 + 2x (3x+ 1) (a+ b− 2ab) ≤

(
3x2 + 1

)√
s0 (x).

This simplifies to

4x2(3x2 + 1)

(x+ 1) (1− 3x)
+ 2x (3x+ 1) (a+ b− 2ab) ≤

(
3x2 + 1

)√
s0 (x).

Since both sides of the inequality are non-negative, squaring them preserves the inequality, giving(
4x2(3x2 + 1)

(x+ 1) (1− 3x)

)2

+ 2

(
4x2(3x2 + 1)

(x+ 1) (1− 3x)

)
(2x (3x+ 1) (a+ b− 2ab)) + (2x (3x+ 1) (a+ b− 2ab))2

≤ (3x2 + 1)2s0(x).

Substituting in the values of s0(x) gives
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(
4x2(3x2 + 1)

(x+ 1) (1− 3x)

)2

+ 2

(
4x2(3x2 + 1)

(x+ 1) (1− 3x)

)
(2x (3x+ 1) (a+ b− 2ab)) + (2x (3x+ 1) (a+ b− 2ab))2

≤ (3x2 + 1)2((a− b)2 +

(
− 4x2

(3x− 1)(x+ 1)

)2

+ 2

(
− 4x2

(3x− 1)(x+ 1)

)
(a+ b− 2ab)).

This simplifies to

2

(
4x2(3x2 + 1)

(x+ 1) (1− 3x)

)
(2x (3x+ 1) (a+ b− 2ab)) + (2x (3x+ 1) (a+ b− 2ab))2

≤ (3x2 + 1)2((a− b)2 + 2

(
− 4x2

(3x− 1)(x+ 1)

)
(a+ b− 2ab)).

Clearing denominators gives

16x3(3x2 + 1)(3x+ 1)(a+ b− 2ab) + 4x2(3x+ 1)2(a+ b− 2ab)2(x+ 1)(1− 3x)

≤ (3x2 + 1)2(x+ 1)(1− 3x)(a− b)2 + 8x2(3x2 + 1)2(a+ b− 2ab).

This simplifies to

(x+ 1)(1− 3x)((3x2 + 1)2(a− b)2 − 4x2(3x+ 1)2(a+ b− 2ab)2)

≥ 8x2(3x2 + 1)(a+ b− 2ab)(2x(3x+ 1)− 3x2) = 8x2(3x2 + 1)(a+ b− 2ab)(−(x+ 1)(1− 3x))

Dividing through by (x+ 1)(1− 3x) and simplifying gives

(3x2 + 1)2(a− b)2 − 4x2(3x+ 1)2(a+ b− 2ab)2 + 8x2(3x2 + 1)(a+ b− 2ab) ≥ 0.

Calling this function A(x), the goal is to show that A(x) ≥ 0 for x ∈
[
0, 13
]
. Note that

A(x) = (3x2 + 1)2(a− b)2 − 4x2(3x+ 1)2(a+ b− 2ab)2 + 8x2(3x2 + 1)(a+ b− 2ab)

≥ (a− b)2 − 4x2(3x+ 1)2(a+ b− 2ab)2 + 8x2(a+ b− 2ab) := B(x).

We wish to show that B(x) ≥ 0 for x ∈
[
0, 13
]
. Letting Y = a+ b− 2ab, note that

B′(x) = −8xY (18x2Y + 9xY + Y − 2)

B′′(x) = −8Y (54x2Y + 18xY − 2)

By Vieta’s formula, the sum of the roots of B′′(x), if it does have 2 roots, is − 1
3 . This means B′′(x) has at

most one root in [0, 13 ]. And since B′(0) = 0 and B′′(0) = −8Y (Y − 2) ≥ 0 as 0 ≤ Y ≤ 1.

If Y = 0, then B(x) is a constant function and therefore will not dip below 0. (Notice that we have

equality here if and only if a = b = 0.) Otherwise, B′′(x) > 0.

If B′′(x) has no roots in [0, 13 ], then B is always convex up so is always non-decreasing and therefore is

always at most 0.

If B′′(x) has one root in [0, 13 ] then B goes from convex up to convex down. Then B′(x) can have at

most 1 root in [0, 13 ] meaning B goes from increasing to decreasing. This means the only possible critical

point of B in [0, 13 ] would be a local maximum.

Thus, the minimum of B must occur at either x = 0 or x = 1
3 . Since B(0) = (a − b)2 ≥ 0 and

B( 1
3 ) = (a− b)2 − 4

9 (a+ b− 2ab)(4(a+ b− 2ab)− 2) which has a minimum of 0 at a = 1
2 , b = 1

2 , B(x) ≥ 0

for all x ∈ [0, 13 ].
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Now, we proceed to the case where 1
3 ≤ x ≤ 1. Here,

f(x) = −x− k0 (x)−
√
s0 (x).

Then

f ′(x) = −1− k1 (x)− s1(x)

2
√
s0 (x)

.

0 = −x− k0 (x)−
√
s0 (x) + x+ xk1(x) + x · s1(x)

2
√
s0 (x)

= −k0 (x)−
√
s0 (x) + xk1(x) + x · s1(x)

2
√
s0 (x)

.

Rearranging gives us

2
√
s0(x) (k0(x)− xk1(x)) = x · s1(x)− 2s0(x).

Cross multiplying then gives

−8(3x4 + x2)
√
s0(x) = (x+ 1)2(3x− 1)2(xs1(x)− 2s0(x)).

Further expansion then gives:

64x4 (1− x)

(x+ 1) (1− 3x)
−32x4−2 (a− b)2 (x+ 1)

2
(1− 3x)

2
+16x3 (3x+ 1) (a+ b− 2ab) = −8x2

(
3x2 + 1

)√
s0 (x),

where, again, s0(x) = (a− b)2 + (k0 (x))
2

+ 2k0 (x) (a+ b− 2ab) and k0(x) = 4x2

(1−3x)(x+1) .

Clearly, the right hand side of this equation is at least 0. Assume for the sake of contradiction that the

equation holds for some a, b, x not satisfying a = 1− b, x = 1. We can simplify the left hand side:

64x4 (1− x)

(x+ 1) (1− 3x)
− 32x4 − 2 (a− b)2 (x+ 1)

2
(1− 3x)

2
+ 16x3 (3x+ 1) (a+ b− 2ab)

=
32x4

(
3x2 + 1

)
(x+ 1) (1− 3x)

− 2 (a− b)2 (x+ 1)
2

(1− 3x)
2

+ 16x3 (3x+ 1) (a+ b− 2ab) .

Squaring both sides, we find that

1024x8
(
3x2 + 1

)2
(x+ 1)2(3x− 1)2

+ 256x6(3x+ 1)2(a+ b− 2ab)2 −
1024x7(3x+ 1)

(
3x2 + 1

)
(a+ b− 2ab)

(x+ 1)(3x− 1)

+2(a−b)2(x+1)2(3x−1)2

[
2·

32x4
(
3x2 + 1

)
(x+ 1) (3x− 1)

+2 (a− b)2 (x+ 1)
2

(3x− 1)
2−2·16x3 (3x+ 1) (a+ b− 2ab)

]

= 64x4
(
3x2 + 1

)2
(a− b)2 +

1024x8
(
3x2 + 1

)2
(x+ 1)2(3x− 1)2

−
512x6

(
3x2 + 1

)2
(3x− 1)(x+ 1)

(a+ b− 2ab).

After some cancellation, expansion of terms, and dividing both sides by 4, we find that this is equivalent to:

16 (a− b)2 x4
(
3x2 + 1

)2 − (a+ b− 2ab)
128x6

(
3x2 + 1

)2
(3x− 1) (x+ 1)

− 64 (a+ b− 2ab)
2
x6 (3x+ 1)

2

+ (a+ b− 2ab)
256x7 (3x+ 1)

(
3x2 + 1

)
(x+ 1) (3x− 1)

= 32 (a− b)2 x4 (x+ 1) (3x− 1)
(
3x2 + 1

)
12



+ (a− b)4 (x+ 1)
4

(3x− 1)
4 − 16 (a+ b− 2ab) (a− b)2 x3 (3x+ 1) (x+ 1)

2
(3x− 1)

2
.

Combining terms, we find

− 64 (a+ b− 2ab)
2
x6 (3x+ 1)

2
+ 128 (a+ b− 2ab)x6

(
3x2 + 1

)
= 16 (a− b)2 x4

(
3x2 + 1

) (
3x2 + 4x− 3

)
+ (a− b)4 (x+ 1)

4
(3x− 1)

4 − 16 (a+ b− 2ab) (a− b)2 x3 (3x+ 1) (x+ 1)
2

(3x− 1)
2
.

By rearranging terms, we realize that this is equivalent to showing

16x4
(
3x2 + 1

) (
8x2 (a+ b− 2ab)−

(
3x2 + 4x− 3

)
(a− b)2

)
=
(

8x3 (3x+ 1) (a+ b− 2ab)− (x+ 1)
2

(3x− 1)
2

(a− b)2
)2
.

To show that this is impossible, we will show the left hand side is greater than the right hand side, except

when a = 1− b, x = 1. For ease of notation, define

m(x) := 16x4
(
3x2 + 1

) (
8x2 (a+ b− 2ab)−

(
3x2 + 4x− 3

)
(a− b)2

)
,

n(x) :=
(

8x3 (3x+ 1) (a+ b− 2ab)− (x+ 1)
2

(3x− 1)
2

(a− b)2
)2
.

We claim that m(x) > n(x). Set s = a+ b− 1 and t = a− b. Without loss of generality, we may assume

that t ≥ 0. Under this assumption, give t ≥ 0, because a, b ∈ [0, 1], one can show that |s| ≤ 1− t. Using the

fact that

a+ b− 2ab = 1
2 (1− s2 + t2),

we can rewrite m(x) and n(x) as

m(x) := 16x4
(
3x2 + 1

) (
4x2

(
1− s2 + t2

)
−
(
3x2 + 4x− 3

)
t2
)
,

n(x) :=
(

4x3 (3x+ 1)
(
1− s2 + t2

)
− (x+ 1)

2
(3x− 1)

2
(a− b)2

)2
.

The function m(x)−n(x) can be seen as a quadratic polynomial of s2 with a negative leading coefficient.

Therefore it suffices to check m(x) ≥ n(x) for s2 = 0 and s2 = (1− t)2.

Case 1: s2 = 0. In this case, m(x)− n(x) equals

(1− x)2
[
48x6 + 8x3(1 + 7x− 9x2 − 3x3)t2 − (1− 3x− 5x2 + 3x3)2t4

]
.

The expression in the square bracket can be seen as a quadratic polynomial of t2. with a negative leading

coefficient. To prove m(x) ≥ n(x) in the s2 = 0 case, it suffices to check

48x6 + 8x3(1 + 7x− 9x2 − 3x3)t2 − (1− 3x− 5x2 + 3x3)2t4

is non-negative at the endpoints t = 0 and t = 1. When t = 0, the above equals 48x6 ≥ 0. When t = 1, the

above equals

(1− x)2(−1 + 4x+ 10x2 − 12x3 + 15x4),

which can be easily shown to be non-negative.
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Case 2: s2 = (1− t)2. In this case, m(x)− n(x) equals

t(−t+ 2tx− 4x2 + 3tx2)2
[
8x2 + 24x4 − (−1 + 2x+ 3x2)2t

]
.

As t ≥ 0, it suffices to check the expression in the square bracket is non-negative at t = 1. When t = 1, that

expression equals

−1 + 4x+ 10x2 − 12x3 + 15x4

which again is non-negative. (Notice that we have equality here if and only if a = b = 0, which makes t = 0.)

This proves our claim that f ′(x)
f(x) 6=

1
x .

Now, assume we have p1, p2 such that p1 + p2 = 1 and 0 ≤ p1, p2 ≤ 1. For the sake of notation, define

fa,b(x) := ab̄+ āb+ 2c(x)−x. We now show that when the cardinality is 2 we have a unique minimum point

when p,a, and b are optimal.

Proposition 10. For every a1, a2, b1, b2, the equation

p1fa1,b1(x) + p2fa2,b2(x)

has exactly one solution for x in (0, 1).

Proof. Without loss of generality let x1 and x2 with x1 ≤ x2 be the unique roots of fa1,b1(x) and fa2,b2(x)

respectively. Assume there is some fixed x∗ such that p1fa1,b1(x∗) + p2fa2,b2(x∗) = 0. Clearly x1 ≤
x∗ ≤ x2. This is because for x < x1 we have fa1,b1(x), fa2,b2(x) > 0, and similarly for x > x2 we have

fa1,b1(x), fa2,b2(x) < 0.

It suffices to show that q(x) := − fa1,b1
(x)

fa2,b2
(x) is injective in the range x ∈ (x1, x2). (This would imply

different values of x within this interval are roots at different p1, p2.) We shall show that q is, in fact,

monotone increasing in the interval x ∈ (x1, x2).

We have that

lim
x→x+

1

f ′a1,b1(x)

fa1,b1(x)
=∞ >

1

x1

and

lim
x→x−2

f ′a2,b2(x)

fa2,b2(x)
= −∞ <

1

x2
.

By Lemma 9, we can lower bound
f ′a1,b1

(x)

fa1,b1
(x) by 1

x and upper bound
f ′a2,b2

(x)

fa2,b2
(x) by 1

x , therefore giving

f ′a1,b1(x)

fa1,b1(x)
≥ 1

x
≥
f ′a2,b2(x)

fa2,b2(x)
,

with equality only when a = b = 0. After differentiating q, it is clear that this implies the statement that q

is monotone increasing, proving our lemma.

We now continue to the case where the cardinality is at least 3. Assume now that we have p1, p2, . . . pn

such that
∑n
i=1 pi = 1 and 0 ≤ p1, p2, . . . , pn ≤ 1, for n ≥ 3.

Proposition 11. The equation
n∑
i=1

pifai,bi(x) = 0,

for n ≥ 3, has exactly one solution in x in the interval [0, 1].
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Proof. For sake of convenience let us define

gp,a,b(x) :=

n∑
i=1

pifai,bi(x)

where, again, a, b,p are the points (a1, a2, . . . , an), (b1, b2, . . . , bn), and (p1, p2, . . . , pn) respectively.

Assume for the sake of contradiction ga,b,p(x) = 0 has at least two roots in x in the interval [0, 1]. We

know that at least one root has odd multiplicity, because fai,bi(0) ≥ 0 ≥ fai,bi(1), and it is not difficult to

check that for any sufficiently small ε > 0, f(−ε) > 0 and f(1 + ε) < 0. Let x = x1, x2 be two roots such

that x1 is the smallest root with odd multiplicity and such that x2 is the smallest root which is not x1.

Consider the locus of points (p̃1, p̃2, . . . , p̃n) which satisfy the condition 0 ≤ p̃1, p̃2, . . . , p̃n ≤ 1 and the

following: ∑
p̃i = 1 (5)

gp̃,a,b(x1) = 0 (6)

gp̃,a,b(x2) = 0 (7)

where p̃ is defined as the point with coordinates (p̃1, p̃2, . . . , p̃n).

If n ≥ 4 we can let all but 3 components of p̃ be 0, because there are only 3 linear equations in p̃i which

need to be satisfied. We now only need to consider the case when n = 3.

Consider the set of points p̃ that only satisfy (5) and (6). The set of these points forms a line segment,

with the endpoints satisfying the condition that either p̃1 = 0, p̃2 = 0, or p̃3 = 0. Clearly, (p1, p2, p3) is on

this line segment.

We first consider the case where x1 < x2.

Consider p′, which we define to be a point along this aforementioned line segment. Clearly, setting

p′ = (p1, p2, p3) results in gp′,a,b(x2) becoming 0, by the definition of x2. Now, consider what happens if p′

is moved to each of the two endpoints of the line segment. It is clear that for at least one of these endpoints,

gp′,a,b(x2) ≥ 0 by linearity.

Take p′ = p′′ to be at this endpoint, with p′′ satisfying gp′′,a,b(x2) ≥ 0. We also have gp′′,a,b(x1 + ε) < 0

for arbitrarily small ε > 0, and so by the Intermediate Value Theorem gp′′,a,b(x) must therefore have another

root in the interval x ∈ (x1, x2]. Because we have that either p̃1 = 0, p̃2 = 0, or p̃3 = 0, we can disregard

one of the pifai,bi(x) terms in the summation, and still have at least 2 roots. However, this contradicts

Proposition 10, proving Proposition 11.

Now, if x1 > x2, we choose p′ = p′′ to satisfy gp′,a,b(x2) ≤ 0. We have that gp′′,a,b(x1 − ε) ≥ 0 for

arbitrarily small ε > 0. Then using the Intermediate Value Theorem implies we have a root of gp′′,a,b(x)

which gives a contradiction, using the same reasoning as above.

Now we are ready to prove Theorem 5.

Proof of Theorem 5. First, Proposition 7 implies that we must have ∂G
∂ci

= 0 for each i and for any minimum

point c, assuming a, b,p give the maximum possible value of the objective function. Also, Proposition 8,

Proposition 10, and Proposition 11 together imply that there exists a unique minimum point for n ≥ 1.

Combining these two results completes the proof.
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5 Optimality for n = 1

In this section we explicitly compute the value of OPTn for n = 1 given a conjecture.

We begin by defining h(x) := H(x, x̄). We wish to maximize h(a) + h(b) across points satisfying

L(ab̄+ bā+ 2c)−H(ab− c, ab̄+ c, bā+ c, āb̄− c) = 0,

where a, b ∈ [0, 1] and c is the unique minimum point. Define X = ab̄ + bā + 2c, E1 = ab − c, E2 = ab̄ + c,

E3 = bā+ c, and E4 = āb̄− c.

Theorem 12. For a given a, there is a unique value of b satisfying b ≤ ā and L(X)−H(E1, E2, E3, E4) = 0,

which we denote B(a).

Proof. Consider L(X)−H(E1, E2, E3, E4) = 0 for a constant. We claim that, if b < ā,

∂

∂b
(L(X)−H(E1, E2, E3, E4)) < 0.

Let ∂E1

∂b = Q. Note that when a is held constant,

∂E2

∂b
= −Q, ∂E3

∂b
= −Q+ 1,

∂E4

∂b
= Q− 1,

∂X

∂b
= 1− 2Q.

This means that

∂

∂b
(L(X)−H(E1, E2, E3, E4))

= L′(X) · (1− 2Q)−H ′(E1) ·Q−H ′(E2) · (−Q)−H ′(E3) · (−Q+ 1)−H ′(E4) · (Q− 1)

= Q
(
−2 log 1−X

2X − log 1
eE1

+ log 1
eE2

+ log 1
eE3
− log 1

eE4

)
+ L′(X)−H ′(E3) +H ′(E4)

=

(
log

((
2X

1−X

)2

· eE1 · eE4

eE2 · eE3

))
+ L′(X)−H ′(E3) +H ′(E4).

By the optimality of c, (
1−X

2X

)2

=
E1 · E4

E2 · E3

meaning the expression inside the logarithm is simply equal to 1. Thus, the entire expression simplifies to

log

(
(1−X)

2X
·
(

1

eE3

)−1
· 1

eE4

)
= log

(
(1−X)E3

2XE4

)
.

Now, we wish to prove

b < ā =⇒ log

(
(1−X)E3

2XE4

)
⇐⇒ (1−X)E3 < 2XE4.

Note that, when b < ā,

2E4 = 2(āb̄− c) = 2− 2a− 2b+ 2ab− 2c > 1− a− b+ 2ab− 2c = 1− (ab̄+ bā+ 2c) = 1−X.

In addition, X = ab̄ + bā + 2c > bā + c = E3 as, for optimal c, ab̄ + c > 0. This means, for b < ā,

(1−X)E3 < 2XE4, proving that

a < b̄ =⇒ ∂

∂b
(L(X)−H(E1, E2, E3, E4)) < 0.
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We claim that L(X)−H(E1, E2, E3, E4) ≥ 0 at b = 0. This holds because, in this case, the only value of c

that keeps E1, E2, E3, E4 ≥ 0 is c = 0, meaning c = 0 must be the optimal value of c. Then, X = a,E1 =

0, E2 = ā, E3 = a,E4 = 0. Since H(0) = 0 and L(a) = H(a) +H(ā) + ā,

L(X)−H(E1, E2, E3, E4) = ā ≥ 0,

proving this claim.

We also claim that L(X) −H(E1, E2, E3, E4) ≤ 0 at b = ā. To prove this, we must first determine the

optimal value of c. Such a c must satisfy (
1−X

2X

)2

=
E1 · E4

E2 · E3

=⇒
(

1− (a2 + ā2 + 2c)

2(a2 + ā2 + 2c)

)2

=
(aā− c)(aā− c)
(a2 + c)(ā2 + c)

.

This holds at c = aā which, by uniqueness, is the only c satisfying this equation. When b = ā and c = aā,

X = 1, E1 = 0, E2 = a,E3 = ā, E4 = 0 so

(L(X)−H(E1, E2, E3, E4)) = 0−H(a, ā).

Since H(a, ā) ≥ 0, this proves

(L(X)−H(E1, E2, E3, E4)) ≤ 0

when b = ā. Combining these pieces of information shows that B(a) is well-defined. This is because

L(X)−H(E1, E2, E3, E4) for fixed a is greater than or equal to 0 at b = 0, less than or equal to 0 at b = ā

and strictly decreasing, meaning it has exactly one root in [0, ā] and so B(a) is unique.

We wish to maximize h(a) + h(b) across all points (a, b) satisfying L(X) − H(E1, E2, E3, E4) = 0. We

claim this set of points is defined as points either of the form (a,B(a)) or (1 − B(a), a) for a ∈ [0, 1].

This holds because, as proved earlier, all points with b ≤ ā are of the form (a,B(a)). In addition, since

L(X)−H(E1, E2, E3, E4) = 0 at (a, b) if and only if L(X)−H(E1, E2, E3, E4) = 0 at (ā, b̄) because c and X

are the same at these two points. In addition the values of Ei are simply permuted, proving this claim. Thus,

L(X) − H(E1, E2, E3, E4) = 0 only at points of the form (a,B(a)) or of the form (1 − B(a), a). However,

since h(a) = h(ā), h(a) +h(b) = h(ā) +h(b̄) so the same maximum is produced on either of these sets. Thus,

we only need to consider points of the form (a,B(a)) to determine the maximum value of h(a) + h(b).

Conjecture 13. We claim that h(a) + h(B(a)) is maximized when a = B(a).

First, note that B(a) = B−1(a) as L(X) − H(E1, E2, E3, E4) = 0 at (a,B(a)) if and only if L(X) −
H(E1, E2, E3, E4) = 0 at (B(a), a). Also, B(a) is strictly decreasing because B(0) = 1, B(1) = 0 and B is

invertible. Since B(a) is strictly decreasing, so is B∗(a) = B(a)− a meaning there is a unique value ai such

that ai = B(ai). Note that,

(B−1)′(ai) =
1

B′(B−1(ai))
=⇒ B′(ai) =

1

B′(ai)
=⇒ B′(ai) = −1

as B(a) is strictly decreasing. Thus, when a = ai,

d

da
(h(a) + h(B(a))) = h′(a) + h′(B(a))B′(a) = h′(ai) + h′(ai) · (−1) = 0.
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Computer experimentation described in Section 6 suggests there are no other values of a satisfying h′(a) +

h′(B(a))B′(a) = 0 and that the point where a = B(a) is a global maximum.

We now seek to determine the unique value of a = a0 ≤ 0.5 such that, when a = b = a0, L(X) −
H(E1, E2, E3, E4) = 0. We first wish to compute

∂

∂a
(L(X)−H(E1, E2, E3, E4))

along the curve a = b. Note that, when a = b, E′1 = 2a, E′2 = E′3 = 1− 2a, E′4 = 2a− 2, and X ′ = 2− 4a.

Thus,

∂

∂a
(L(X)−H(E1, E2, E3, E4))

= log

(
1−X

2X

)2−4a

− log

(
1

eE1

)2a

− log

(
1

eE2

)1−2a

− log

(
1

eE3

)1−2a

− log

(
1

eE4

)2a−2

= 2a log

((
2X

1−X

)2

· eE1 · eE4

eE2 · eE3

)
+ log

((
1−X

2X

)2
E2 · E3

E2
4

)
.

Once again, by the optimality of c, the expression within the logarithm is simply equal to 1. In addition,

when a = b, E2 = E3 = X
2 so the expression simplifies to

∂

∂a
(L(X)−H(E1, E2, E3, E4)) = log

((
1−X
4E2

)2
E2

2

E2
4

)
= log

(
(1−X)2

16E2
4

)
.

Note that the optimal value of c when a = b must satisfy the equation

(a2 − c)(ā2 − c)
(aā+ c)2

=

(
1− (2aā+ 2c)

2(2aā+ 2c)

)2

.

Algebraic manipulation shows that, when a ≤ 0.5, c = 1
6 (6a2− 6a− 2

√
3(1− 2a) + 3) satisfies this equation.

In addition, when a ≥ 2−
√
3

4 , this value for c fits within the necessary bounds and is therefore the optimal

value of c. We now focus in on the case where 2−
√
3

4 ≤ a to show a0 must be in this region. By the equation

for c,

E4 =
(1− 2a)√

3
− a+

1

2
, 1−X =

2√
3

(1− 2a).

Thus,

∂

∂a
(L(X)−H(E1, E2, E3, E4)) =


(

2√
3
(1− 2a)

)2
16
((

1√
3
− 1

2

)
(1− 2a)

)2
 .

Note that at a = b = 1
2 , L(X)−H(E1, E2, E3, E4) = −1, so a0 <

1
2 and this expression simplifies to

log

 4
3

16
(

1√
3
− 1

2

)2
 = log(7 + 4

√
3).

This value, combined with the value of L(X) − H(E1, E2, E3, E4) at a = b = 1
2 means that L(X) −

H(E1, E2, E3, E4) along the curve a = b, for 2−
√
3

4 ≤ a ≤ 1
2 ,

= log(7 + 4
√

3)

(
a− 1

2

)
+ 1.
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Solving for where this line intersects 0 shows that

a0 =
log(2 +

√
3)− 1

2 log(2 +
√

3)
≈ 0.23684.

At this point the maximum value of h(a) + h(b) along the curve L(X) − H(E1, E2, E3, E4) = 0 can be

computed, giving an approximate value of 1.57948.

6 Numerical experiments

We conducted several numerical experiments which suggest that n = 1 is sufficient for finding an optimal

rate.

First, we randomly selected each of p = (p1, p2, p3),a = (a1, a2, a3), b = (b1, b2, b3) from the range [0, 1],

independently and from an uniform distribution. This was done a million times. For each trial, we normalized

p such that p1 +p2 +p3 = 1, and checked that the constraint (2) held. Of the trials where (2) held, we found

a maximum rate of 1.57777.

Then, we numerically checked the following conjecture:

Conjecture 14. There exists a constant λ such that the optimization problem OPTn and the following

optimization problem (which we shall denote as OPT∗∗n ) have the same optimal value.

Maximize the objective function

F (a, b,p) : =

n∑
i=1

pi(H(ai, āi) +H(bi, b̄i))

+ λ ·

[
L

(
n∑
i=1

pi(aib̄i + āibi + 2ci)

)
−

n∑
i=1

piH
(
aibi − ci, aib̄i + āibi + 2ci, āib̄i − ci

)] (8)

over all points a = (a1, ..., an), b = (b1, ..., bn),p = (p1, ..., pn) ∈ [0, 1]n that satisfy:

n∑
i=1

pi = 1

for all points c = (c1, ..., cn) that make the terms inside H(., ., ., .) nonnegative.

We can rewrite (8) as:

F (a, b,p) : =

n∑
i=1

pi(H(ai, āi) +H(bi, b̄i)−H
(
aibi − ci, aib̄i + āibi + 2ci, āib̄i − ci

)
)

+ λ · L

(
n∑
i=1

pi(aib̄i + āibi + 2ci)

)
.

(9)

If this conjecture were to be true, we could only consider n = 2 in OPT∗∗n to 2, using the same trick of

moving p in a linear fashion.

For this conjecture to be true, it must be true in the neighborhood of p = (1),a = (0.23684), b =

(0.23684). In particular, λ must make the total derivative of (9) at this point, which gives that λ = 0.8889.

We can also try to check that this conjecture is true computationally. For ease of notation, denote

A := L

(
n∑
i=1

pi(aib̄i + āibi + 2ci)

)
−

n∑
i=1

piH
(
aibi − ci, aib̄i + āibi + 2ci, āib̄i − ci

)
,
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OBJ :=

n∑
i=1

pi(H(ai, āi) +H(bi, b̄i),

and M∗ to be the maximal value of OBJ in OPTn, as before. Our conjecture is equivalent to the statement

that

OBJ + λ ·A ≤M∗.

is true for all points, or that

λ ·A ≤M∗ −OBJ.

Now, if A ≥ 0, we have

λ ≤ M∗ −OBJ

A
,

and otherwise we have

λ ≥ M∗ −OBJ

A
.

After once again repeatedly randomly selecting p,a, b uniformly from the range [0, 1] a million times in

the same manner as before (though now without (2) needing to be satisfied), we checked computationally

that every randomly selected point satisfies these inequalities. Indeed, all points with A ≥ 0 had M∗−OBJ
A ≥

0.903512, while all points with A ≤ 0 had M∗−OBJ
A ≤ 0.858611, as desired.

The source code in C++ for both experiments have been submitted as attachments.

The image below shows the plot of B(a) in purple, the line a = b in red, the curve of h(a)+h(b) = 1.57948

in black, and the point (0.23684, 0.23684). This shows that no other point on the plot of B(a) enters the

ring of h(a) + h(b) = 1.57948 meaning no other point has a greater value of h(a) + h(b).

The image below plots a on the x-axis and h(a) + h(B(a))B′(a) on the y-axis and shows that this function

has exactly one root, which occurs when a = B(a).
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