
Parallel Batch-Dynamic 3-Vertex Subgraph Maintenance

Ho Tin Fan, Alvin Lu

Abstract
Counting certain subgraphs is a fundamental problem that is crucial in recognizing patterns

in large graphs, such as social networks and biological interactomes. However, many real world
graphs are constantly evolving and are subject to changes over time, and previous work on efficient
parallel subgraph counting algorithms either do not support dynamic modifications or do not extend
to general subgraphs. This paper presents a theoretically-efficient and demonstrably fast algorithm
for parallel batch-dynamic 3-vertex subgraph counting, and the underlying data structure can be
extended to counting 4-vertex subgraph counts as well. The algorithm maintains the h-index of
the graph, or the maximum h such that the graph contains h vertices with degree at least h, and
uses this to update subgraph counts through an efficient traversal of two-paths, or wedges. For a
batch of size b, the algorithm takes O(bh) expected amortized work and O(log(bh)) span with high
probability.

1. Introduction
Graphs are often used to represent complex networks of interactions, and subgraph counting is a
fundamental problem that allows us to find specific patterns within these interactions. They can
be crucial in social media and advertising networks, which find patterns that connect users with
people they may know and suggest content similar to what has been previously viewed [18]. Other
applications include searching for common interactions between biomolecules in interactomes for
medical purposes, and coordinating transportation and travel routes to reduce cost and time [18].
Moreover, constant streams of data make these real-world graphs quickly evolve and change over
short periods of time, so developing a dynamic model that supports real-time updates is important.
In addition, most modern computers have multiple processors, and since serial algorithms are unable
to efficiently utilize all available resources when running on large real-world graphs, which can often
contain millions of subgraphs, it is imperative to develop efficient parallel algorithms. In particular,
we focus on shared-memory parallelism, where multiple threads can simultaneously access the same
memory, because all publicly available graphs can fit in a commodity shared-memory machine. In
this paper, we design a new algorithm that maintains 3-vertex subgraph counts in a batch-parallel
and dynamic setting. For example, given a graph G and a batch of updates (including edge insertions
and deletions), we find, in parallel, the new number of triangles.

Previous work on dynamic subgraph counting has focused mostly on static graphs, such as
Ahmed et al.’s Parallel Graphlet Decomposition (PGD) framework that counts the number of
4-vertex subgraphs [1], and Pinar et al.’s sequential algorithm ESCAPE which counts all 5-vertex
subgraphs [17]. In under 5 minutes, ESCAPE is able to find the exact number of all 5-vertex
subgraphs on a 6 core machine in a graph with over 21 million edges. However, static graphs cannot
support real-time updates without recomputation, which could be expensive on large graphs that
constantly change over time. Dhulipala et al. developed an algorithm for parallel batch-dynamic
k-clique counting in O(b

√
b+m) expected work and O(log(b+m)) span w.h.p. with b as the size

of the batch and m as the number of edges in the graph, 1 but it does not extend to general subgraphs
[7]. Our algorithm is based on the sequential algorithm by Eppstein and Spiro, which maintains
3-vertex subgraph counts in a dynamic setting in O(h) amortized time for each edge insertion or
deletion, where h is the h-index of a graph [10]. We define the h-index as the largest possible h
such that there are at least h vertices with degree greater than or equal to h. In their paper, they also
prove that h must be between m/n and

√
2m.

In this paper, we develop a batch-parallel dynamic algorithm to maintain the count of 3-vertex
subgraphs, and give a complete evaluation for triangles specifically. The algorithm is composed of
two parts. The first part dynamically maintains the h-index of a graph, and keeps track of the set H,
which stores the h vertices with degree at least h. Given a batch of b edges to insert or delete, we
recompute the h-index in O(b) expected work and O(logb) span w.h.p. H is then used to optimize
triangle counting in the second part. Using the set H, the algorithm, which would have taken O(bn)
expected work and O(log(bn)) span w.h.p. where n is the number of vertices in the graph, is reduced
to O(bh) expected amortized work and O(log(bh)) span w.h.p.

We implemented our framework using the Graph Based Benchmark Suite library (GBBS) [8],
and explored several different data structures for practical optimizations, specifically for computing
the h-index. One option is to use a dynamic array of dynamic arrays. This would take up space
proportional to the largest degree. Another method would be to store a combination of a dynamic
array of dynamic arrays and a parallel hash table of dynamic arrays. If a vertex has a degree less
than or equal to a given threshold, it is stored in the dynamic array of dynamic arrays. Otherwise, it
is stored in the parallel hash table. This would use memory proportional to the number of different
degrees in the graph, which is bounded by the largest degree. Our experiments showed that using
the parallel hash table was slightly faster in most cases.

We tested our implementation using a 30-core machine with two-way hyperthreading, on real-
world graphs from the Stanford Network Analysis Project (SNAP) [12]. Our framework counted
triangles for graphs up to 3 million edges in under 7 minutes. It was then able to maintain updates
with 100 batches of 100,000 edges each in less than 5 minutes.

In summary, we develop:

1. A new batch-parallel algorithm for dynamic 3-vertex subgraph counting

2. Strong theoretical guarantees for running time

3. A practical implementation that can be extended to any 3-vertex subgraph

4. An experimental evaluation of dynamic triangle counting on real-world graphs using a 30-core
instance with 2-way hyperthreading

All of our code can be found at https://github.com/CodeTiger927/gbbs.

2. Related Work
There has been prior work on subgraph counting, mostly focusing on static graphs. In particular,
there has been extensive work on triangle counting algorithms. Shun and Tangwongsan developed a
shared-memory parallel algorithm to count and approximate the number of triangles in large scale
graphs [21]. For the Yahoo graph with 6 billion edges, it takes less than 1.5 minutes to find the exact

1We say O(f (n)) with high probability (w.h.p.) to indicate O(c f (n)) with probability at least 1− n−c for c ≥ 1,
where n is the input size.

2

https://github.com/CodeTiger927/gbbs

number of triangles, and under 10 seconds to approximate the number to 99.6% accuracy. Zhang et
al. designed the LiteTE framework which also counts triangles but under distributed memory model
instead [24]. Makkar et al. created a dynamic parallel GPU algorithm to count triangles [13]. While
it takes less time to update and find the exact number of triangles than our algorithm does, it cannot
be extended to other subgraphs. In addition to these, there has been much other work on triangle
counting such as [15, 22, 23, 3, 16, 4].

Subgraph counting has also been extended to larger subgraphs as well. Ahmed et al. [1] designed
an algorithm to count 4-vertex subgraphs in parallel, while Elenberg et al. [9] achieved similar results
using a different framework (GraphLab PowerGraph). Pinar et al.’s sequential ESCAPE framework
finds exact counts for all 5-vertex subgraphs [17]. There has also been work on (2, 2)-biclique
counting, such as Sanei-Mehri et al.’s sequential implementation [19] and Shi and Shun’s parallel
algorithm and framework [20]. Dhulipala et al. introduced a batch-parallel algorithm for finding
k-cliques in static graphs in O(b

√
b+m) expected work and O(log(b+m)) span w.h.p. where b is

the size of the batch being updated and m is the number of edges in the graph [7]. However, their
algorithm for clique counting cannot be easily generalized to other kinds of subgraphs.

3. Preliminaries
In this section, we introduce the notations we use throughout this paper, the models we compute
under, and primitive functions that we use in our algorithm.

Graph Notation We represent a graph G = (V,E) to be an unweighted symmetric graph with a
set of n vertices V and a set of m edges E. Each vertex v ∈ G has a set of neighbors denoted as N(v)
and a degree of DEG(v). Our algorithm also uses a specific subgraph known as a wedge, or 2-path.
We call the two vertices at the ends of the path as endpoints, and the vertex in the middle as the
center node. Finally, batch is an update with size b, and it will be specified whether it represents a
collection of vertices or edges.

Shared Memory Model We use the shared memory model where multiple processors share the
same memory address space. Parallelism is achieved by allowing concurrent access to memory in a
single step [5].

Work and Span Model We represent our parallel computations in a directed acyclic graph (DAG)
where each node is an operation, and an outgoing edge to another node shows dependency. The
work of our algorithm is defined as the total number of operations or vertices in the DAG. The span
is the maximum number of operations on a dependency chain or the longest path in the DAG. We
define our algorithm to be work-efficient if its work is the same as the best sequential algorithm for
the specific problem. Finally, our running time is bounded by work/P+O(span) where P is the
number of processors [6].

Primitives We assume atomic compare-and-swap (CAS) for our algorithms. We use the follow-
ing parallel primitives in our algorithm. Reduce takes in an array of size n and a binary associative
function f where it computes f over all elements in the array with O(n) work and O(logn) span.
Given an array of elements with size n, prefix sum returns an array of the same size but each
element in the new array is equal to the sum of all elements before it in the old one. It computes
in span of O(logn) and work of O(n). Filter takes in an array of elements and a boolean function
f , and filters out all elements v, such that f (v) is false. The ordering of the remaining elements is
maintained. This also takes O(n) work and O(logn) span. Radix/Integer sort sorts an array of n

3

integers in ascending or descending order in O(n) expected work and O(logn) span w.h.p. [14].
Finally, parallel hashing hashes a list of n elements in O(n) expected work and O(logn) span
w.h.p. to achieve fast random access [11].

4. Dynamic Parallel H-index
In this section, we introduce our batch-parallel dynamic algorithm for maintaining the h-set of
a graph. This is then used for our batch-parallel dynamic triangle counting algorithm, which is
described in Section 5.

We prove strong theoretical guarantees for our batch-parallel dynamic algorithm that maintains
the h-index of a graph. The h-index of a graph or h is the largest number such that there are h
vertices with degree at least h. The set H stores these h vertices. In our dynamic h-set framework,
we support two functions: INSERT adds a batch of vertices in parallel, and ERASE deletes a batch of
vertices. When we insert or delete an edge and change the degrees of vertices, we first ERASE them,
update the degrees of the vertices based on the modified edges, and finally INSERT the vertices
again. To accomplish this, we maintain the following data structures.

• A parallel hash table C that maps each degree to a dynamic array of vertices with that degree.
So, C[i] := {v ∈ G | DEG(v) = i}.
• The integer h represents the largest possible number such that there are at least h vertices with

degree greater than h.

• The implicit set H which stores h vertices such that for all v in H, DEG(v)≥ h. This set is not
explicitly maintained, but is implicitly taken to be the h vertices with highest degree in C, and
we refer to H throughout this paper.

• The size t representing the number of vertices v such that v ∈H∩C[h]. These vertices prevent
h from increasing.

With these data structures, we now describe the algorithm to maintain and use them for inserting
and removing vertices from h-set.

Theorem 4.1. Given a batch of b vertex insertions or deletions, the h-set functions INSERT and
ERASE take O(b) expected work and O(logb) span with high probability to update h.

4.1. Updating C

During both insertion and deletion of vertices from h-set, we need to update all the data structures,
specifically C as it needs to keep track of all vertices. Algorithm 1 allows us to insert a batch of
vertices to the data structure C in parallel. We first sort the batch based on degree in descending
order (Line 2). Then, we look for blocks of vertices with the same degree, storing indices which
end a block. Inside an array of size b for batch’s indices, idx, we store all indices from 0 to b−1
(Lines 3). We then filter idx so we only have indices at the boundaries of the blocks (the vertex at
that index has a different degree than the next one) (Line 4). We iterate through idx in parallel, and
the start of each block is idx[i−1]+1 or 0 if i is 0. The end is idx[i] (Lines 5–10). We then add all
elements between batch[start] and batch[end] inclusive to the appropriate entry in C (Lines 11–12).
The sort of batch and later on, the filtering of idx (which also has size b) (Lines 2–4) limits the time
complexity to O(b) expected work and O(log(b)) span w.h.p. The parallel for loop (Lines 5–12)

4

Algorithm 1 C Updates
1: procedure ADDTOC(batch, G) . Takes in batch of vertices to add and the graph G
2: Sort batch based on degree in descending order
3: Initialize array idx to be all the indices from 0 to b−1
4: Filter idx so that the only remaining entries are indices of vertices in batch with a different

degree than the vertex in the next index
5: for (parallel) i = 0...|idx| do
6: if i = 0 then
7: Create and initialize the index start← 0
8: else
9: Create and initialize the index start← idx[i−1]+1

10: Create and initialize the index end← idx[i]
11: degree← batch[start]
12: Add all elements of from batch[start] to batch[end] to C[degree] in parallel

only takes O(b) work and O(1) span because there are a total of b elements to add. Thus, the total
bounds are O(b) expected work and O(log(b)) span w.h.p.

Deletion of elements from C follows similarly, and we define a procedure REMOVEFROMC
to be the exact same as ADDTOC except that Line 12 removes, instead of adding, all elements
between batch[start] and batch[end] from the corresponding entry in C using a parallel filter. The
time complexity is the same as that of ADDTOC.

4.2. h-set Insertions

For an insertion of batch to h-set, as shown in Algorithm 2, we start by sorting batch in descending
order by degree (Line 2). In aboveH, we store the number of vertices with degree greater than or
equal to h, which is of size h+ |C[h]|− t. We update aboveH to include the new vertices in batch
with degree at least h with a serial binary search on batch (Lines 3–4). The new vertices are then
added to C (Line 5) with the procedure described in Algorithm 1. We create a sequence sum where
each number at index i, is the number of vertices that can no longer be in H if h is increased by i.
To do this, we run a parallel prefix sum on the sizes of each entry in C from h to h+b inclusive, and
store the resulting array in sum (Lines 6–9). For each index, we can increase h if aboveH minus the
number of vertices lost by increasing it is at least the new h. We create a boolean array M in parallel
with the same size as sum where each value at i is the boolean value of (aboveH− sum[i]≥ h+ i)
(Line 10). The index of the first false is when we can no longer increase h. To find this index,
we store an array of indices, indexM, where each value is b+ 1 (or any number larger than the
maximum index) if the entry of M is true, or the index of the entry if it is false (Line 11). Using a
parallel reduce on indexM, we find the smallest index of a false. We store that index in increase,
and we add increase to h (Lines 12–13). The number of vertices above the new h is aboveH minus
the number of vertices lost which is sum[increase−1] or 0 if h did not increase (Lines 14–15). t is
then h+ |C[h]|−aboveH (Line 16).

The initial sort of batch on Line 2 takes O(b) expected work and O(logb) span w.h.p. Since the
binary search used on Line 4 is serial, both the work and span are O(logb). The update to C (Line
5) has time complexity O(b) expected work and O(logb) span w.h.p as shown previously in Section
4.1. The prefix sum on Line 9 is computed over sum which has size at b, meaning it is also done
in O(b) work and O(logb) span. Creating the arrays M and indexM both only take O(b) work and

5

Algorithm 2 h-set Insertion
1: procedure INSERT(batch, G) . Takes in batch of vertices and graph G
2: Sort batch in descending order based on the vertex degree
3: Create and initialize aboveH← h+ |C[h]|− t
4: Add to aboveH the number of vertices in batch that have degree greater than the current h

(with a serial binary search)
5: ADDTOC(batch, G) . Add vertices to C
6: Create an array of numbers sum and initialize each value to 0
7: for (parallel) each entry F from C[h] to C[h+b] do
8: Set the corresponding entry in sum to be |F | if F exists
9: PREFIXSUM(sum) . In-place prefix sum

10: Create boolean array M and initialize M[i] to (aboveH− sum[i]≥ h+ i+1) for each index
i in M

. Find index of the first false
11: Create an array of numbers indexM and initialize indexM[i] to i if M[i] is false, otherwise

to b+1 (or any large sentinel value)
12: Create and initialize increase← smallest index in indexM (use a parallel reduce) . Find

smallest number
13: h← h+ increase

. Update t
14: if increase > 0 then
15: aboveH← aboveH− sum[increase−1] . Update aboveH after |H| has changed
16: t← h+ |C[h]|−aboveH

constant span. The parallel reduce used to find the smallest index on Line 12 takes O(b) work and
O(logb) span. The remaining algorithm can be completed in constant time. Hence, the insertion
algorithm has bounds O(b) expected work and O(logb) span w.h.p., limited by the sort (Line 2),
update of C (Line 5), prefix sum (Line 9), and parallel reduce (Line 12).

4.3. h-set Deletions

Similar to the vertex insertion algorithm in Section 4.2, for vertex deletions in Algorithm 3, we also
start by sorting batch in descending order and computing what aboveH will be (Lines 2–4). We
then remove all the vertices in batch from C (Line 5) with the variant of Algorithm 1 described in
Section 4.1. We make a sequence sum where each number is the number of vertices H will gain
by decreasing h. Since h cannot be negative, the greatest h can change to is max(0,h−b). We take
the prefix sum of the sizes of the entries of C from h− 1 to max(0,h− b) inclusive, and put the
result in sum (Lines 6–9). For each index, we can stop decreasing h when aboveH plus the number
of vertices gained is greater than the decreased h. We create a boolean array M in parallel with
size |sum|+1 where M[0] is the boolean value of (aboveH ≥ h), and each entry at index i from 1
and beyond is (aboveH + sum[i−1]≥ h− i) (Lines 10–11). The index of the first true is the first
possible h, meaning we won’t have to decrease it anymore. We find the smallest index of a true and
store it in decrease by using the same way we did in insertions to find increase (Lines 12–14). We
update aboveH so it gains the sum[decrease−1] vertices added to H in the deletion (Lines 15–16).
t is then h+ |C[h]|−aboveH (Line 17).

The algorithm for deletions is almost identical to the insertion algorithm described in Section

6

Algorithm 3 h-set Removal
1: procedure ERASE(batch, G) . Takes in a batch of vertices and a graph G
2: Sort batch in descending order based on the degree
3: Create and initialize aboveH← h+ |C[h]|− t
4: Add to aboveH the number of vertices in batch that have degree greater than the current h

(with a serial binary search)
5: REMOVEFROMC(batch, G) . Remove vertices from C
6: Create the array of numbers sum and initialize each value to 0
7: for (parallel) each entry F from C[h] to C[max(0,h−b)] do
8: Set the corresponding entry in sum to be |F | if F exists
9: PREFIXSUM(sum) . In-place prefix sum

10: Create boolean array M and initialize M[0]← (aboveH ≥ h)
11: Initialize M[i] to (aboveH + sum[i−1]≥ h− i) for all positive indices i of M

. Find index of the first true
12: Create an array of numbers indexM and initialize indexM[i] to be i if M[i] is true, otherwise

to b+1 (or any large sentinel value)
13: Create and initialize decrease← smallest index in indexM (use a parallel reduce)
14: h← h+decrease

. Update t
15: if decrease > 0 then
16: aboveH← aboveH + sum[decrease−1] . Update aboveH after h has changed
17: t← h+ |C[h]|−aboveH

4.2, albeit with some key changes to the specific numbers stored. The size of each array and the
functions used still have the same bounds. Thus, the proof from Section 4.2 also applies to deletions,
and the function ERASE processes a batch in O(b) work and O(logb) span w.h.p.

4.4. Retrieving H and P Partition

We now prove the bounds for retrieving the set H given the h-index and describe a partition within
H that will further optimize triangle counting.

The set H is only implicitly stored in the h vertices with largest degree. We iterate through each
entry in C that is greater than h, and compute a prefix sum over each of the sizes. Using the prefix
sum, we then add all the vertices to H in order. Finally, we also include the t elements from C[h]
to account for the remaining vertices. Since there are a total of h different vertices and at most h
different entries of C to iterate over, the prefix sum will have worst case complexity of O(h) work
and O(logh) span w.h.p. Adding all the vertices will then only take constant span and O(h) work.
Thus, we can retrieve H given the h-index in O(h) expected work and O(logn) span w.h.p.

We are also able to check in expected constant time if a vertex is in H by comparing its degree
to h. If it is larger, then it must be in H. If it is equal to h, we check if the vertex is among the first t
elements of C[h]. Otherwise it is not in H.

To minimize the changes to H, we define a set P to store all vertices with degree at least twice
the h-index. This set, similar to H is also implicitly stored in C and can be retrieved in a similar
fashion. The bounds are also be the same. This set is used in place of H for triangle counting in
Section 5.

7

5. Triangle counting
In this section, we describe a data structure that dynamically maintains the number of triangles using
the h-set data structure described in Section 4. Each batch consists of either edges to be inserted
or deleted and is processed in parallel. Note that however, we substitute H with the P partition as
described in Subsection 4.4, which is necessary to obtain our bounds. The data structure consists of
the following components:

• Count T , representing the number of triangles in the graph.

• A parallel hash table W mapping from two vertices (u,v), to the number of nodes in {x|x ∈
V \H,(x,v) ∈ E, and (x,u) ∈ E}, or the number of wedges with (u,v) as endpoints and the
center node outside of H.

Algorithm 5 contains the pseudocode for updating triangle counts given a batch of edge
insertions. We will later show that processing a batch of edge deletions is symmetric.

Theorem 5.1. We can perform batch-parallel dynamic triangle counting in O(bh) expected work
amortized and O(logb+ logh) span with high probability, where b is the size of the batch and h
is the h-index of the graph after inserting the edges in insertion and before deleting the edges in
deletion.

Proof. On Line 22, we find the sum of W for all edges in the batch, which can be done by a parallel
reduce and takes O(b) work and O(logb) span. Then, since we only check endpoints that are not in
H (Line 21–27), it has at most O(h) neighbors, therefore retrieving these edges takes O(h) work
and O(1) span for each of these edges. Since there are h edges in batch the total work is also O(bh).
Finally, we need an extra parallel reduce to sum all the O(bh) values. Hence, the total work is
O(bh) with O(log(bh)) span. Lines 14–19 are also similar. For each edge, we iterate through all the
elements of h-set, which takes O(bh) work. We again use a parallel reduce to find the sum, which
takes O(log(bh)) span. Additionally, Line 24 is executed O(h) times per edge, so it takes O(bh)
work and O(1) span w.h.p. Since the set size is at most O(bh), adding the sets into the wedges
map W on Line 20 takes O(bh) work and O(log(bh)) span with w.h.p. Algorithm 4 also shares
the same complexity. Since the algorithm only iterates through nodes outside of H, each node has
at most O(h2) pairs of neighbors. The P partition of H, which is the subset of vertices in H with
degree ≥ 2h, changes only O(1

h) times on average per element in the batch update. This is proven
in Eppstein and Spiro’s work [10]. Using this result and P instead of H, the total expected work
is O(bh) amortized. Note that the span is unaffected as O(logh2) = O(logh). Thus, the span is
O(logb+ logh) with high probability due to the parallel sort.

Therefore in total, the algorithm takes O(bh) expected work amortized and O(logb+ logh)
span with high probability.

We start by inserting all the edges into our graph and adding them to our h-set data structure.
Note that we are storing the batch of edges as a parallel hash table batch, which allows quick
retrieval and checking if an edge is newly added or not. Then, to compute the updated triangle count,
we find the number of triangles created due to the new batch of inserted edges. All newly created
triangles can be be divided into three cases, depending on whether the vertices are in H, and if more
than two of its edges are in the inserted batch.

8

The first case we must handle is triangles with two edges that already exist prior to the insertion,
such that the node shared by the two preexisting edges is not in H. To update the number of triangles
obtained in this case, it is sufficient to iterate through each of the edges (u,v) in our batch, and add
W (u,v), the number of wedges with u and v as endpoints, to the total count (Line 12), since all of
these wedges would be completed by this newly inserted edge.

For the second case, we start by iterating through each of the edges (u,v) ∈ batch in parallel
(Line 13). We check whether each vertex u is in H or not. If it is not in H, we retrieve w such that
w ∈ N(u)\H and w 6= v, and check if these three vertices (u,v,w) form a triangle. We then repeat
the same process for vertex v (Line 14). Note that this will result in over-counting. For instance, if
(u,v,w) forms a triangle and (u,v) is an added edge, then we will encounter w once while processing
vertex u, and we will encounter w again while processing vertex v. Thus, we further categorize all
triangles into eleven types by whether the edges are newly inserted or preexisting, and the position
of the vertices in H. For each type of such triangles, we assign a duplicate coefficient D, which
represents the number of times that we over-count each type of triangle. Every time we count a
triangle, we add 1/D to the total count instead of 1. The eleven types of triangles and their associated
duplicate coefficients can be found in Figure 1. Finally, we use a parallel reduce to sum the number
of newly formed triangles (Lines 21–27).

The third case (Line 14–19) is triangles with at least one newly inserted edge and have nodes
inside the h-set that are opposite to at least one of the new edges. We once again iterate through the
edges in batch in parallel. For each of these edges (u,v) ∈ batch, we iterate through the vertices
w ∈ H, and check if (u,v,w) form a triangle. If so, then we increment the total triangle count. This
similarly over-counts the total number of triangles, so we again use the categorization described in
Figure 1, adding 1/D to the count instead of 1.

After obtaining the corrected triangle counts, we must now update the number of newly formed
wedges (Lines 20 and 24). We iterate through the neighbors for each vertex u of the edge (u,v) in
the batch. For each neighbor w ∈ N(u), we add 1 to W (v,w).

Finally, we need to adjust the number of wedges after updating the h-set as well. There are two
cases that we must consider:

• Case 1: Nodes that are promoted into H due to either increase in degree or decrease in the
h-index. W must no longer keep track of wedges with these nodes as the center node.

• Case 2: Nodes that are removed from H because of either decrease in degree or increase in
h-index. W must add all the wedges with these nodes as the center node.

For the first case, we create a new set consisting of all the elements in H before the batch of edge
insertions on Line 6. Then, we iterate through the updated H, checking if they were in H prior to
the edge updates. When we find a node that was not previously in H, we subtract 1 from all wedges
W (u,v) for all pairs of its neighbors (u,v). (Line 11).

The second case is similar to the first case, but instead of iterating through the updated H, we
instead iterate through the vertices in H prior to the update, and check if they are still in H. For each
node that is no longer present in H, we add 1 to all wedges W (u,v) for all pairs of its neighbors
(u,v) (Line 7).

Maintaining the triangle count under a batch of edge deletions is similar to that for a batch of
edge insertions. Our algorithm, DELETEEDGES, strictly follows Algorithm 5, with the following
changes. The first difference is the count obtained from Line 22. For a batch of inserted edges,
it under-counts the number of triangles, while it over-counts for a batch of deleted edges. Thus,

9

Algorithm 4 Adjusting the wedges map W
1: procedure ADJUSTWEDGES(be f oreH,H) . Adjust the wedges table W
2: A← /0 . A stores the wedges that need to be removed
3: B← /0 . B stores the wedges that need to be added
4: for (parallel) c ∈ be f oreH do
5: if c /∈ H then
6: for (parallel) u,v ∈ N(c) do
7: Add (u,v) to B
8: for (parallel) c ∈ H do
9: if c /∈ be f oreH then

10: for (parallel) u,v ∈ N(c) do
11: Add (u,v) to A
12: Subtract A from W
13: Add B into W . Since W is a parallel hash table that supports atomic operation, this can be

done in parallel without contention problems.

Figure 1. All triangles can be categorized into eleven types, depending on if some of the nodes are in H or
not, and if more than one edge is newly added. The times attached to each triangle represent the duplicate
coefficient of that triangle, which is the number of times our algorithm would discover each of these triangles.

instead of subtracting, we add the number of triangles obtained from our second (Line 14) and third
(Line 1) cases of triangles. Furthermore, instead of deleting the edges from the graph and h-set on
Lines 7 and 8, we must perform these operations after counting all the triangles instead, right before
Line 20, in order to identify removed triangles.

10

Algorithm 5 Triangle Counting

1: W : (u,v)→ Number of wedges with endpoints (u,v)
2: T ← 0 . Number of triangles
3: G← /0 . Dynamic symmetric graph
4: Initialize a H to be a batch-parallel dynamic h-set data structure
5: procedure ADDEDGES(batch, G, H) . Takes in batch of edges, dynamic graph G, and h-set

framework H
6: be f oreH← H.GETELEMENTS() . Retrieving the h-set elements before inserting the new

edges
7: Add batch to G
8: H.INSERT(batch) . Insert batch into the h-set
9: ADJUSTWEDGES(beforeH,H)

10: X ← /0 . The new set of wedges
11: for (parallel) (u,v) ∈ b do
12: T ← T +W (u,v)
13: TRIANGLECOUNTINGHELPER(u,v,w,X ,H,T) . Focusing on node u, counting

triangles with more than one added edges.
14: TRIANGLECOUNTINGHELPER(v,u,w,X ,H,T) . Focusing on node v, counting

triangles with more than one added edge.
15: for (parallel) (u,v) ∈ b do . Triangles with nodes in the HSet
16: for (parallel) w ∈ H do
17: if (u,w) and (v,w) ∈ E then
18: D← duplicate coefficient of the triangle (u,v,w)
19: T ← T + 1

D

20: Insert X into W
21: procedure TRIANGLECOUNTINGHELPER(u,v,w,X ,H,T)
22: if u /∈ H then
23: for (parallel) w ∈ N(u) do
24: Add (v,w) into X
25: if (u,v,w) forms a triangle then
26: D← duplicate coefficient of the triangle (u,v,w) . The coefficient of the eleven

types of triangles can be found in Figure 1
27: T ← T + 1

D

11

6. Implementation
Our algorithm was implemented and tested using the Graph Based Benchmark Suite (GBBS) [8].
We explored several different ways to store the data structures and various practical optimizations.

In our algorithm for dynamically maintaining the h-set in Section 4, we prove that H can be
retrieved in O(h) expected work and O(logh) span w.h.p. However, depending on how C is stored,
the bounds for time and space may vary. The following are two implementations for C:

The first way, which we call dyn_arr, stores C as a dynamic array of dynamic arrays. Each
index represents a degree and maps to the dynamic array of vertices with that degree. There is
minimal overhead when accessing elements, but the worst case time complexity would be reduced
to O(n) expected work and O(logn) span w.h.p. because it will have to iterate through many empty
arrays without vertices. In addition, its memory footprint is proportional to the largest degree which
is bounded by O(n).

The second option, which we call threshold, partitions the vertices given a threshold based on
their degrees and stores them in two data structures. If a vertex has degree less than or equal to the
threshold, it is stored in the dynamic array of dynamic arrays like in the first implementation. Else,
the vertex is stored in a parallel hash table of dynamic arrays. While low degree vertices tend to be
more clustered than sparse high degrees, a poorly chosen threshold could reduce the efficiency, and
the threshold version does not support changes to the threshold after it is set. This version achieves
the same bounds (O(h) expected work and O(logh) span w.h.p.) as the theoretical algorithm but
may be slower in practice due to overhead with hashing. The memory is also proportional to the
different number of degrees in the graph.

We also added in an option to disable P partition for the h-set. Although the partition is necessary
for the theoretical bounds, we found that in real-life graphs, very few vertices actually have a high
enough degree to enter the partition.

Finally, although in the theoretical Algorithm 4, we used parallel hash tables to count elements
from a set in parallel, in our actual code, we instead used parallel sort to perform this task. The
algorithm first sorts/aggregate the list of elements. Since all the elements are next to each other, their
count is (index of endpoint) - (index of start point) + 1, for each start point (which we identify when
an element differs from the element before it), we subtract its indices in the array from the counter.
We then add back the indices of the end points plus 1 to the counter, giving us the accurate count for
each type of element. Since finding the start and endpoints are independent of each other, we can
perform this in parallel, resulting in O(S) expected work and O(logS) span with high probability,
where S is the size of the set.

7. Experiments
We conducted our experiments on two graphs, DBLP and Youtube, which are graphs from the
Stanford Network Analysis Project (SNAP [12]). The graph statistics are shown in Table 1. We ran
our algorithm on a GCP cloud computing instance that has 30 cores with two-way hyperthreading
and 240 GB of memory. The processors are 2.1GHz Intel Xeon Scalable Processors (Cascade
Lake). We start each algorithm with the initial SNAP graph, and then generate batches of edges for
insertion and deletion using the Barabási-Albert algorithm [2]. The algorithm takes in two values,
the number of nodes to be modified and the number of edges per node to be inserted or deleted. For
our experiments, we select 20,000 vertices uniformly at random, and insert or delete 5 edges for
each of the selected vertices. Thus, each batch consists of 100,000 edges. If an already existing edge

12

Graph
name

Number of
vertices

Number of
edges

Total
triangle count h-index

DBLP 317080 1049866 2224385 137
Youtube 1134890 2987624 3056386 547

Table 1. Statistics on the two graphs we tested on, DBLP and Youtube.

is generated, we remove that edge from the batch. However, since the two graphs we experiment on
are sparse, this situation rarely occurs. Additionally, since the Barabási-Albert Model is generative,
for batches of deletion, we had to instead use a not so true-to-life selection by randomly picking the
edges from the graph.

Each batch of generated edges contains about 100,000 edges. Furthermore, the first half of each
set of batches are edge insertions, and the second half are edge deletions. The memory resident
set size (RSS) is taken right after all the batch insertions. Table 2 shows our running times for the
DBLP graph, and Table 3 shows our running times for the Youtube graph.

The total batch time positively correlates with the batch size, and the time needed per batch
also increases as the h-index increases. In addition, the experimental data does not indicate a
significant difference in the running time between the threshold implementation and dynamic array
implementation of h-set, as further demonstrated in Figures 2 and 4. This is because the max-degrees
in both graphs are relatively small. However, the algorithm does display a tendency to be slower
with P partition than without it. We believe this is because both DBLP and Youtube do not have
vertices with high degree, therefore very few vertices actually have a high enough degree to become
part of the P partition.

Figure 2. These are the running times of our batch-parallel dynamic triangle counting algorithm under
batches of edge insertions on the DBLP graph, showing the relationship between batch size and running time.

13

Number
of

Batches

Type of
h-set

P
Option

Static Graph
Insertion
Time (s)

Batch
Insertion
Time (s)

Batch
Deletion
Time (s)

Total
Time (s)

Maximum
Triangle
Count

Memory
RSS
(MB)

20
dyn_arr

off 56.03 22.34 11.07 89.44 2,262,415 60,701
on 44.29 24.23 11.54 80.06 2,262,357 61,279

threshold
off 47.60 22.40 4.86 74.88 2,260,651 60,708
on 54.88 24.39 4.55 83.83 2,259,658 61,323

40
dyn_arr

off 53.70 47.85 15.71 117.26 2,295,102 61,923
on 55.23 52.02 16.73 123.98 2,298,303 62,690

threshold
off 53.81 48.22 9.48 111.52 2,299,116 61,934
on 53.58 51.47 9.36 114.41 2,297,295 62,651

60
dyn_arr

off 54.15 78.04 20.02 152.21 2,332,594 79,742
on 54.87 84.62 22.65 162.14 2,334,947 69,357

threshold
off 54.00 77.85 15.19 147.04 2,336,530 68,090
on 55.83 83.54 16.99 156.37 2,338,294 56,749

80
dyn_arr

off 53.58 112.83 25.79 192.20 2,373,476 91,247
on 53.50 121.14 30.92 205.56 2,373,479 94,276

threshold
off 50.94 112.77 22.51 186.21 2,372,656 91,312
on 53.22 121.98 26.71 201.91 2,373,153 94,307

100
dyn_arr

off 53.06 151.69 33.41 238.16 2,415,063 104,197
on 55.87 165.01 37.68 258.56 2,414,351 62,096

threshold
off 52.35 150.55 30.15 233.06 2,412,401 104,142
on 52.99 164.64 35.06 252.69 2,413,794 85,196

Table 2. The table shows the specific elapsed times and the memory resident set size (RSS) after batch
insertions for each type of h-set and the number of batches modified on the DBLP graph

Figure 3. These are the memory RSS of our batch-parallel dynamic triangle counting algorithm under batches
of edge insertions on the DBLP graph, showing the relationship between batch size and memory.

14

Number
of

Batches

Type of
h-set

P
Option

Static Graph
Insertion
Time (s)

Batch
Insertion
Time (s)

Batch
Deletion
Time (s)

Total
Time (s)

Maximum
Triangle
Count

Memory
RSS
(MB)

20
dyn_arr

off 374.36 42.86 55.35 472.58 3,092,211 58,534
on 422.12 48.62 61.26 532.00 3,092,096 62,031

threshold
off 373.46 42.54 46.28 462.28 3,091,770 58,527
on 422.03 48.97 50.51 521.51 3,094,339 62,025

40
dyn_arr

off 374.42 80.71 68.29 523.42 3,133,097 60,306
on 423.18 93.84 74.79 591.81 3,129,056 64,146

threshold
off 373.95 81.38 56.88 512.20 3,130,377 60,324
on 423.46 94.76 62.88 581.10 3,129,724 64,227

60
dyn_arr

off 374.70 116.70 70.54 561.93 3,166,960 62,208
on 422.33 137.93 78.10 638.35 3,167,823 66,418

threshold
off 371.44 116.31 59.96 547.72 3,169,741 62,261
on 422.47 137.04 65.92 625.42 3,164,377 66,422

80
dyn_arr

off 371.94 154.56 71.57 598.07 3,201,131 64,285
on 425.55 177.23 79.43 682.21 3,203,756 68,686

threshold
off 373.78 152.96 62.12 588.86 3,204,649 64,311
on 421.57 178.44 70.26 670.27 3,205,214 68,773

100
dyn_arr

off 376.10 188.51 72.80 637.42 3,241,993 66,448
on 424.62 220.62 82.95 728.18 3,240,969 71,255

threshold
off 371.11 188.48 64.75 624.35 3,241,257 66,404
on 422.27 219.65 75.93 717.84 3,240,507 71,176

Table 3. The table shows the specific elapsed times and the memory resident set size (RSS) after batch
insertions for each type of h-set and the number of batches modified on the Youtube graph.

Figure 4. These are the running times of our batch-parallel dynamic triangle counting algorithm under
batches of edge insertions on the Youtube graph, showing the relationship between batch size and running
time.

15

Figure 5. These are the the memory RSS of our batch-parallel dynamic triangle counting algorithm under
batches of edge insertions on the Youtube graph, showing the relationship between batch size and memory.

8. Conclusion
We have presented a new work-efficient batch-parallel algorithm for dynamically maintaining
the number of triangles in a graph. We showed from experiments that the algorithm follows our
theoretical bounds and yields accurate results. An interesting future direction for our work would be
to extend it to 4-vertex subgraph counting, as we are already maintaining the number of 2-paths
from two vertices (u,v), which can be extended to count 4-vertex subgraphs. Furthermore, memory
appears to be an obstacle in testing for larger graphs, so better memory optimizations for storing the
count of 2-paths can be researched to apply our algorithm on much larger graphs.

9. Acknowledgement
We would like to first say a very big thank you to our mentor Jessica Shi for all the support and
guidance she has provided us over the year. Also special thanks to Julian Shun for suggesting this
research topic and pointing us towards the right direction. Finally, we would like to thank the MIT
PRIMES program for making this amazing research opportunity possible.

References
[1] N. Ahmed, J. Neville, R. A. Rossi, and N. Duffield. Efficient graphlet counting for large networks. 2015 IEEE

International Conference on Data Mining, pages 1–10, 2015.
[2] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews of Modern Physics,

74(1):47–97, Jan 2002.
[3] S. Arifuzzaman, M. Khan, and M. Marathe. Patric: A parallel algorithm for counting triangles in massive

networks. In Proceedings of the 22nd ACM International Conference on Information Knowledge Management,
CIKM ’13, page 529–538, New York, NY, USA, 2013. Association for Computing Machinery.

16

[4] A. Azad, A. Buluç, and J. Gilbert. Parallel triangle counting and enumeration using matrix algebra. In Proceedings
of the 2015 IEEE International Parallel and Distributed Processing Symposium Workshop, IPDPSW ’15, page
804–811, USA, 2015. IEEE Computer Society.

[5] G. E. Blelloch and B. M. Maggs. Parallel Algorithms, page 25. Chapman Hall/CRC, 2 edition, 2010.
[6] R. P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21(2):201–206, Apr. 1974.
[7] L. Dhulipala, Q. C. Liu, J. Shun, and S. Yu. Parallel batch-dynamic k-clique counting, 2020.
[8] L. Dhulipala, J. Shi, T. Tseng, G. E. Blelloch, and J. Shun. The graph based benchmark suite (gbbs). In Proceed-

ings of the 3rd Joint International Workshop on Graph Data Management Experiences Systems (GRADES) and
Network Data Analytics (NDA), GRADES-NDA’20, New York, NY, USA, 2020. Association for Computing
Machinery.

[9] E. R. Elenberg, K. Shanmugam, M. Borokhovich, and A. G. Dimakis. Distributed estimation of graph 4-profiles.
CoRR, abs/1510.02215, 2015.

[10] D. Eppstein and E. S. Spiro. The h-index of a graph and its application to dynamic subgraph statistics. CoRR,
abs/0904.3741, 2009.

[11] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time parallel algorithms. In [1991]
Proceedings 32nd Annual Symposium of Foundations of Computer Science, pages 698–710, 1991.

[12] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.
edu/data, June 2014.

[13] D. Makkar, D. A. Bader, and O. Green. Exact and parallel triangle counting in dynamic graphs. In 2017 IEEE
24th International Conference on High Performance Computing (HiPC), pages 2–12, 2017.

[14] O. Obeya, E. Kahssay, E. Fan, and J. Shun. Theoretically-efficient and practical parallel in-place radix sorting. In
The 31st ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’19, page 213–224, New York,
NY, USA, 2019. Association for Computing Machinery.

[15] R. Pagh and C. E. Tsourakakis. Colorful triangle counting and a mapreduce implementation. CoRR,
abs/1103.6073, 2011.

[16] H.-M. Park and C.-W. Chung. An efficient mapreduce algorithm for counting triangles in a very large graph. In
Proceedings of the 22nd ACM International Conference on Information Knowledge Management, CIKM ’13,
page 539–548, New York, NY, USA, 2013. Association for Computing Machinery.

[17] A. Pinar, C. Seshadhri, and V. Vishal. ESCAPE: efficiently counting all 5-vertex subgraphs. CoRR,
abs/1610.09411, 2016.

[18] P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparicio, and F. Silva. A survey on subgraph counting: Concepts,
algorithms and applications to network motifs and graphlets, 2019.

[19] S. Sanei-Mehri, A. E. Sariyüce, and S. Tirthapura. Butterfly counting in bipartite networks. CoRR,
abs/1801.00338, 2018.

[20] J. Shi and J. Shun. Parallel algorithms for butterfly computations. CoRR, abs/1907.08607, 2019.
[21] J. Shun and K. Tangwongsan. Multicore triangle computations without tuning. In 2015 IEEE 31st International

Conference on Data Engineering, pages 149–160, 2015.
[22] S. Suri and S. Vassilvitskii. Counting triangles and the curse of the last reducer. In Proceedings of the 20th

International Conference on World Wide Web, WWW ’11, page 607–614, New York, NY, USA, 2011. Association
for Computing Machinery.

[23] K. Tangwongsan, A. Pavan, and S. Tirthapura. Parallel triangle counting in massive streaming graphs. In
Proceedings of the 22nd ACM International Conference on Information Knowledge Management, CIKM ’13,
page 781–786, New York, NY, USA, 2013. Association for Computing Machinery.

[24] Y. Zhang, H. Jiang, F. Wang, Y. Hua, D. Feng, and X. Xu. Litete: Lightweight, communication-efficient
distributed-memory triangle enumerating. IEEE Access, 7:26294–26306, 2019.

17

http://snap.stanford.edu/data
http://snap.stanford.edu/data

	Introduction
	Related Work
	Preliminaries
	Dynamic Parallel H-index
	Updating C
	h-set Insertions
	h-set Deletions
	Retrieving H and P Partition

	Triangle counting
	Implementation
	Experiments
	Conclusion
	Acknowledgement

