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Introduction: 

Genetic mutations are responsible for a significant number of rare diseases, and so investigating 

the genetic basis of various rare diseases has been a crucial area of study. More specifically, studying 

variants in the exome, the protein coding region which makes up approximately 1% of the human 

genome, has been proven effective at identifying the most likely pathogenic variants. The advent of 

whole exome and whole genome sequencing facilitates identification of the most likely pathogenic 

mutations much more efficiently and on a greater scale. Next-generation sequencing has been growing 

rapidly in the past decade and has led to numerous successful disease-detection pipelines. The pipeline 

involved in this study was the Variant Explorer Pipeline (VExP), developed by our laboratory to improve 

diagnostic yield1. In the VExP pipeline, genetic variants are filtered based on a variety of criteria, which 

can be divided into the categories of genotype data and phenotype data (Figure 1). After the filtering 

process, the most likely variants are isolated, a process which requires meticulous examination of a large 

number of mutations. Furthermore, determining the strength of a phenotype match presents challenges 

because a number of resources need to be consulted to make an informed decision. The purpose of this 

project was to develop an automated algorithm, using a host of parameters, to rank mutation 

candidates based on the two computed scores for pathogenicity. 

 



Methods: 

In order to train the genotype model, the mutation data of 100 solved cases was imported, 

along with the variants identified by the lab as most likely disease-causing. Patient cases in which the 

identified gene had visible signs of uncertainty (“?” or any phrase of uncertainty) were removed from 

the analysis, leaving 20 cases for the analysis.  Copy number variants (CNV) were removed from the 

analysis, since the allele frequency parameters utilized were restrictive to single nucleotide variants. 

Furthermore, all phenotype-related predictors were eliminated so as to keep the regression solely 

genotype-based. Logistic regression models were trained using Python libraries with 25 predictors 

against the reported pathogenicity in the first round. Next, predictors with the least weights across all of 

the train sets were removed in successive rounds, reducing to 8 core regressed predictors. Various 

methods of scaling the input data were implemented so as to optimize the fit of the predictors: for 

unbounded data, a 0-1 range scale proved most effective, and certain analogue values were made 

categorical. The model was then tested with k-fold cross-validation with 8 train-test splits across the 80 

families. The testing was conducted via two different methods: receiver operating characteristic (ROC) 

analysis, and percent success analysis. ROC analysis was performed and the area under the curve was 

averaged over the splits to measure the overall prediction accuracy of the algorithm and the sensitivity 

and specificity of the prediction model. In the percent success analysis, the model was run on the test 

sets and the ranked list of mutations was evaluated. The percent of families in which the correct variant 

was ranked in the top 5% of total variants was calculated and the process was repeated for various 

threshold percentages. 

For the development of a phenotype score, non-regressive models were built based on novel 

parameters not used during original analysis. Phenotype data from each of 142,000 genes was imported 

from various gene phenotype databases, using Human Phenotype Ontology (HPO) terminology, and 

stored in matrix form, and genes with low probability of coding were removed. Each variant gene was 



searched from the matrix and the phenotype keywords were compared with the patient’s phenotype. 

For each gene, the percent of the patient’s phenotype that overlaps with the gene’s associated 

phenotype, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 was calculated. For each patient, the phenotype keywords were searched over all the 

genes, and the percent of the genes that were associated with the reported keywords, 𝑃𝑃𝑑𝑑𝑑𝑑 , was 

recorded. Using these two values, an algorithm for phenotype score was developed, preferring higher 

values of 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 and lower values of 𝑃𝑃𝑑𝑑𝑑𝑑; a high 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 indicates a strong phenotype connection, while a 

lower value of 𝑃𝑃𝑑𝑑𝑑𝑑 indicates uniqueness of phenotype connection. Log scales were implemented on 

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 to ensure sufficiently high values of the phenotype score.  

The average of the phenotype and genotype scores was calculated for each family, and a rank 

was generated based on this average. A website interface was developed to take mutation data files as 

inputs and to run the algorithm to produce a ranking. Three possible rankings are provided as options in 

the interface: average score, genotype score, and phenotype score. Although the website is not 

currently available on public domain, this option is possible for the future. 

Results: 
 After ROC cross-validation analysis was run on the genotype model, the average area under the 

curve (AUC) was calculated to be 0.9611. Figure 2 shows the box and whisker plots for the ROC scores 

before and after the reductions and scaling. The percent success test demonstrated the performance of 

the model at various threshold percentages (Table 2, Figure 3). The results demonstrate a 70% 

confidence in finding the correct variant in the top 10% of mutations, and 84% confidence in finding the 

correct variant in the top 20% of mutations. 

After the final adjustments had been made to the model, the final model was trained by the 

data from all 80 families. The weights for this regression are shown in Table 1, along with an explanation 

of the variable names. The signs and the relative magnitudes of these weights are consistent with the 



general expectations of genetic analysis, with somatic variants and incomplete penetrance models 

strongly disfavored. 

 

Discussion: 
 The results obtained from the regression analysis demonstrate a strong prediction accuracy for 

the model. The very strong ROC results suggest that the model performs well as a binary classifier. 

Nevertheless, Table 2 is a more representative result since the purpose of the model is not to predict 

the pathogenicity of a mutation, but rather to rank the mutations based on probability of pathogenicity. 

While Table 2 values are low for very high thresholds, considering that each patient has on average 1000 

high filter variants, the results show that the top 100 - 150 variants contain variants of very high 

likelihood of pathogenicity.  

This analysis is complicated by the fact that the initial classification may have been made using 

phenotype considerations as well, while the regressed parameters were solely for genotype 

considerations. Nevertheless, this model structure was preferred since the highly specific phenotype 

model designed for this study was not considered in the initial analysis. Furthermore, since the initial 

genetic data was given in the form of only a few correct variants, many variants which were remarkably 

close to being selected were attributed a value of 0. Often, the variant identified as most likely 

pathogenic was not completely certain based on the notes from the VExP pipeline. These constraints 

demanded a delicate balance between high-quantity and high-quality data for the genotype 

classification analysis. A further limitation of this algorithm is that it is restricted to SNV variants and 

does not take into account consanguinity. 

The phenotype analysis was complicated by two main factors: subjectivity and run time. Since 

the score was calculated by non-regressive approaches, testing of the algorithm by objective methods 



was challenging. Since phenotype match is not easily quantifiable, there is no substantial data to analyze 

for modelling purposes. Instead, a constructive approach was taken, and the algorithm was tested by 

subjective measures: relative magnitude of phenotype probability scores, performance on known 

patients and genes, etc. Run time was another limitation of the phenotype algorithm, considering the 

dimensions of the matrix and speed of querying. The reduction of genes from non-coding regions 

allowed this process to run with greater efficiency.  

Conclusion: 

The algorithms developed in this study provide a useful metric for SNV mutation pathogenicity 

in rare disease patients. While the scope of the study was narrow, extensions to more advanced and 

higher-scale predictions are possible. We have seen that computational classification methods are 

effective at modelling and predicting disease-causing variants, and such techniques have the potential to 

greatly improve diagnostic yield for rare genetic disorders.  
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*Scaling of allele frequencies using inverse trigonometric functions an 

 

 

Genotype: 

-Allele frequency in control populations 

-Resistance of gene to LoF mutation 

-Evolutionary conservation 

Phenotype: 

-Comparison with associated disease/ Mouse models 

-Specificity of gene phenotype for patient 

-Novelty of gene 



Table 1: 
Coef Columns Description 
-3.733 Somatic  Against Somatic 

-0.976 MuPh Against synonymous variants  

-0.861 MAF Favors lower MAF 

-0.430 MAX.N.het Favors fewer reported het variants 

-0.282 MAX.N.hom Favors fewer reported hom variants 

0.544 pLI  Favors lower pLI score 

0.827 Inherit Favors DeNovo variants 

1.041 Ex.Function Favors known exonic function 

1.401 Candidate Favors High and Shigh genes  

4.248 Model Against Incomplete Penetrance 

 

 

Table 2: 
Top ___ % of mutations Certainty 

1 35% 

2 44% 

5 59% 

10 70% 

20 84% 

30 95% 

40 96% 



50 96% 

60 96% 

70 96% 

80 96% 

90 96% 
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