Properties of Elliptic Curves

Anuj Sakarda, Jerry Tan, and Armaan Tipirneni

December 11, 2020
What are Elliptic Curves?

Anuj Sakarda, Jerry Tan, and Armaan Tipirneni

Properties of Elliptic Curves
What are Elliptic Curves?

Definition (Elliptic Curve)

An elliptic curve is any curve that is birationally equivalent to a curve with the equation \(y^2 = f(x) = x^3 + ax^2 + bx + c \).
Weierstrass Normal Form

Theorem

The equation of any cubic curve with a rational point can be written in the form

\[y^2 = 4x^3 - g_2x - g_3. \]

where a rational point is a point with rational coordinates.
Operations on Elliptic Curves

Definition

Given two points P and Q, denote $P \ast Q$ as the third point of intersection of the line through P and Q and the cubic.
Definition

Define $P + Q = O \ast (P \ast Q)$
<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>An abelian group is a set of elements with an operation that satisfying the following 5 axioms</td>
</tr>
<tr>
<td>(1) Closure.</td>
</tr>
<tr>
<td>(2) Associativity.</td>
</tr>
<tr>
<td>(3) Identity.</td>
</tr>
<tr>
<td>(4) Invertibility.</td>
</tr>
<tr>
<td>(5) Commutativity.</td>
</tr>
</tbody>
</table>

The "+" operation over an elliptic curve satisfies the abelian group axioms.
Visualizing Elliptic Curves

Properties of Elliptic Curves
Visualizing Elliptic Curves
There is a bijective correspondence between lattices and complex elliptic curves.

The Weierstrass normal form of E_L (the corresponding elliptic curve) is $y^2 = 4x^3 - g_2(L)x - g_3(L)$ where $g_2(L) = 60 \sum_{L^*} \frac{1}{\omega^4}$ and $g_3(L) = 140 \sum_{L^*} \frac{1}{\omega^6}$ where L^* is L without the element 0.

An inverse map called the j-invariant exists.

Addition works by modding out by the lattice.

E.g. $(0.5\omega_1 + 0.5\omega_2) + (0.5\omega_1 + 0.75\omega_2) \equiv 0.25\omega_2$
Animation can be found at https://en.wikipedia.org/wiki/Torus#/media/File:Torus_from_rectangle.gif
We are now ready to present the main subject of our study of rational points on elliptic curves, the Mordell-Weil Theorem.

Theorem (Mordell-Weil)

If a non-singular rational cubic curve has a rational point, then the group of rational points is finitely generated. In particular, if C is a non-singular cubic curve given by

$$C : y^2 = x^3 + ax^2 + bx,$$

where a, b are integers, then the group of rational points $C(\mathbb{Q})$ is a finitely generated abelian group.
Definition

We define the height function H for a rational number $x = \frac{a}{b}$ as

$$H(x) = \max\{|a|, |b|\}$$

where a and b are relatively prime integers. Further, $h(x) = \log H(x)$. The height of a point is the height of its x–coordinate.

Proof of Mordell-Weil

We will break the proof down into four main lemmas.
Lemma (Lemma 1)

For every real number M, the set

$$\{P \in C(\mathbb{Q}) : h(P) \leq M\}$$

is finite.

Proof Outline

- Height of x-coordinate of P is bounded
- Finite number of choices for numerator and denominator
Lemma (Lemma 2)

Let P_0 be a fixed rational point of C. There is a constant κ_0 that depends on P_0 and on $a, b,$ and c, so that

$$h(P + P_0) \leq 2h(P) + \kappa_0$$

for all $P \in C(\mathbb{Q})$.

Proof Outline

- Use explicit formula for x-coordinate of $P + P_0$:

 $$\xi + x + x_0 = \lambda^2 - a$$
 with $\lambda = \frac{y - y_0}{x - x_0}$

- Work with height function, equation of curve, and triangle inequality
Lemma (Lemma 3)

There is a constant κ, depending on a, b, and c, so that

$$h(2P) \geq 4h(P) - \kappa \quad \text{for all } P \in C(\mathbb{Q}).$$

Proof Outline

- Equivalent to fact about polynomials P and Q: Let $d = \max \{\deg(P), \deg(Q)\}$. There are constants κ_1 and κ_2, so that for all rational m/n that are not roots of Q,

$$dh\left(\frac{m}{n}\right) - \kappa_1 \leq h\left(\frac{P(m/n)}{Q(m/n)}\right) \leq dh\left(\frac{m}{n}\right) + \kappa_2.$$

- Work with height function, equation of curve, and triangle inequality
Lemma (Weak Mordell-Weil Theorem)

Denote $\Gamma = \mathcal{C}(\mathbb{Q})$.

Let the notation 2Γ denote the subgroup of Γ consisting of points that are twice other points.

Then $(\Gamma : 2\Gamma)$, the index of the subgroup 2Γ in Γ, is finite.

Proof Outline

- Let $\overline{\mathcal{C}}$ be given by $y^2 = x^3 + \overline{a}x^2 + \overline{b}x$ where $\overline{a} = -2a, \overline{b} = a^2 - 4b$.
- Consider maps $\phi : \mathcal{C} \rightarrow \overline{\mathcal{C}}$ and $\psi : \overline{\mathcal{C}} \rightarrow \mathcal{C}$.
- $\phi \circ \psi$ and $\psi \circ \phi$ are both multiplication by two maps.
Theorem (Descent Theorem)

Let Γ be an abelian group, and suppose that there is a function $h : \Gamma \to [0, \infty)$ with the following properties:

1. For every real number M, the set $\{ P \in \Gamma : h(P) \leq M \}$ is finite.

2. For every $P_0 \in \Gamma$ there is a constant κ_0 so that

$$h(P + P_0) \leq 2h(P) + \kappa_0$$

for all $P \in \Gamma$.

3. There is a constant κ so that

$$h(2P) \geq 4h(P) - \kappa$$

for all $P \in \Gamma$.

4. The subgroup 2Γ has finite index in Γ.

Then Γ is finitely generated.
Galois Representation

Notation

Let the n-torsion

$$C[n] = \{O, (x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)\}$$

be the points P on the curve C such that $nP = O$.

Let $\mathbb{Q}(C[n]) = \mathbb{Q}(x_1, y_1, \ldots, x_m, y_m)$.
Galois Representation

Theorem

\[C[n] \cong \left(\mathbb{Z}/n\mathbb{Z} \right) \oplus \left(\mathbb{Z}/n\mathbb{Z} \right). \]

Proof Outline

Each of \(\omega_1 \) and \(\omega_2 \) in lattice representation represents one of the groups in the direct sum.
Theorem

\[K = \mathbb{Q}(C[n]) \text{ is a Galois extension of } \mathbb{Q}. \]

Proof Outline

- \(\sigma : K \to C \)
- If \(P_i \in C[n], \sigma(P_i) \in C[n] \)
- \(\sigma(K) \subseteq K \implies \sigma(K) = K. \)
Theorem (Galois Representation Theorem)

Let C be an elliptic curve given by a Weierstrass equation with rational coefficients, and let $n \geq 2$ be an integer. Fix generators P_1 and P_2 for $C[n]$. Then the map

$$\rho_n : \text{Gal}(\mathbb{Q}(C[n]) / \mathbb{Q}) \longrightarrow \text{GL}_2(\mathbb{Z}/n\mathbb{Z}), \quad \rho_n(\sigma) = \begin{pmatrix} \alpha_{\sigma} & \beta_{\sigma} \\ \gamma_{\sigma} & \delta_{\sigma} \end{pmatrix}$$

where

\begin{align*}
\sigma(P_1) &= \alpha_{\sigma} P_1 + \gamma_{\sigma} P_2 \\
\sigma(P_2) &= \beta_{\sigma} P_1 + \delta_{\sigma} P_2
\end{align*}

is an injective group homomorphism.
References

