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Abstract   

Alternative  splicing  is  critical  for  the  regulation  and  diversification  of  gene  expression.              

Conversely,  splicing  dysregulation,  caused  by  mutations  in  splicing  machinery  or  splice             

junctions,  is  a  hallmark  of  cancer.  Tumor-specific  isoforms  are  a  potential  source  of  neoantigens,                

cancer-specific  peptides  presented  by  human  leukocyte  antigen  (HLA)  class  I  molecules  and              

potentially  recognized  by  T  cells.  For  cancers  such  as  acute  myeloid  leukemia  (AML)  with  a  low                  

mutation  burden  but  widespread  splicing  aberrations,  splice  variants  and  retained  introns  (RIs)  in               

particular,  may  broaden  the  number  of  suitable  targets  for  immunotherapy.  I  developed  a               

computational  pipeline  to  predict  AS-derived  neoepitopes  from  tumor  RNA-Seq.  I  first  used  the               

B721.221  B  cell  line  as  a  model  system,  for  which  RNA-Seq,  Ribo-Seq,  and  immunoproteome                

data  from  >90  HLA  class  I  monoallelic  lines  were  available.  I  performed   de  novo  transcriptome                 

assembly  with  StringTie,  identifying  on  average  694±73  AS  isoforms  across  4  technical              

replicates.  Using  HLAthena,  I  identified  1,087  AS-derived  neoepitopes  predicted  to  bind  across              

4  frequent  HLA  alleles.  Of  them,  192  (18%)  also  displayed  evidence  of  mRNA  translation,                

measured  as  the  alignment  of  ≥1  Ribo-Seq.  To  further  increase  prediction  accuracy,  I  am                

currently  analyzing  the  HLA  I  immunopeptidome  to  define  the  features  of  predicted  AS  isoforms                

more  likely  to  be  not  only  translated  but  also  HLA  presented.  Finally,  I  applied  my  prediction                  

pipeline  to  AML  cell  lines  ( n =8)  and  primary  samples  ( n =7).  I  identified  682±113  AS  isoforms                 

in  AML  cell  lines,  similar  to  the  694  in  B721,  but  the  proportion  of  isoforms  containing  RIs  (as                    

opposed  to  alternative  5'  and  3'  splice  sites  or  cassette  exons)  was  3.5x  higher  than  in  B721,  in                    

line  with  the  biological  relevance  of  RIs  in  particular  in  this  disease  setting.  Primary  AML                 

samples  yielded  1496±294  AS  isoforms,  more  than  twofold  the  number  in  B721  or  AML  cell                 

lines,  thus  reinforcing  the  significant  contribution  of  AS  to  the  cancer  immunopeptidome.              

Accurate  prediction  of  AS-derived  neoantigens  through  this  pipeline  will  contribute  to  the  design              

of   novel   cancer   immunotherapies.   

  

  

  

  



  

Introduction     

Alternative  splicing  (AS)  is  a  process  essential  for  the  regulation  and  diversification  of  gene                

expression.   Eukaryotic  gen es  are  composed  of  a  variable  number  of  exons  interrupted  by               

intervening  sequences  known  as  introns,  which  are  removed  in  a  process  termed   RNA  splicing  to                 

yield  mature  mRNA  transcripts  ( Figure  1A ).   Alternative  splicing,  or  the  use  of  alternative               

combinations  of  exons,  enables  a  single  gene  to  increase  its  coding  capacity,  allowing  the                

synthesis  of  structurally  and  functionally  distinct  protein  isoforms  ( Figure  1B ).  The  regulation  of               

splicing  can  vary  in  cancer  in  particular  due  to  mutations  in  splicing  machinery  or  splice                 

junctions,  and  TCGA  analysis  has  found  that  cancer  samples  include  up  to  30%  more  alternative                 

splicing  events  than  normal  samples   (Kahles  et  al.,  2018) .  Resultant  aberrant  AS  diversifies  the                

cancer  transcriptome  by  introducing  tumor-specific  transcript  isoforms.  The  protein-products  of            

those  isoforms  can  be  translated  and  yield  tumor-specific  peptides,  which  in  turn  may  be                

presented   on   HLA   class   I   and   elicit   an   anti-tumor   immune   response   ( Figure   1C ).    
  

Types  of  alternative  splicing  include  exon  skipping,  mutually  exclusive  exons,  cassette  exons,              

alternative  3′  splice  sites,  alternative  5′  splice  site,  and  intron  retention  ( Figure  1B ).  Exon                

skipping  and  mutually  exclusive  exons  involve  alternative  combinations  of  canonical  exons             

while  cassette  exons,  alternative  3′  splice  sites,  alternative  5′  splice  sites,  and  intron  retention                

involve  the  inclusion  of  intronic  regions  in  spliced  mRNA  transcripts.  I  considered  the  latter  4                 

types   in   this   analysis   and   referred   to   them   using   ‘AS’   in   this   paper.   
  

Among  these  types,  intron  retention  is  particularly  relevant  in  acute  myeloid  leukemia  (AML).               

20%  of  AML  cases  have  a  recurrent  somatic  mutation  of  splicing  factor  3b  subunit  1  (SF3B1),                  

and  other  common  mutated  splicing  modulators  in  AML  include  SRSF2,  SF3B1,  U2AF1,  and               

ZRSR2   (Zhou  and  Chng,  2017) .  In  a  TCGA  analysis  evaluating  the  role  of  intron  retention                 

across  different  solid  and  hematological  tumors,  almost  all  cancer  types  demonstrated  elevated              

levels  of  intron  retention  relative  to  normal  tissues,  but  AML  demonstrated  the  highest  level  of                 

differential   upregulation   of   retained   introns   (RIs)   ( Figure   2 )    (Dvinge   and   Bradley,   2015) .     
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Figure   1   
A .  DNA  is  transcribed  into  pre-mRNA  which  is  spliced,  so  introns  are  removed  and  exons  retained,  then  translated                    
into  protein.   B .  In  the  case  of  alternative  splicing,  a  single  pre-mRNA  transcript  can  be  spliced  in  different  patterns                     
to  yield  multiple  mRNA  isoforms  and  downstream  proteins.  Types  of  AS  events  include  retained  introns,  alternative                  
3′  splice  sites,  alternative  5′  splice  sites,  and  cassette  exons  (top  to  bottom).  Each  of  these  types  of  AS  preserves                      
intronic  regions  that  would  otherwise  have  been  spliced  out,  and  those  regions  (green)  are  reflected  in  the  protein                    
product.  Note:  other  types  of  AS  such  as  exon  skipping  and  mutually  exclusive  exons  exist  as  well  but  are  not                      
reported  in  this  figure  because  they  are  not  considered  in  this  analysis.   C .  Peptides  derived  from  aberrant                   
alternative   splicing   may   be   presented   on   HLA   class   I.   
  

  

  
Figure   2   
A  plot  (adapted  from  Dvinge  and  Bradley,  Genome  Medicine  2015)  depicting  intron  retention  in  16  cancer  types.                   
The  X-axis  indicates  the  direction  of  change  in  AS  (upregulation  vs.  downregulation  when  comparing  tumor  and                  
normal  samples),  and  the  Y-axis  indicates  the  magnitude  of  change  (number  of  differential  splicing  events).  Intron                  
retention  is  upregulated  across  a  variety  of  cancer  types,  AML  (top  left)  is  an  extreme  outlier  with  the  highest  degree                      
of   upregulation   by   far.     
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As  cancer-specific  AS  generates  novel  transcripts  not  present  in  normal  tissues,  it  has  recently                

been  explored  as  a  source  of  neoantigens,  which  are  peptides  arising  from  tumor-specific  protein                

sequences  presented  on  HLA  class  I  that  can  be  selectively  recognized  by  T  cells  and  hence                  

represent  promising  immunotherapeutic  targets.  Indeed,  cancer  vaccines  as  well  as  T  cell-based              

therapies  can  target  neoantigens  to  foster  the  immune  system  to  recognize  the  malignant  cells                

and  generate  an  anti-tumor  response.  Neoantigens  have  been  targeted  in  personalized  cancer              

vaccines  across  different  disease  settings  such  as  melanoma  and  glioblastoma   (Keskin  et  al.,               

2019;  Ott  et  al.,  2017;  Sahin  et  al.,  2017) .  However,  in  current  neoantigen-based               

immunotherapies,  neoantigens  are  predicted  only  from  cancer-specific  somatic  mutations  in            

protein-coding  regions  of  the  genome   (Gubin  et  al.,  2015) .  As  a  result,  this  approach  falls  short                  

for  tumors  with  low  somatic  mutation  burden,  such  as  AML,  where  AS  events  become  an                 

important   additional   source   of   neoantigens    (Rajasagi   et   al.,   2014) .     
  

RIs  in  mammalian  cells  were  originally  overlooked  due  to  the  difficulty  of  detecting  them  but                 

have  since  been  recognized  as  an  important  means  of  diversifying  as  well  as  regulating  gene                 

expression   (Vanichkina  et  al.,  2018) .  Advances  in  next-generation  sequencing  and  the             

introduction  of  computational  tools  including  SplAdder   (Kahles  et  al.,  2016)  and  rMats   (Shen  et                

al.,  2014)  have  enabled  the  identification  of  AS  events  from  RNA-seq  data  in  cancer  and  normal                  

samples,  and  translation  of  the  resultant  protein  products  has  been  validated  via  mass               

spectrometry  (MS).  Application  of  these  tools  to  large  cancer  datasets  has  suggested  that               

tumor-specific  AS-derived  peptides  might  significantly  expand  the  pool  of  potential  neoantigens.             

In  a  seminal  analysis  of  TCGA  breast  cancer  and  ovarian  serous  cystadenocarcinoma  patients,               

considering  peptides  derived  from  alternatively  spliced  noncanonical  junctions  in  addition  to             

SNV-derived  peptides  increased  the  percentage  of  samples  with  at  least  one  putative  neoantigen               

(validated  via  MS  and  NetMHC)  from  30%  to  75%   (Kahles  et  al.,  2018) .  However,  it  should  be                   

noted  that  translation  at  novel  junctions  is  only  a  small  subset  of  all  translation  introduced  by                  

tumor-specific  AS.  Peptides  generated  from  the  sequence  of  retained  introns  (RIs)  and  regions               

downstream  of  an  AS  event  causing  a  frameshift  were  not  included  in  this  analysis  but  have  the                   

potential   to   broaden   the   number   of   potential   neoantigens   even   further   ( Figure   3 ).   
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Figure   3   
Smart  et  al.  and  Kahles  et  al.  considered  only  a  subset  of  potential  AS-derived  peptides.  Smart  considered  peptides                    
from  retained  introns,  ignoring,  for  example,  the  intronic  region  introduced  by  the  alternative  3’  splice  site  in  this                    
diagram.  Kahles  considered  novel  splice  junctions,  fully  overlooking  intronic  regions  introduced  by  RIs  or  alternate                 
splice  sites.  Neither  study  considered  novel  downstream  peptides  translated  due  to  a  frameshift  introduced  by  an                  
upstream   AS   event.   My   pipeline   considers   the   full   scope   of   potential   AS-derived   peptides   (highlighted).   

  
In  another  study  from  Smart  and  colleagues   (Smart  et  al.,  2018) ,  potential  neoantigens  derived                

from  tumor-specific  RIs  have  been  computationally  identified  using  RNA-seq  data  and  validated              

using  HLA  class  I  immunopeptidome  MS  data  from  tumor  cell  lines  (including  one  AML  cell                 

line).  However,  this  work  has  only  considered  the  contributions  of  fully  retained  introns  to  the                 

proteomic  diversity  and  overlooked  intronic  regions  retained  in  the  transcriptome  due  to              

alternative  5’  or  3’  splice  sites  as  well  as  downstream  regions  that  may  be  translated  in  a                   

different   frame   due   to   upstream   RIs   ( Figure   3 ).     
  

Accurately  detecting  the  full  spectrum  of  RIs  poses  unique  challenges  due  to  sources  of  spurious                 

transcriptional  signal.  Noise  from  DNA  contaminants  or  unprocessed  mRNA  transcripts            

generates  spurious  intronic  RNA-seq  reads,  and  since  intronic  regions  are  also  rich  in  repetitive                

sequences,  abundant  multi-mapping  reads  exacerbate  the  problem   (Vanichkina  et  al.,  2018) .  RI              

prediction  tools  addressing  those  difficulties  have  recently  been  published,  including  IRFinder,             

KMA,   and   IntEREst    (Middleton   et   al.,   2017;   Oghabian   et   al.,   2018;   Pimentel   et   al.,   2015) .     

  

Motivated  by  the  possibility  of  expanding  this  novel,  promising  class  of  neoantigens,  here  I                

present  a  pipeline  that  considers  the  full  scope  of  potential  neoantigens  introduced  by  AS  events.                 

By  working  on  the  AS  isoform  rather  than  event  level,  I  consider  a  superset  of  peptides  with                   

respect  to  previous  pipelines  for  prediction  of  neoantigens  from  aberrant  splicing:  peptides  from               
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RIs,  peptides  from  intronic  regions  retained  due  to  alternative  5’  and  3’  splice  sites,  peptides                 

spanning  novel  junctions,  and  peptides  resulting  from  frame-shift  inducing  upstream  AS  events              

( Figure  3 ).  Finally,  I  apply  that  pipeline  to  the  clinically  relevant  setting  of  AML,  to  identify                  

novel   AS-derived   peptides   in   both   AML   cell   lines   and   primary   samples.   
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Results   

  
Figure   4   
Pipeline   overview.   Schematic   outlining   the   steps   of   transcript   assembly   from   RNA   seq   data   using   StringTie,   AS   
isoform   identification,   coding   sequence   identification   and   translation,   featurization   and   potential   filtering,   and  
AS-derived   peptide   validation   via   Ribo-seq   and   HLAthena.   See   Methods   for   more   detailed   discussions   of   each   step.   

  

I  present  a  pipeline  to  predict  potential  AS-derived  neoantigens  by  characterizing  AS  events  at                

the  isoform  level  as  summarized  in   Figure  4 .  I  constructed  this  pipeline  using  the  B721.221  B                  

cell  line  as  a  model  system,  leveraging  the  available  RNA-seq,  Ribo-seq  (which  provides  a                

readout  of  mRNA  translation),  and  monoallelic  immunopeptidome  mass  spectrometry  data            

(Abelin  et  al.,  2017;  Ouspenskaia  et  al.,  2020;  Sarkizova  et  al.,  2020) .  The  pipeline  leverages                 

StringTie  to  assemble  transcripts  from  RNA-seq  data  and  predict  AS  isoforms  and  then               

featurizes,  filters,  and  in  silico  translates  predicted  isoforms  to  identify  novel  AS-derived              

peptides   (Kovaka  et  al.,  2019) .  In  the  B721.221  model  system,  to  validate  predicted  AS-derived                

peptides,  I  determined  the  presence  of  Ribo-seq  support,  which  acted  as  evidence  of  translation;                

additionally,  I  required  peptides  to  be  predicted  as  HLA  binders  by  HLAthena,  a  recently                

published  algorithm  for  HLA  binding  prediction  which  outperforms  the  current  gold  standard              

netMHCpan   (Abelin  et  al.,  2017;  Sarkizova  et  al.,  2020) .  To  further  increase  the  prediction                

accuracy,  I  am  in  the  process  of  validating  the  resulting  AS-derived  peptides  using  HLA  class  I                  

immunopeptidome   LC-MS/MS   data   available   for   >90   HLA   class   I   monoallelic   B721   cell   lines.   
  

In  the  B721.221  cell  line,  I  predicted  a  mean  of  694±73  AS  isoforms  in  each  of  4  monoallelic                    

B721  cell  lines  (A*01:01,  A*33:03,  B*15:01,  B*44:02),  which  for  the  purpose  of  this  analysis                
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can  be  considered  as  technical  replicates  ( Figure  5A ).  These  isoforms  yielded  164,742  potential               

novel  peptides  of  length  8-11  (which  represent  the  standard  length  of  peptides  presented  on  HLA                 

class  I)  that  were  not  found  in  the  canonical  proteome.  70,000  of  those  peptides  had  evidence  of                   

translation  (because  a  Ribo-seq  read  mapped  to  the  peptide  sequence)  and  approximately  1,000               

peptides  were  predicted  to  be  HLA  binders  by  HLAthena,  using  a  threshold  of  0.5%  rank.  192                  

peptides  fulfilled  both  criteria,  and  I  considered  those  as  validated  AS-derived  peptides  ( Figure               

5B ).    
  

I  also  quantified  the  RNA-seq  read  support  of  predicted  AS-isoforms  and  AS-derived  peptides  to                

calculate  RNA-seq  features  possibly  associated  with  Ribo-Seq  and  HLAthena  validated            

AS-isoforms.  I  thoroughly  characterized  the  profile  of  these  peptides,  providing  downstream             

users  of  the  pipeline  with  a  rich  set  of  10  primary  features  ( Table  1 ).  I  explored  the  relationship                    

of  those  RNA-seq  features  with  the  likelihood  of  a  predicted  peptide’s  validation  and  found  that                 

the  likelihood  of  validation  was  strongly  linked  to  an  AS  isoform’s  transcript  expression,  with                

more  highly  expressed  transcripts  exhibiting  increased  rates  of  validation  ( Figure  6 ).             

Observations  such  as  this  can  be  exploited  to  define  thresholds  to  generate  a  higher  confidence                 

prediction  set,  which  would  be  essential  when  applying  the  pipeline  in  the  absence  of  Ribo-Seq                

or  immunoproteomic  support.  By  complementing  my  current  validation  scheme  with  the  analysis              

of  mass  spectrometry  data  to  obtain  a  more  complete  portrait  of  AS-derived  peptides  presented  in                 

the  immunopeptidome,  I  expect  to  have  gathered  all  the  necessary  data  in  B721  to  devise  a                  

formal  model  to  distinguish  AS-derived  peptides  with  the  highest  probability  of  existence  and               

presentation  on  HLA  class  I.  Importantly,  this  feature-based  filtering  of  the  prediction  set  would                

be  applied  to  enrich  for  validated  peptides  in  settings  where  mass  spectrometry  and  Ribo-seq                

(less  common  and/or  more  expensive  protocols  than  RNA-seq)  are  not  available,  enabling  the               

application   of   this   pipeline   to   a   broader   array   of   samples.   
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Figure   5   
A .  Number  of  alternatively  spliced  isoforms  predicted  in  each  B721.221  allele.   B .  AS-derived  novel  peptides                 
validated  via  Ribo-seq  and  HLAthena  analysis.  192  peptides  have  evidence  of  translation  (supported  by  ≥1  Ribo-seq                  
read)   and   were   predicted   HLA   binders   (using   0.5%   rank   threshold).     

  

  
Figure   6   
Density  plot  of  transcript  TPM  (log  2  normalized)  for  AS  events  in  B721  supported  (blue)  and  not  supported                    
(orange)  by  Ribo-seq  reads  in  the  intronic  segment  introduced.  StringTie  isoform  TPM  varies  significantly  between                 
AS  events  supported  by  Ribo-seq  and  not  supported  by  Ribo-seq  (p=4.3e-29  by  independent  t-test  with  unequal                  
variable).   
  

  
Figure   7   
A .  Mean  number  of  alternatively  spliced  isoforms  in  B721.221  alleles  and  AML  cell  lines.   B .  Distribution  of  mean                    
AS  event  counts  across  B721  alleles  and  AML  cell  lines.   C .  Relative  proportion  of  AS  events  that  were  RIs  in  B721                       
vs.  AML  cell  lines,  for  each  B721  allele  and  AML  cell  lines.  I  consider  RIs,  alternate  5’  and  3’  splice  sites,  and                        
novel   cassette   exons   in   this   analysis.   
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Table   1   
Features   calculated   by   the   AS   prediction   pipeline,   involving   RNA-seq   expression   or   isoform   structure.   The   AS   events   
considered   in   this   analysis   (RIs,   alternative   5’   and   3’   splice   sites,   and   cassette   exons)   introduce   a   canonically  
intronic   sequence   to   AS   isoforms,   here   referred   to   as   an   ‘intronic   segment.’   See   methods   for   more   detailed   
descriptions   of   each   feature.   

  

I  then  applied  the  pipeline  to  8  AML  cell  lines  (CMK,  KASUMI-1,  MUTZ-3,  OCI-AML-3,                

OCI-M2,  SET-2,  TF-1,  and  THP-1)   (Quentmeier  et  al.,  2019) .  The  analysis  yielded  a  mean  of                 

70,672  non-canonical  AS-derived  peptides  of  length  8-11,  derived  from  a  mean  of  682  AS                

isoforms,  comparable  to  the  AS  isoforms  detected  in  B721  ( Figure  7A ).  Of  interest,  AML  cell                 

lines  greatly  differed  from  B721  in  the  distribution  of  AS  types,  with  a  much  higher  proportion                  

of  RIs,  compared  to  other  types  of  AS  events,  roughly  30%  vs.  10%  ( Figure  7B  and  C ).  While                    

filtering  peptide  predictions  and  enriching  for  true  positives  using  RNA-seq  feature  thresholds              

learned  in  B721  will  enable  the  identification  of  a  smaller,  higher  confidence  prediction  set,  this                 

current  analysis  already  serves  to  characterize  the  landscape  of  potential  AS-derived  neoantigens              

in   AML   cell   lines.   
  

Finally,  I  applied  my  pipeline  to  7  AML  primary  samples  to  yield  a  mean  of  128,267  AS-derived                   

peptides  of  length  8-11.  The  distribution  of  AS  types  was  slightly  different  from  the  distribution                 

in  the  AML  cell  lines  and  was  dominated  by  novel  cassette  exons,  but  primary  samples  still                  

maintained  a  higher  proportion  of  predicted  RIs  than  B721  ( Figure  8A  and  B ).  These  peptides                 

9   

Feature   

AS   isoform   transcripts   per   million   (TPM)   

Canonical   isoform   TPM   and   ratio   of   canonical   isoform   TPM   relative   to   AS   isoform   TPM   

AS   isoform   base   coverage   

RNA-seq   reads   mapped   to   the   intronic   segment   introduced   by   AS   

RNA-seq   reads   mapped   to   adjacent   canonical   exons   and   ratio   of   those   reads   to   reads   mapped   to   the   intronic   
segment     

RNA-seq   reads   supporting   the   5’   and   3’   boundaries   of   an   intronic   segment   in   an   AS   isoform   (e.g.   the   number   of   
reads   spanning   an   intron-exon   boundary   for   a   retained   intron   event)   

Fraction   of   multi-mapping   reads   and   or   reads   with   indels,   clipping,   or   mismatches   in   intronic   segments   and   
adjacent   canonical   exons   

Intronic   segment   GC   content   

Presence   of   a   premature   termination   codon   introduced   by   an   upstream   AS   event   

Splice   motifs   of   the   5’   and   3’   splice   junctions   adjacent   to   an   intronic   segment,   if   applicable   
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derived  from  a  mean  of  1,496  AS  isoforms,  more  than  double  the  number  of  isoforms  assembled                  

in  B721  or  AML  cell  lines.  Furthermore,  I  examined  the  distribution  of  predicted  AS  events                 

across  the  primary  samples  ( Figure  8C ).  While  most  events  were  patient-specific  (an  expected               

result  given  the  high  heterogeneity  of  the  disease),  1147  out  of  7876  total  events  (14.56%)  were                  

predicted  in  at  least  2  samples.  Notably,  one  advantage  of  AS-derived  neoantigens  over               

SNV-derived  neoantigens  is  that  they  may  be  shared  across  different  patients  with  any  given                

cancer  type,  a  promising  characteristic  for  the  development  of  universal  immunotherapeutic             

products.   

  

  
  

Figure   8 :     
A .   Analysis   of   AML   primary   samples   yielded   a   mean   of   128,267   AS-derived   peptides   of   length   8-11   amino   acids.    B .   
Distribution   of   AS   event   types   within   primary   AML   samples.    C .   Upset   plot   of   AS   events   shared   by   primary   samples.   
While   the   majority   of   AS   events   were   patient-specific,   1147   out   of   7876   total   events   (14.56%)   were   common   to   ≥2   
samples.   Sets   with   less   than   9   AS   events   were   omitted   for   brevity.   
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Discussion   

More  accurate  prediction  of  AS  is  an  important  step  toward  improved  identification  of               

AS-derived  neoantigens,  a  still  poorly  investigated  and  yet  highly  promising  category  of  tumor               

neoantigens,  especially  in  cancer  types  characterized  by  a  low  mutation  burden  such  as  AML.                

Here,  I  present  a  novel  pipeline  I  developed  to  predict  those  potential  neoantigens  that  has  been                  

optimized  in  the  B721  model  system  and  then  applied  to  8  AML  cell  lines  and  7  primary  AML                    

samples,  thus  generating  a  patient-specific  AS  database  of  potential  AML-specific  neoantigens.             

Through  the  integrated  analysis  of  RNA-Seq  and  Ribo-Seq  in  the  B721  model  system,  I  also                 

generated  a  thorough  set  of  features  characterizing  the  RNA-seq  support  of  predicted  peptides               

and  isoforms  and  begin  exploring  which  features  have  an  impact  on  an  isoform  being  translated                 

and   presented   by   HLA.   
  

While  past  studies  have  also  presented  pipelines  to  predict  potential  AS-derived  neoantigens,  the               

pipeline  I  designed  is  the  first  to  consider  the  full  scope  and  potential  of  AS  events  (i.e.  intron                    

retention,  alternative  5’  and  3’  splice  sites,  and  novel  cassette  exons).  Additionally,  I  worked  on                 

the  isoform  level  to  capture  novel  peptides  introduced  by  combinations  of  AS  events  with  other                 

AS  events  or  downstream  canonical  exons.  I  have  predicted  and  validated  novel  AS-derived               

peptides  in  B721.221  cells  and  successfully  characterized  AS  and  its  potential  as  a  source  of                 

neoantigens  in  AML  cell  lines  and  primary  samples,  uncovering  tens  and  hundreds  of  thousands                

of  novel  peptides  derived  from  canonically  intronic  sequences.  I  have  also  identified  15%  of                

predicted  AS  events  in  the  cohort  of  primary  AML  samples  I  analyzed  as  shared  between  ≥2                  

patients,  demonstrating  the  potential  to  identify  neoantigens  with  therapeutic  potential  across             

patients.     
  

Continuation  of  this  work  will  complete  mass  spectrometry  validation  efforts  in  B721  and               

subsequently  develop  an  RNA-seq-feature-based  filtering  and  validation  methodology  for           

predictions  in  AML  settings  where  Ribo-seq  and  MS  data  are  not  available.  The  pipeline  could                 

then  be  applied  to  further  cell  lines  and  tumor  samples  to  characterize  the  potential  AS-derived                 

neoantigens   in   AML   or   other   cancer   types   using   only   RNA-seq   data.   
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In  terms  of  technical  refinements,  my  current  and  future  efforts  will  be  dedicated  to  the                 

comparison  of  predicted  AS-derived  peptides  in  tumor  samples  vs.  healthy  samples,  a  process               

necessary  to  further  verify  the  cancer-specific  nature  of  predicted  peptides.  Additionally,  the              

advancement  of  nanopore  sequencing  technology  promises  to  enable  more  accurate  identification             

of  AS  transcripts  than  short  RNA-seq  reads  by  more  definitively  determining  what  combination               

of  alternative  splicing  events  appear  in  a  single  transcript,  and  efforts  to  characterize  AS  using                 

nanopore   reads   have   already   begun    (Tang   et   al.,   2020) .   
  

Finally,  to  realize  this  work’s  potential  impact  on  cancer  immunotherapies,  the  most  promising               

AML-specific  neoantigens  predicted  through  this  pipeline,  once  subjected  to  HLA  binding             

prediction,  will  need  to  be  validated  through  the  detection  of  antigen-specific  T  cell  responses,                

and   my   group   is   invested   in   realizing   this   fundamental   step   of   validation.     
  

More  accurately  and  comprehensively  predicting  AS-derived  peptides  explores  the  fascinating            

biology  of  splicing  as  well  as  its  therapeutic  applications  as  a  potential  source  of  cancer                 

neoantigens.  My  work  contributes  to  shedding  light  on  aberrant  splicing,  and  intron  retention  in                

particular,  in  the  relevant  setting  of  acute  myeloid  leukemia.  Identifying  novel  potential              

AML-specific  peptides  is  a  step  toward  the  design  of  long-awaited  AML-specific             

immunotherapies.   
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Methods   

Data   

I  used  RNA-seq  and  Ribo-seq  data  from  the  B721.221  B  cell  line.  As  >90  HLA  class  I                   

monoallelic  variants  were  generated  for  this  cell  line  that  served  as  my  model  system,  I  focused                  

on  the  monoallelic  cell  lines  carrying  the  following  HLA  alleles:  HLA-A*01:01,  HLA-A*33:03,              

HLA-B*15:01,  HLA-B*44:02   (Abelin  et  al.,  2017;  Ouspenskaia  et  al.,  2020;  Sarkizova  et  al.,               

2020) .  I  used  RNA-seq  data  from  8  AML  cell  lines  from  the  LL-100  panel:  CMK,  KASUMI-1,                  

MUTZ-3,  OCI-AML-3,  OCI-M2,  SET-2,  TF-1,  and  THP-1   (Quentmeier  et  al.,  2019) .  I  also  used                

RNA-seq  data  generated  in  the  Wu  lab  from  7  AML  primary  samples  not  yet  published  but  from                   

patients   part   of   a   DFCI   clinical   trial    (Ho   et   al.,   2017) .     
  

Preprocessing   

I  trimmed  RNA-seq  reads  of  adapter  sequences  using  Cutadapt  1.15,  discarding  reads  below  the                

chosen  length  threshold  of  80  nt  or  with  any  unknown  nucleotides   (Martin,  2011) .  I  then  aligned                  

reads   to   the   genome   with   STAR,   using   GENCODE   gene   annotations    (Dobin   et   al.,   2013) .     
  

I  trimmed  Ribo-seq  reads  of  primers  and  barcodes  with  Cutadapt,  stripped  them  of  contaminants                

such  as  ribosomal  RNA  with  BowTie   (Langmead  et  al.,  2009) ,  and  aligned  them  to  the  genome                  

with  STAR  using  GENCODE  annotations.  I  then  offset-corrected  Ribo-seq  read  alignments  with              

RibORF   (Ji  et  al.,  2015) .  Offset-correction  truncates  each  read  to  1  nt  and  places  it  at  the                   

predicted  position  of  the  ribosomal  A-site.  Reads  should  exhibit  trinucleotide  periodicity             

supporting   the   translation   of   a   given   open   reading   frame   (ORF)   ( Figure   9 ).   

  

  
Figure   9     
An   example   of   a   translated   ORF   in   the   5’   UTR   of   MLEC   supported   by   Ribo-seq.   Offset-corrected   reads   shown   in   
green   are   in-frame   reads,   supporting   the   translation   of   the   ORF,   while   the   reads   shown   in   grey   are   out   of   frame.   The   
start   codon   (M)   is   light   green,   the   stop   codon   (*)   is   red.     
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AS-Derived   Peptide   Prediction   Pipeline   

To  identify  RIs,  I  assembled   de  novo  transcripts  from  aligned  RNA-seq  data  using  StringTie                

(Kovaka  et  al.,  2019) .  I  ran  StringTie  in  its  conservative  mode  and  used  GENCODE  hg38                 

annotations  as  a  reference  for  B721  and  AML  cell  line  data  and  hg19  annotations  for  AML                  

primary  samples,  which  had  been  previously  aligned  to  that  annotation  version   (Harrow  et  al.,                

2012) .     
  

I  used  gffcompare   (Pertea  and  Pertea,  2020)  to  compare  assembled  transcripts  to  annotated               

transcripts.  I  only  considered  assembled  transcripts  that  were  multi-exonic  and  share  at  least  one                

splice  junction  with  an  annotated  transcript  isoform,  as  determined  by  gffcompare  class  codes               

“m”,  “n”,  and  “j”.  I  then  identified  the  assembled  transcripts  that  contain  at  least  one                 

non-canonical  retained  intron,  alternative  5’  splice  junction,  alternative  3’  splice  junction,  or              

cassette  exon  and  therefore  included  a  portion  of  a  canonically  constitutive  intron  to  a  transcript.                 

If  that  intronic  region  was  fully  included  in  any  canonical  transcript  isoform  annotation  in                

GENCODE  or  RefSeq,  I  discarded  the  AS  event.  I  considered  all  transcripts  including  any  listed                 

AS   events   as   AS   isoforms.   
  

I  translated  AS  isoforms  that  preserve  a  start  codon  from  a  canonical  transcript  isoform,                

beginning  at  that  start  codon  and  ending  at  the  first  in-frame  stop  codon  ( Figure  10 ).  If  the                   

resulting  protein  sequence  contained  sequence  from  a  noncanonical  intronic  region  identified  in              

prior  steps,  I  added  it  to  my  protein  search  database.  I  worked  conservatively,  translating  only  in                  

one  frame  and  without  seeking  out  noncanonical  start  codons,  in  favor  of  blunter  approaches                

such  as  translating  the  entire  transcript  in  three  frames,  to  limit  the  size  of  the  search  space.  This                    

approach  accounts  for  both  intronic  sequence,  novel  junctions,  and  downstream  peptides,             

offering   a   more   comprehensive   approach   than   existing   work.   
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Figure   10   
AS  translation  methodology.  AS  isoforms  were  translated  from  canonical  start  codons  to  the  first  downstream                 
in-frame  stop  codon.  I  determine  the  canonical  transcript(s)  that  the  AS  transcript  most  closely  matches,  use  the                   
canonical  start  codon(s)  from  those  transcript(s),  and  I  translate  up  to  the  first  downstream,  in-frame  stop  codon                   
(which  in  this  example  is  introduced  in  the  second  exon  by  a  frameshift).  I  then  find  all  8-11mers  from  the  resulting                       
proteins   and   discard   any   peptides   present   in   the   canonical   proteome   to   obtain   a   set   of   novel   peptide   predictions.   
  

I  then  generated  features  quantifying  the  RNA-seq  read  support  for  intronic  segments  predicted               

to  be  retained  in  isoforms  due  to  AS,  their  adjacent  canonically  exonic  regions,  and  their                 

boundaries  (e.g.  reads  spanning  a  novel  junctions  introduced  by  an  alternate  5’  splice  site,  reads                 

spanning  the  intron-exon  boundary  of  a  retained  intron).  I  also  noted  AS  isoforms’  TPM,  AS                 

isoforms’  expression  level  relative  to  corresponding  canonical  transcripts,  and  the  percent  of              

bases  in  the  isoform  supported  by  RNA-seq  reads  (base  coverage).  I  also  inspected  the                

proportion  of  reads  with  mismatches,  indels,  and  clipping  and  of  reads  that  mapped  to  multiple                 

genomic  loci  in  intronic  segments  and  their  adjacent  exons,  which  sheds  light  on  the  quality  of                  

reads  being  used  to  call  a  given  AS  event.  Additionally,  I  calculate  intronic  segments’  GC                 

content,  as  higher  GC  content  may  characterize  a  subset  of  RIs   (Jacob  and  Smith,  2017) .  I                  

checked  whether  AS  events  introduce  a  premature  termination  codon  (PTC)  into  transcripts,             

which  may  lead  to  nonsense-mediated  decay   (Monteuuis  et  al.,  2019) .  In  cases  of  alternative                

splice  sites  or  cassette  exons,  I  determine  the  splicing  motifs  introduced  by  novel  splice  junctions                 

to  determine  whether  they  adhered  to  canonical  expectations.  Finally,  when  Ribo-seq  data  was               

available,  I  inspected  Ribo-seq  read  support  for  predicted  AS  events  as  well.  These  features  may                 
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allow  the  filtering  of  AS  isoforms  and  peptides  to  obtain  a  smaller  but  higher  confidence  set  of                  

AS-derived   peptides.     
  

Validation   in   B721   

I  validated  predicted  AS-derived  peptides  as  translated  by  determining  the  number  of  Ribo-seq               

reads  aligned  to  the  corresponding  genomic  sequences.  Ribo-seq,  or  ribosome  profiling,  has              

emerged  as  a  powerful  approach  to  investigate  the  translated  transcriptome  in  cells  and  tissues                

(Ingolia  et  al.,  2009) .  It  is  based  on  enriching  ribosome-protected  mRNA  footprints  (RPFs)  and                

enables  the  identification  of  translated  open  reading  frames   (Ji  et  al.,  2015) .  I  require  ≥1                 

Ribo-seq   read   mapped   to   a   given   peptide   to   validate   its   translation.   
  

I  validated  predictions  as  likely  to  be  HLA  presented  by  using  HLAthena  to  predict  which                 

peptides  correspond  to  expected  binding  motifs,  using  a  percent  rank  threshold  of  0.5%.  Efforts                

to  search  for  predicted  peptides  in  HLA  class  I  immunopeptidome  mass  spectrometry  data  from                

monoallelic   B721   lines   to   validate   their   translation   and   HLA   presentation   are   also   underway.   
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