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Abstract. We compute the centers of the Weyl algebra, q-Weyl algebra, and
the “first q-Weyl algebra” over the quotient of the ring Z{pNZrqs by some

polynomial P pqq. Through this, we generalize and “quantize” part of a result

by Stewart and Vologodsky on the center of the ring of differential operators
on a smooth variety over Z{pnZ. We prove that a corresponding Witt vector

structure appears for general P pqq and compute the extra terms for special
P pqq with particular properties, answering a question by Bezrukavnikov of

possible interpolation between two known results.

1. Introduction

1.1. Background and Motivation. In noncommutative algebra, the Weyl and q-
Weyl algebra are a pair of basic examples of q-deformation, which is a philosophy of
understanding an object better after it is deformed or “quantized” via a parameter
q.

The Weyl algebra, W pRq, is a free algebra generated by a and b over a ring R
subject to the relation ba´ ab´ 1; the q-Weyl algebra, WqpRq, on the other hand,
is a free algebra generated by a, a´1, b, b´1 over a ring R subject to the relation by
ba ´ qab, the q-commutation relation. The q-Weyl algebra can be realized as an
“exponentiation” and quantization of the Weyl algebra.

The Weyl algebra is also the ring of differential operators over the affine space
A1
R. There gives rise to another natural quantization, the “first q-Weyl algebra,”

which we obtain by replacing the differential operator by the q-derivative, formally
defined by the free algebra over R generated by x, y, x´1, y´1 over R and subject
to the relation yx´ qxy ´ 1.

In [SV13], Stewart and Vologodsky proved a conjecture of Kaledin about the
center of the rings of differential operators on smooth varieties over Z{pnZ. Their
results generalize a classical isomorphism in case Z{pZ arising in modular repre-
sentation theory (see (1.1) in [SV13], or [BMRR08]). They describe the center of
these rings of differential operators via the Witt vector construction. Particularly,
taking the smooth variety as A1, we obtain the ring to be the Weyl algebra over
Z{pnZ and we deduce that the center is isomorphic to the Witt vector ring over

the symmetric algebra generated by two elements ra,rb.
The motivation of this paper is to quantize the result in [SV13], taking the first

step by investigating the q-deformation of the simplest such ring, the q-Weyl algebra
and the first q-Weyl algebra, which quantizes the Weyl algebra.
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1.2. Known Results. This is not the first attempt to understand the center of
the Weyl and q-Weyl algebra. One can easily prove that the center of the Weyl
algebra over a torsion-free ring is R itself. And the center of the Weyl algebra over
Z{pnZ is implied in [SV13].

As for the q-Weyl algebra, its center over a torsion-free ring is also investigated
(see e.g. [GG14]). Especially when q is a l-th root of unity, the center would be
freely generated by al and bl. However, the center of the q-Weyl algebra over rings
with torsion is largely left as a mystery.

Roman Bezrukavnikov asked the possible interpolation between the two known
results. Namely, he asked about the center of the q-Weyl algebra over Z{pNZ where
q is a pn-th root of unity and n is a positive integer. If we obtain the result, it would
be the first glance into the possible quantization of [SV13], and it is interesting to
see whether the similar Witt vector construction would appear.

1.3. Our Approach. The way to formulate Bezrukavnikov’s question is to consider
the center of the quotient of q-Weyl algebra by an ideal generated by polynomial
P with coefficients in a ring Z{pNZ. Particularly in the context of choosing q as a
pn-th root of unity, P would be the pn-th cyclotomic polynomial.

The difficulty is that Z{pNZ is not a domain, when N ě 2 (for example, p is a
zero divisor). And the pn cyclotomic polynomial splits completely in Fp (modulo
p) but is not even reducible in Z{p2Z.

In this paper, we answer the question of Roman Bezrunikov by completely solving
the center ring of WqpZ{pNZq{pΦpnpqqq by Theorem 5.2. On the contrary to the
expected Witt vector construction, we find and compute a series of extra terms,
which would potentially point out the obstacles in the general quantization.

Extending from Bezrukavnikov’s question, we consider the center of

WqpZ{p
NZq{P pqq

for a general polynomial P . We prove that when monic P is irreducible in Fp and
p is odd, the center preserves the Witt vector structure. This answers the question
of quantization for any “algebraic integer” q.

Moreover, we investigate the center of the first Weyl algebra, as another natural
quantization of the Weyl algebra. We show that as long as P p1q is not a multiple
of p, the center of the first Weyl algebra is isomorphic to the center of the q-Weyl
algebra. And there is a natural bijection between their underlying sets (Theorem
6.5).

1.4. Outline. We structure the paper as follows.
In §2, we review the basic definitions and structures of the Weyl and q-Weyl

algebra, recount a set of elementary number theory facts, and present the Witt
vector construction in our context. In §3, we generalize the special case of the
result in [SV13] by replacing the Weyl algebra by the generalized Weyl algebra. In
§4, we prove the main theorem for odd prime p (Theorem 4.2), solving the center
for all “algebraic integer” q and presenting some extensions. In §5, we dedicate to
answer Roman Bezrukavnikov’s question thoroughly, by solving the center when
P is qp

n

´ 1 and Φpnpqq. In §6, we construct an isomorphism between the first
q-Weyl algebra and the Weyl algebra and an additional natural bijection between
underlying sets of their centers.
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2. Preliminaries

2.1. Basic Definitions. In this paper, we focus on R “ Z{pNZ as a ring with
torsion, where p is a prime and N is a positive integer.

We first recall the definition of the Weyl algebra, q-Weyl algebra, and the first
q-Weyl algebra over a ring R.

Definition 2.1. Let q and h be indeterminates. For a ring R we define the Weyl
algebra, generalized Weyl algebra, and q-Weyl alegbra over R as

W pRq “ Rxa, by{pba´ ab´ 1q,

WhpRq “ Rxa, by{pba´ ab´ hq,

and
WqpRq “ Rxa, a´1, b, b´1y{pba´ qabq,

respectively.

To clarify, there are two different known definitions for the q-Weyl algebra. For
the other definition, we call it the first q-Weyl Algebra (as [HL17]), distinguishing
it from Definition 2.1.

Definition 2.2. Let q be an indeterminate. For a ring R we define the first q-Weyl
algebra over R as

W p1q
q pRq “ Rxx, x´1, y, y´1y{pyx´ qxy ´ 1q.

The following well-known result shows that the Weyl algebra (and the first q-
Weyl algebra) is essentially the ring of differential operators (and q-derivative) with
polynomial coefficients.

Proposition 2.3. The vector space of all real polynomials Rrxs is

(a) a faithful representation of W pRq, where a acts by multiplication by x and
y acts by the differential operator B

Bx ;

(b) a faithful representation of W
p1q
q pRq, where a acts by multiplication by x

and y acts by the q-differential operator
`

d
dx

˘

q
.

On the other hand, the q-Weyl algebra can be viewed as the ring of operators
of functions f where a sends fpxq to exfpxq and b sends fpxq to fpx ` log qq. In
this sense, the q-Weyl algebra can be seen as an exponentiation and q-deformation
of the Weyl algebra.

2.2. The Structure of the Weyl and q-Weyl algebra. In this section, we
present some basic facts about the Weyl and q-Weyl algebra.

The following well-known proposition provides those algebras a basis (for a proof
see, e.g. [EGH`11]).

Proposition 2.4. A basis for the

(1) Weyl algebra is taibj |i, j ě 0u;
(2) q-Weyl algebra is taibj |i, j P Zu;
(3) first q-Weyl algebra is txiyj |i, j P Zu.

The following lemma proved that an element is in the center if and only it
commutes with both a and b (or x and y). The proof is straightforward, so we omit
it.
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Lemma 2.5. We have that

(a) an element z is in the center of WhpRq if and only if it commutes with both
a and b.

(b) if we replace WhpRq in (a) by WqpRq{P pqq, the same statement holds true.

(c) if we replace WhpRq in (a) by W
p1q
q pRq{P pqq and a, b by x, y, the same

statement holds true.

Proof. (a) If z is in the center, it commutes with every element in the ring, including
a and b.

Conversely, suppose that z commutes with both a and b. By Proposition 2.4,
every element in WhpRq can be written in form

ÿ

i,j

cija
ibj ,

where cij is a polynomial of parameter q, which commutes with every element. We
have

zcija
ibj “ cijpzaqa

i´1bj “ ci,japzaqa
i´2bj “ ¨ ¨ ¨ “ ci,ja

ipzbqbj´1 “ ¨ ¨ ¨ “ cija
ibjz.

Thus z commutes with each cija
ibj , implying that

z
ÿ

i,j

cija
ibj “

ÿ

i,j

zcija
ibj “

ÿ

i,j

cija
ibjz “

˜

ÿ

i,j

cija
ibj

¸

z.

Therefore z commutes with every element; z is in the center.
(b) The proof of this part is exactly the same except for that in the basis provided

by Proposition 2.4, the exponents of a and b could be negative. We treat this case
specially as follows (let j “ ´k be negative, where k is a positive integer).

zb´k “ b´1pbzqb´k “ b´1zb´k`1 “ b´2pbzqb´k`2 “ b´2zb´k`2 “ ¨ ¨ ¨ “ b´kz.

For the same reason z commutes with ai for negative integer i so z commutes
with all cija

ibj . The rest is the same as (a)
(c) The proof of this part is exactly the same as (b). �

From now on, in the expressions like cija
ibj and zija

ibj , cij and zij would be
polynomials of the parameter q. In this way we can more conveniently denote the
elements of the algebra by its basis.

So now we only need to find all the element that commutes with both a and b
to compute the center. The following lemma explains how the multiplication by a
and b works in those algebras.

Lemma 2.6. We have

(a) in WhpRq,
˜

ÿ

i,jPZě0

cija
ibj

¸

a “
ÿ

i,jPZě0

cija
i`1bj `

ÿ

i,jPZě0

jhcija
ibj´1

and

b

˜

ÿ

i,jPZě0

cija
ibj

¸

“
ÿ

i,jPZě0

cija
ibj`1 `

ÿ

i,jPZě0

jhcija
i´1bj
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(b) in WqpRq{P pqq,
˜

ÿ

i,jPZ

cija
ibj

¸

a “
ÿ

i,jPZ

cijq
jai`1bj

and

b

˜

ÿ

i,jPZ

cija
ibj

¸

“
ÿ

i,jPZ

qicija
ibj`1.

(c) in W
p1q
q pRq{P pqq,

˜

ÿ

i,jPZ

cija
ibj

¸

a “
ÿ

i,jPZ

qjcija
i`1bj `

ÿ

i,jPZ

qj`1 ´ 1

q ´ 1
ci`1j`1a

i`1bj

and

b

˜

ÿ

i,jPZ

cija
ibj

¸

“
ÿ

i,jPZ

qicija
ibj`1 `

ÿ

i,jPZ

qi`1 ´ 1

q ´ 1
ci`1j`1a

ibj`1.

Proof. (a) Symmetrically, we only need to prove the first equality. Induct on j to
prove that

cija
ibja “ cija

i`1bj ` jhcija
ibj´1,

and clearly this implies the result via direct summation.
The base case is trivial since aia “ aai.
For general cases, we have

cija
ibja “ cija

ibj´1pab` hq

“ hcija
ibj´1 ` pcija

ibj´1aqb

“ hcija
ibj´1 ` hpj ´ 1qcija

ibj´2b` ci,ja
i`1bj

“ cija
i`1bj ` jhcija

ibj´1,

by the inductive assumption. As desired.
(b) For the same reason as (a), we only need to prove that

cija
ibja “ qjcija

i`1bj .

In fact

cija
ibja “ cija

ibj´1qab

“ qcija
ibj´1ab

“ q2cija
ibj´2ab2

“ ¨ ¨ ¨

“ qjcija
i`1bj .

As desired.
(c) For the same reason as (a), we only need to show

cija
ibja “ qjcija

i`1bj `
qj ´ 1

q ´ 1
cija

ibj´1.
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In fact

cija
ibja “ cija

ibj´1pqab` 1q

“ qcija
ibj´1ab` cija

ibj´1

“ q2cija
ibj´2ab2 ` p1` qqcija

ibj´1

“ ¨ ¨ ¨

“ qjcija
i`1bj ` p1` q ` ¨ ¨ ¨ ` qj´1qcija

ibj´1,

as desired. �

2.3. Elementary Number-theoretical Setup. In this section, we set up some
elementary facts that will be helpful for future usage.

First, we extend the notion of the p-valuation to polynomials and matrices.

Definition 2.7. For a prime p we define the p-valuation of

(1) an integer entry square matrix M , νppMq, to be the greatest integer k such
that pk divides all the entries of M .

(2) a polynomial P P Zrxs, νppPq, to be the greatest integer k such that pk

divides all the coefficients of P.
(3) a polynomial P P Z{pNZrxs, νppPq, to be the greatest integer k ď N such

that pk divides all the coefficients of P.

Afterwards, whenever we talk about the p-valuation of an object in Z{pNZ, we
assume that this value will not be greater than N .

We then review the well-known Kummer’s Theorem.

Theorem 2.8 (Kummer). For p prime, let n,m1,m2, ¨ ¨ ¨ ,mk be non-negative in-

tegers such that n “
řk
i“1mi. Then the p-valuation of

`

n
m1,m2,...,mk

˘

is the number

of carriers when m1,m2, . . . ,mk are added in base p. Namely,

νp

ˆ

n

m1,m2, . . . ,mk

˙

“
1

p´ 1

˜

k
ÿ

i“1

Sppmiq ´ Sppnq

¸

.

where Sppsq denotes the sum of digits when the integer s is written in base p.

Then we consider various properties about the factorization in Z{pNZrxs. We
start by the well-known Gauss Lemma and Bézout’s Theorem.

Lemma 2.9 (Gauss). If polynomial P1, P2 P Zrxs are both primitive, then P1P2 is
also primitive.

Theorem 2.10 (Bézout). If Q1, . . . , Qk are polynomials in Fprqs such that their
greatest common divisor is 1. Then there exists polynomials B1, . . . , Bk such that
řk
i“1QiBi “ 1 in Fprqs.

Note that if polynomial H is defined in Z{pNZrqs, then it can also be naturally
defined in Z{pnZrqs where n ď N by modulo pn. Similarly, if H is defined in Zrqs,
then it can be naturally defined in Z{pnZrqs for any n. For the sake of convenience,
we may write polynomial H in Z{pnZ, which means to consider it in Z{pnZrqs.

Now we prove the following proposition to explain what a“multiple”or a“divisor”
means in Z{pNZrqs.
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Proposition 2.11. Let n be a positive integer, H P Zrqs be an irreducible poly-
nomial modulo p. If polynomials P1, P2 P Zrqs satisfy that H divides P1P2 in
Z{pnZrqs, then there exists a non-negative integer k ď n such that H divides P1 in
Z{pkZrqs and H divides P2 in Z{pn´kZrqs.

Proof. Induct on n. When n “ 1, this is true since Frqs is a UFD. For the general
cases, modulo p then we have that H divides P1P2 in Fprqs. Since H is a prime
in Fprqs, H divides either P1 or P2 in Fprqs. Without loss of generality, we may
write P1 “ KH ` pL in Z{pNZ. Thus P1P2 “ HpKP2q ` ppLP2q is multiple of
H in Z{pNZ if and only if LP2 is a multiple of H in Z{pN´1Z. By the inductive

assumption, there exists k1 such that L is a multiple of H in Z{pk
1

Z and P2 is

a multiple of H in Z{pN´k
1
´1Z. Thus we may write L “ HK 1 ` pk

1

L1, and we

have P1 “ pK ` pK 1qH ` pk
1
`1L1 so P1 is a multiple of H in Z{pk

1
`1Z. Choosing

k “ k1 ` 1, we get the desired result. Induction is completed. �

Now we are ready to prove the following proposition, explaining how strong is
the notion of “coprime” is in Z{pNZ. This result would be useful in the proof of
Theorem 4.18.

Proposition 2.12. Let H1, H2 P Z{pNZrxs satisfying that they are coprime and
H1 is irreducible in Fp. If a polynomial Q P Z{pNZrxs is divisible by both H1 and
H2, then Q is divisible by H1H2.

Proof. Since H1 divides Q in Z{pNZ, we may write Q “ H1Q
1. Considering that

H2 divides H1Q
1 “ Q in Z{pNZ, by Proposition 2.11, there exists a integer k such

that H2 divides H1 in Z{pkZ and H2 divides Q1 in Z{pN´kZ. If k ě 1, then H2

must divide H1 in Fp, which never happens for two coprime polynomials in Fp.
Contradiction. So k “ 0, thus H2 divides Q1 in Z{pNZ. We may write Q1 “ H2Q

2.
Thus Q “ H1H2Q

2 in Z{pNZ, so Q is divisible by H1H2. �

2.4. Witt Vector Ring. Implied by [SV13], the center ring construction of the
Weyl algebra can be characterized by Witt vectors. In this subsection, we interpret
the Witt vectors construction in our context and build a connection between it to
the centers of the Weyl algebra family, which would be discussed later.

Definition 2.13. Fix a prime p and a non-negative integer n, a Witt vector over
a commutative ring R is a vector pr0, r1, r2, . . . , rnq with components in R. Define
the “ghost component map” from Rn`1 to R as

wpn : pr0, r1, r2, . . . , rnq ÞÑ
n
ÿ

i“0

pirp
n´i

i .

The Witt vector ring, WnpRq, is the ring with the underlying set of all the Witt
vectors over R and addition and multiplication preserving the addition and multi-
plication of the ghost components in R.

To build a connection between the Witt vector ring and our objects of study, we
need the following result.

Proposition 2.14. For non-negative integer k, we have

k
ÿ

i“0

piZ{pNZrrap
k´i

,ra´p
k´i

,rbp
k´i

,rb´p
k´i

srqs » WkpZ{p
NZrra,ra´1,rb,rb´1sqrqs
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and

k
ÿ

i“0

piZ{pNZrrap
k´i

,rbp
k´i

srqs » WkpZ{p
NZrra,rbsqrqs.

Remark that for subrings R1, . . . , Rk of R˚,
řk
i“1Ri denotes R1`R2`¨ ¨ ¨`Rk as

a subring of R˚. In this paper, the ring R˚ is taken as either Z{pNZrra,rb,ra´1,rb´1s

or Z{pNZrra,rb,ra´1,rb´1s{P pqq for some polynomial P .
The isomorphism map is exactly the ghost component map. The proof is straight-

forward calculation, involving Theorem 2.8.

Proof. We show they have the same underlying set and this suffice since they have
the same multiplication and addition as in R.

An element x is in the left hand side ring if and only if it is in form of

x “
ÿ

i,jPZ

pk´νppgcdpi,jqqxija
ibj ,

where xij P Z{pNZrqs. In fact

pn´νppgcdpi,jqqxija
ibj “ xijwpnp0, . . . , a

i

p
νppgcdpi,jqq b

j

p
νppgcdpi,jqq , . . . , 0q,

where every term in the Witt vector is 0 except for the νppgcdpi, jqq-th term, Thus

pn´νppgcdpi,jqqxija
ibj is in the ghost component ring adjoint q, which is the right

hand side. So the ring on the left-hand side is a subring of the ring on the right
hand side.

Conversely, we show that the ring on the right hand side is a subring of ring on
the left. We only need to prove that

Y wpnp0, . . . , y, . . . , 0q

is in the ring on the left, where Y P Z{pNZrqs, y P Z{pNZra, bs and every term in
the Witt vector is 0 except for the i-th term. This is sufficient because

wpnpv0, v1, . . . , vnq “
n
ÿ

i“0

wpnp0, . . . , 0, vi, 0, . . . , 0q,

thus all the elements in the ghost component ring is generated by elements in form
of wpnp0, . . . , 0, vi, 0, . . . , 0q. We then write

y “
ÿ

j,k

yjka
jbk,

and

Y wpnp0, . . . , y, . . . , 0q “ Y piyp
n´i

“ Y pi

˜

ÿ

j,k

yjka
jbk

¸pn´i

“ Y pi
ÿ

ř

j,k sjk“p
n´i

ˆ

pn´i

tsjku

˙

ź

j,k

pyjka
jbkqsjk .
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By
`

pn´i

tsjku

˘

we mean the multinomial coefficients:

pn´i!
ś

j,k sjk!
.

By Theorem 2.8, for 0 ď v ď n ´ i,
`

pn´i

tsjku

˘

is a multiple of pv unless all sjk is

divisible by pn´i´v`1; otherwise, there exists a sj1k1 with a non-zero digit on the
right of the left-most pn ´ i ´ v ` 1q-th digit in its base p expression, thus when
all the sjk are added together, there will a carrier in every digit since the left-most
pn ´ i ´ v ` 1q-th term; there are v of such carriers in total, so the multinomial
coefficient is a multiple of pv, contradiction.

Fix a sequence of tsjku, we prove that

pi
ˆ

pn´i

tsjku

˙

ź

j,k

pyjka
jbkqsjk

is in the left-hand side ring, thus the summation of all the possible sequences of
tsjku is still in the left-hand side ring. Suppose that l is the greatest positive integer

such that pl divides all the sjk. Then by the argument above, pn´i´l divides
`

pn´i

tsjku

˘

.

So

pi
ˆ

pn´i

tsjku

˙

ź

j,k

pyjka
jbkqsjk “ pn´l

˜

ź

j,k

pyjka
jbkqsjk{p

l

¸pl `pn´i

tsjku

˘

pn´i´l
,

which is in left-hand side ring since the coefficient is a multiple of pn´l and the
mutiplicities of a and b are both multiples of pl.

Thus the rings on the left and right are the isomorphic, as desired. �

3. The Center of the Weyl Algebra

In this section, we generalize partially the result in [SV13] by considering the
generalized Weyl algebra instead of the Weyl algebra. We take h as a polynomial
of q so that this fits better into the context of this paper. And h could possibly be
a zero divisor. The following result shows that the center of such generalized Weyl
algebra preserves the Witt vector construction.

Theorem 3.1. Let h P Z{pNZrqs be a polynomial of q. Then

ZpWhpRqq » WN´νpphq

´

Rrra,rbs
¯

rqs.

In the rest of this section, we prove this result.

3.1. Basic Lemmas. We need first two simple results regarding the p-valuation
of polynomials in Z{pNZ.

Proposition 3.2. We have

(a) for polynomials P1, P2 P Zrxs,

νppP1q ` νppP2q “ νppP1P2q;

(b) for polynomials P1, P2 P Z{pNZrxs,

minpN, νppP1q ` νppP2qq “ νppP1P2q.
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Proof. (a) Let d1 be the greatest positive integer that divides P1 and d2 be the
greatest positive integer that divides P2, and denote P1 “ dP 11 and P2 “ d2P

1
2. Then

clearly νppP1q “ νppd1q`νppP
1
1q “ νppd1q since P 11 is primitive (otherwise d won’t be

the greatest). Similarly νppP2q “ νppd2q. On the other hand, P1P2 “ d1d2pP
1
1P

1
2q,

by Lemma 2.9, νppP1P2q “ νppd1d2q ` νppP
1
1P

1
2q “ νppd1d2q “ νppd1q ` νppd2q, as

desired.
(b) View P1, P2 as polynomials in Zrxs naturally (although there are differ-

ent possible polynomials they can take, just choose one of them). Clearly the
p-valuation of Pi in Z{pNZrxs is the minimum of νppPiq in Zrxs and N . Apply (a),
the result is obvious. �

This result’s direct corollary is as follows.

Corollary 3.3. Polynomials P1, ¨ ¨ ¨ , Pk P Z{pNZrxs, then
śk
i“1 Pi “ 0 if and only

if
řk
i“1 νppPiq ě N .

Proof. Apply Proposition 3.2 repeatedly, we know

min

˜

N,
k
ÿ

i“1

νppPiq

¸

“ νpp0q “ N.

Thus
řk
i“1 νppPiq ě N , as desired. �

3.2. Proof of Theorem 3.1. Now we proceed with the proof of the Theorem 3.1.
By Proposition 2.14, we only need to show that

ZpWhpRq{P pqqq »

N´νpphq
ÿ

i“0

piZ{pNZrrap
N´νpphq´i

,rbp
N´νpphq´i

srqs.

The isomorphism map is

φ :
ÿ

i,j

zija
ibj ÞÑ

ÿ

i,j

zijra
i
rbj .

Step 1. we first show that φ is a bijection.
By Lemma 2.5, z is in the center of WhpRq if and only if it commutes with both

a and b. By Proposition 2.4, we may write z as

z “
ÿ

i,jPZě0

zija
ibj .

We have
az “

ÿ

i,jPZě0

zija
i`1bj

and, by Lemma 2.6,

za “
ÿ

i,jPZě0

zija
i`1bj `

ÿ

i,jPZě0

jhzija
ibj´1.

So z commutes with a is equivalent to
ÿ

i,jPZě0

jhzija
ibj´1 “ 0.

By Proposition 2.4, this is zero if and only if jhzij “ 0 for all i, j.
By Corollary 3.3, we know that νppzijq ` νppjq ě N ´ νpphq. Symmetrically,

νppzijq ` νppiq ě N ´ νpphq. Thus z is in the center if and only if zij is a multiple
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of pN´νpphq´minpνppiq,νppjqq for every pair of i, j. This implies that z is in the center
if and only if

φpzq P

N´νpphq
ÿ

i“1

piZ{pNZrrap
N´νpphq´i

,rbp
N´νpphq´i

srqs.

So φ is a well-defined map and so is

φ´1 :
ÿ

i,j

zijra
i
rbj ÞÑ

ÿ

i,j

zija
ibj .

Therefore φ is a bijection.
Step 2. we then show that φ preserves the addition, multiplication, and multi-

plicative identity. By definition φp1q “ 1 and

φ

˜

ÿ

i,j

zija
ibj

¸

` φ

˜

ÿ

i,j

z1ija
ibj

¸

“
ÿ

i,j

pzij ` z
1
ijqra

i
rbj “ φ

˜

ÿ

i,j

pzij ` z
1
ijqa

ibj

¸

.

Additionally, note that

zija
ibjz1kla

kbl “ zijz
1
kla

i`kbj`l

since z1kla
k is in the center, thus commutes with bj . So

φ

˜

ÿ

i,j

zija
ibj

¸

¨ φ

˜

ÿ

i,j

z1ija
ibj

¸

“

˜

ÿ

i,j

zijra
i
rbj

¸

¨

˜

ÿ

i,j

z1ijra
i
rbj

¸

“
ÿ

i,j,k,l

zijz
1
klra

i`k
rbj`l

“ φ

˜

ÿ

i,j,k,l

zijz
1
kla

i`kbj`l

¸

“ φ

˜

ÿ

i,j,k,l

zija
ibjz1kla

kbl

¸

“ φ

˜˜

ÿ

i,j

zija
ibj

¸

¨

˜

ÿ

i,j

z1ija
ibj

¸¸

Thus φ is indeed an isomorphism.

4. General Polynomials

In this section we consider the center of the q-Weyl algebra, where q is a root
of some polynomial and p is a odd prime. Namely, we consider the center of
WqpZ{pNZq{P pqq where P is a integer coefficient polynomial.

The main theorem can be formulated as Theorem 4.2, which requires some ad-
ditional definitions.

Definition 4.1. For a polynomial P P Zrqs. Define MpP q to be the smallest
positive integer such that qMpP q ´ 1 is divisible by P in Fprqs. And define lpP q to

be the greatest positive integer such that qMpP q ´ 1 is divided by P in Z{plpP qZ.

Theorem 4.2. When monic P P Z{pNZrqs is irreducible in Fp, we have

ZpWqpRq{P pqqq » WN´lpP qpRrra
MpP q,ra´MpP q,rbMpP q,rb´MpP qsqrqs{P pqq.
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We use the rest of this section to prove this theorem. In subsection 4.1, we
rephrase the question into a problem about the factorization in Rrqs. In subsection
4.2, we present some lemmas for preparation. In subsection 4.3, we present the
complete proof.

4.1. Rephrase the problem. First, we shall rephrase the problem by the follow-
ing Theorem 4.3.

Define WqpRq
piq the free algebra generated by ai and bi over ring R “ Z{pNZ

subject to relation ba “ qab.

Theorem 4.3. The center of WqpZ{pNZq{P pqq is

8
ÿ

i“0

SP,pN ,iWqpRq
piqrqs,

where SP,pN ,i is the set consisting of all the polynomials H such that P divides

Hpxi ´ 1q in Z{pNZrqs and SP,pN ,iWqpRq
piqrqs :“

ř

HPSP,pN ,i
HWqpRq

piqrqs.

After this theorem is established, we only need to consider sets SP,pN ,i to find
the center, avoiding all the computations in non-commutative rings.

To prove this theorem, we start by proving a lemma, which will also be used in
the future.

Lemma 4.4. In Z{pNZrqs, for positive integers α and β, the ideal generated by
qα ´ 1 and qβ ´ 1 is the principal ideal generated by qgcdpα,βq ´ 1. Namely,

pqα ´ 1, qβ ´ 1q “ pqgcdpα,βq ´ 1q.

Proof. By Bezout’s theorem, there exists k, l P Z such that kα ´ lβ “ gcdpα, βq;
denote the greatest common divisor by d. Let I be the ideal generated by qα ´ 1
and qβ ´ 1. Since qα ´ 1 P I, we have qkα ´ 1 P I; similarly qlβ ´ 1 P I, then
qlβ`d´ qd P I. So qkα´1´pqlβ`1´ qdq “ qd´1 P I. So pqd´1q Ă I. On the other
hand, qd ´ 1|qα ´ 1 and qβ ´ 1 (in Zrqs), so I Ă pqd ´ 1q. Thus I “ pqd ´ 1q. �

Corollary 4.5. We have

SP,pn,i X SP,pn,j “ SP,pn,gcdpi,jq.

Proof. Polynomial H P SP,pn,iXSP,pn,j if and only if P divides both Hpqi´1q and
Hpqj ´ 1q, which is equivalent to

P P pHpqi ´ 1q, Hpqj ´ 1qq.

By Lemma 4.4, we have

pHpqi ´ 1q, Hpqj ´ 1qq “ pHpqqqpqi ´ 1, qj ´ 1q

“ pHpqqqpqgcdpi,jq ´ 1q

“ pHpqqpqgcdpi,jq ´ 1qq.

Thus H P SP,pn,i X SP,pn,j is equivalent to that P divides Hpqqpqgcdpi,jq ´ 1q,
which is equivalent to H P SP,pn,gcdpi,jq. So SP,pn,i X SP,pn,j “ SP,pn,gcdpi,jq. �

Now we are ready to prove Theorem 4.3
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The Proof of Theorem 4.3. By Lemma 2.5, z is in the center ring ofWqpZ{pNZq{P pqq
if and only if it commutes with both a and b. By Proposition 2.4, we may write

z “
ÿ

iPZě0,jPZ

zija
ibj .

By Lemma 2.6,

az “
ÿ

iPZě0,jPZ

zija
i`1bj

and
za “

ÿ

iPZě0,jPZ

qjzija
i`1bj .

Thus z commutes with a if and only if
ÿ

iPZě0,jPZ

pqj ´ 1qzija
i`1bj “ 0.

By Proposition 2.4, the equation above holds if and only if pqj ´ 1qzij “ 0 in ring
Z{pNZrqs{P pqq. Thus it is equivalent to that P pqq divides pqj ´ 1qzij in Z{pNZrqs,
equivalent to zij P SP,pn,j .

Symmetrically, z commutes with b if and only if zij P SP,pn,i. So z is in the
center if and only if zij P SP,pn,i X SP,pn,j “ SP,pn,gcdpi,jq, by Corollary 4.5. In
other word, the center ring is

8
ÿ

i“0

SP,pN ,iWqpRq
piqrqs,

as desired. �

4.2. Preparations. We build a system to investigate the structure of SP,pn,i by
importing a series of notions.

4.2.1. The notion of dn.

Theorem 4.6. Let P be monic and irreducible modulo p. Let 1 ď di ď N be the
largest integer from 0 to N such that P divides qi ´ 1 in Z{pdiZrqs. Then

ZpWqpRq{P pqqq “
8
ÿ

i“0

pN´diWqpRq
piqrqs.

By Theorem 4.3, it is sufficient to show that SP,pN ,i “
`

pN´di
˘

to prove this
theorem.

We start by an easy lemma.

Lemma 4.7. When P is monic and irreducible in Fp. We can write qi´1 “ PK`L
for some K,L P Zrqs with degL ă degP . Then di “ νppLq.

Proof. Apply the Euclidean division to qi´1 and P , we may write qi´1 “ PK`L
where L’s degree is less than that of P . Now we only need to prove di “ νppLq.

Consider that qi ´ 1 “ PK ` pνppLq ¨ pL{pνppLqq ” PK pmod pνppLqq. So di ě
νppLq.

Denote L1 “ L{pνppLq, then L1 does no divide p, equivalent to L1 ‰ 0 in Fp.
If P divides qi ´ 1 in Z{pνppLq`1Z, P divides L “ pνppLqL1 in Z{pνppLq`1Z. We

may write PK 1 “ pνppLqL1 in Z{pνppLq`1Z. By Proposition 3.2, νppP q ` νppK
1q ě

νppLq. Since P is monic, νppP q “ 0, so νppK
1q ě νppLq. We may write K 1 “
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pνppLqK2, then pνppLqPK2 “ pνppLqL1 in Z{pνppLq`1Z, implying PK2 “ L1 in Fp.
Since P is a monic prime polynomial and divides L1, and L1 has degree less than
that of P , we must have L1 “ 0 in Fp, contradicting that L1 is not divided by p. So

P doesn’t divide qi ´ 1 in Z{pνppLq`1Z. So di ă νppLq ` 1.
So di “ νppLq, as desired. �

Now we are ready to prove Theorem 4.6.

Proof of Theorem 4.6. Consider an element zi P SP,pn,i, then zipq
i´1q is a multiple

of P pqq. We may remove any multiple of P from zi, the result remains the same
(because we are considering in a ring where P pqq “ 0). Since P is monic, we may
assume that deg zi ă degP.

It’s sufficient to prove that this is equivalent to that pN´di divides zi. By Lemma
4.7, we may write qi ´ 1 “ P pqqKpqq ` Lpqq and di “ νppLq. Then we know that
ziLpqq is a multiple of P pqq. By Proposition 2.11, there exits k such that P divides
zi in Z{pkZ and P divides L in Z{pN´kZ. By the definition of di, we know thatN´k
can and can only take integer values that no greater than di. Thus zi P SP,pN ,i
is equivalent to that zi is a multiple of P in Z{pN´diZ. By Lemma 4.7, since
deg zi ă degP , this is equivalent to νppziq ě N ´ di, meaning pN´di divides zi, as
desired. �

4.2.2. The notion of δ and its properties. Now we introduce δ with various proper-
ties to help us better understand dn.

Definition 4.8. Define Ki “ tk P Z`|dk ě iu. Let δp,P piq be the smallest element
in Ki. Call δp,P piq the i-th generator of p and P .

The following Proposition 4.10 completely solves the value of dn by the genera-
tors. To prove it, we need a basic lemma.

Lemma 4.9. If k1, k2 P Ki, then gcdpk1, k2q P Ki.

Proof. If k1, k2 P Ki, then P divides both qk1 ´ 1 and qk2 ´ 1 in Z{piZrqs. Thus

P P pqk1 ´ 1, qk2 ´ 1q “ pqgcdpk1,k2q ´ 1q,

by Lemma 4.4. Thus P divides qgcdpk1,k2q´1 in Z{piZrqs, implying gcdpk1, k2q P Ki,
as desired. �

Now we are ready to introduce the main result of the generators.

Proposition 4.10. For a positive integer i, Ki consists of exactly all the multiples
of the i-th generator.

Proof. Since qi ´ 1 divides qsi ´ 1 for all positive integer s, all the multiples of the
i-th generator is in Ki.

If there exists k1 P Ki which is not a multiple of δp,P piq, by Lemma 4.9, gcdpk1, δp,P piqq P
Ki which is smaller than δp,P piq. contradiction.

So the multiples of the i-th generator are all the elements, as desired. �

Corollary 4.11. For any 1 ď i ď j ď N , δp,P pjq is a multiple of δp,P piq.

It’s obvious by definition that MpP q and lpP q are non-negative integers such
that MpP q “ δp,P p1q “ ¨ ¨ ¨ “ δp,P plpP qq while δp,P plpP q ` 1q ‰MpP q.

In the following discussion, for the sake of simplicity, MpP q and lpP q will be
written as M and l, since P is fixed.
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The key claim for the proof of Theorem 4.2 is as follows.
When p is an odd prime, for non-negative integer k, we have δp,P pl` kq “Mpk.
Consider the ring Rrqs{P pqq as a degP dimensional vector space, and the multi-

plication by q acts as a linear operator, denoted Mpqq. We may choose t1, q, . . . , qdegP´1u

as a basis and clearly Mpqq acts as a degP by degP square matrix with integer
entries. Now we prove the generalized “LTE Lemma” for Mpqq as follows.

Lemma 4.12. For any p ą 2, let k and i be positive integers such that νppMpqqk´
1q ě 1, then

νppMpqqp
ik ´ 1q “ νppMpqqk ´ 1q ` i.

Proof. Denote v “ νppMpqqk ´ 1q and Mpqqk ´ 1 “ pvM1. Then M1 is not a
multiple of p.

Clearly we only need to prove case i “ 1, and then the result follows immediately
from induction. It’s sufficient to prove that

νppMpqqpk ´ 1q “ v ` 1.

In fact,

Mpqqpk ´ 1 “ ppvM1 ` 1qp ´ 1

“

p
ÿ

j“1

ˆ

p

j

˙

pvjpM1qj

“ pv`1M1 `

p
ÿ

j“2

ˆ

p

j

˙

pvjpM1qj .

Since νppp
v`1M1q “ v ` 1, now we only need to prove that νp

´

`

p
j

˘

pvjpM1qj
¯

ą

v ` 1 when j ě 2. When j “ 2, since p is odd, νp

´

`

p
j

˘

¯

ě 1 by Theorem 2.8, thus

νp

ˆˆ

p

2

˙

p2vpM1q2
˙

ě 1` 2v ą v ` 1.

When j ě 3, we have

νp

ˆˆ

p

j

˙

pjvpM1qj
˙

ě jv ě 3v ą v ` 1.

Therefore

νppMpqqpk ´ 1q “ v ` 1,

as desired. �

Proof of Lemma 4.2.2. We prove by induction on k.
For the base case, by the definition of l and M , we know that P divides xM´1 in

Z{plZ but not in Z{pl`1Z. By Lemma 4.7, this implies that the remainder of qM´1
divided by P has p-valuation l. In other word, νppMpqqM ´ 1q “ l in Zrqs. Apply
Lemma 4.12, νppMpqqpM ´ 1q “ l ` 1, and MpqqpM ´ 1 acts as the multiplication
by qpM ´ 1, and in particular, acts as the multiplication by the remainder L of
qpM ´ 1 divided by P in Zrqs{P pqq. Thus the remainder must be a mutltiple of
pl`1, by Lemma 4.7. So pM P Kl`1, implying that pM is a multiple of δp,P pl` 1q,
by Proposition 4.10. By Corollary 4.11, δp,P pl ` 1q is a multiple of M and doesn’t
equal to M ; since it’s also a divisor of pM , it has to be pM .
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For the general cases, the process is essentially the same. By Lemma 4.12,

νppMpqqp
kM ´1q “ l`k, thus pkM P Kl`k. So the pl`kq-th generator is a divisor

of pkM and a multiple of the pl`k´1q-th divisor, pk´1M , by inductive assumption.

Since νppMpqqp
k´1M ´ 1q “ l ` k ´ 1, pk´1M is not in Kl`k; thus the pl ` kq-th

generator can only be pkM . Induction is completed. �

Now we have enough knowledge to explain the value of dn even further as follows.

Theorem 4.13. If n is not a multiple of M , then dn “ 0; if n is a multiple of M ,
then dn “ νppn{Mq ` l.

Proof. When n is not a multiple of M , then n R K1 since n is not a multiple of
δp,P p1q, by Proposition 4.10. So dn ă 1, thus dn “ 0.

When n is a multiple of M , suppose that v “ νppn{Mq. Then M is a multiple of
pvM “ δp,P pl`vq and M is not a multiple of pv`1M “ δp,P pl`vq, by Lemma 4.2.2.
Thus n is in Kl`v but not Kl`v`1, by Proposition 4.10. So l ` v ď dn ă l ` v ` 1,
implying that dn “ l ` v. �

Now the value of dn is completely described, we may prove Theorem 4.2.

4.3. Proof of Theorem 4.2.

Proof of Theorem 4.2. By Proposition 2.14, we only need to show that

ZpWqpRq{P pqqq »
N´l
ÿ

i“1

piRrraMpN´l´i ,ra´MpN´l´i ,rbMpN´l´i ,rb´MpN´l´isrqs.

The isomorphism map is

φ :
ÿ

i,j

zija
ibj ÞÑ

ÿ

i,j

zijra
i
rbj .

Step 1. We first show that φ is a bijection.
By Theorem 4.13, when i is not a multiple of M , di “ 0, and thus the ring

pN´diWqpRq
piqrqs “ pNWqpRq

piqrqs

is 0 as a subring of Z{pNZra, bsrqs.
On the other hand, when i is a multiple of M , suppose that i “Mpvi1 where i1

is coprime to p. Then ring

pN´diWqpRq
piqrqs “ pN´v´lWqpRq

ppvMi1qrqs

is apparently a subring of

pN´v´lWqpRq
ppvMqrqs “ pN´dδp,P pp

vMqWqpRq
ppvMqrqs.

By Theorem 4.6, we have

8
ÿ

i“0

pN´diWqpRq
piqrqs “

¨

˝

ÿ

M -i
pN´diWqpRq

piqrqs

˛

‚`

¨

˝

ÿ

M |i

pN´diWqpRq
piqrqs

˛

‚

“ 0`
N´l
ÿ

v“1

ÿ

i, where νppi{Mq“v

pN´diWqpRq
piqrqs

“

N´l
ÿ

v“1

pN´l´vWqpRq
ppvMqrqs.
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For the same reason as the proof of 3.1 and Proposition 2.14, φ is a bijection from

N´l
ÿ

v“0

pN´l´vWqpRq
pMpvqrqs

to
N´l
ÿ

i“1

piZ{pNZrraMpN´l´i ,ra´MpN´l´i ,rbMpN´l´i ,rb´MpN´l´isrqs.

Step 2. we then show that φ preserves addition, multiplication, and multiplica-
tive identity.

Following the same procedure as the proof of Theorem 3.1, we only need to show
that

zija
ibjz1kla

kbl “ zijz
1
kla

i`kbj`l,

when
ř

zija
ibj and

ř

z1ija
ibj are in the center, which implies z1kl is a multiple of

pN´dk . This means that z1kla
k is in the center, so

zija
ibjz1kla

kbl “ zija
ibjz1kla

kbl “ zija
iz1kla

kbjbl “ zijz
1
kla

i`kbj`l.

Combine both steps, we proved that φ is an isomorphism. �

4.3.1. Postscipt. We would like to remark some properties about MpP q.

Proposition 4.14. MpP q is a divisor of pdegP ´ 1.

Proof. MpP q is by definition the smallest k such that P divides xk ´ 1 in Fp.
Consider the field extension Fppζq where ζ is a root of P . Then k is the order of ζ
in Fppζq. Then Fppζq » Fprxs{P pxq as a multiplicative group is a subgroup of K
with underlying set

 

a0 ` a1ζ ` ¨ ¨ ¨ ` adegP´1ζ
degP´1|pa0, . . . , adegP´1 P FdegP

p zt0u
(

and canonical multiplication, with order pdegP ´ 1. Thus the cardinality of Fppζq
is a divisor of pdegP ´ 1, and the order of ζ is a divisor of Fppζq. So k is a divisor
of pdegP ´ 1. �

This is a direct result from the Galois theory in finite field. Its simple corollary
is as follows.

Corollary 4.15. MpP q is never a multiple of p, as long as P is not a constant.

4.4. When P has no double root. When P has no double root, we may also
compute the center WqpRq{P pqq. However, the Witt vector construction is not
found here. The proof uses Proposition 2.12.

Lemma 4.16. When P has no double root in Fp, we may write P “
śk
i“1 Pi

pmod pN q where Pi P Z{pNZ are distinct irreducible polynomials modulo p.

Proof. Induct on k. When k “ 1, the result is obvious since Fp is a unique fac-
torization domain and P has no double roots, so all the prime factors of P are
irreducible and distinct.

For the general cases, suppose that we can write P ”
śk
i“1Qi pmod pN´1q

where Qi are distinct and irreducible in Fp. Suppose that T P Zrqs is a polynomial
satisfying

P ´
k
ź

i“1

Qi ” pN´1T pmod pN q.
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Then by Bezout’s Theorem, since

k

gcd
i“1
pP {Qiq “ 1

in Fp, there exists polynomial B1, . . . , Bk P Zrqs such that

k
ÿ

i“1

Bi
P

Qi
” 1 pmod pq.

Now consider (since N ě 2, 2N ´ 2 ě N)

k
ź

i“1

pQi ` p
N´1BiT q ”

k
ź

i“1

Qi ` p
N´1

k
ÿ

i“1

BiT
P

Qi
` p2N´2Θ

”

k
ź

i“1

Qi ` p
N´1T

” P pmod pN q,

where Θ is some integer coefficient polynomial of q. Let Q1i “ Qi ` pN´1BiT , we

know that P “
śk
i“1Q

1
i in Z{pNZ, where Qi are distinct and irreducible modulo p

since they are congruent to Q modulo pN´1. Induction is completed. �

Proposition 4.17. Polynomials Q1, Q2, . . . , Qk P Zrqs are pairwisely distinct and
all irreducible in Fprqs. If Q is divided by Qi in Z{pNZrqs for every 1 ď i ď k, then

Q is divided by
śk
i“1Qi in Z{pNZrqs.

Proof. Induct on k. When k “ 2, the result is implied by Proposition 2.12. For

general cases, by inductive assumption, we know that both
śk´1
i“1 Qi and Qk divide

P ; they are coprime and Qk is irreducible in Fp. By Proposition 2.12, Qk
śk´1
i“1 Qi “

śk
i“1Qi divides P . Induction is completed. �

Theorem 4.18.

ZpWqpZ{p
NZq{Qpqqq “

k
č

i“1

rZpWqpZ{p
NZq{Pipqqq,

where rZpWqpZ{pNZq{Pipqqq consists of all the elements that are in ZpWqpZ{pNZq{Pipqq
modulo Pi.

Proof. By Theorem 4.3, the center is isomorphic to

8
ÿ

i“0

SP,pn,iWqpRq
piqrqs.

By definition SP,pN ,i consists of all the polynomial Q1 such that P divides Q1pxi´1q,

which is equivalent to, by Proposition 4.17, that Pj divides Q1pxi´1q for all j. Thus

SP,pN ,i “
Şk
j“1 SPi,pN ,i. And this implies the result. �
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5. Roots of Unity

We dedicate this section to thoroughly answer Roman Bezrukavnikov’s ques-
tion. Namely, the case when q is a pn-th root of unity. We solve the center of

WqpZ{pNZq{pqp
n

´ 1q for P both being qp
N

´ 1 and Φpnpqq.

Theorem 5.1. The center of WqpZ{pNZq{pqp
n

´ 1q is
n
ÿ

i“0

qp
n

´ 1

qpi ´ 1
WqpRq

ppiqrqs.

Theorem 5.2. The center of WqpZ{pNZq{pΦpnpqqq is
˜

n´1
ÿ

i“0

pN´1 ¨
Φpnpqq ´ p

qpi ´ 1
WqpRq

ppiqrqs

¸

`WqpRq
ppnqrqs.

Proof of Theorem 5.1. Let P pqq “ xp
n

´ 1.
Consider that zij P Sp,P,k if and only if

pzijpq
k ´ 1qq P pqp

n

´ 1q

as ideals of Z{pNZrqs for all i, j. By Lemma 4.4, we have

pzijpq
gcdpk,pnq ´ 1qq “ pzijpq

k ´ 1q, zijpq
pn ´ 1qq Ă pqp

n

´ 1q.

Denote gcdpk, pnq “ pt. Note that qp
n
´1

qpt´1
“ 1` qp

t

` q2pt ` ¨ ¨ ¨ ` qp
n
´pt is a monic

polynomial. And if pzijpq
gcdpk,pnq ´ 1qq P pqp

n

´ 1q, we have

ppzij ´Qpqqp
qp
n

´ 1

qpt ´ 1
qpqp

t

´ 1qq P pqp
n

´ 1q

for any polynomial Q. So we can apply Euclidean division to zij divided by qp
n
´1

qpt´1

and assume that zij is a polynomial of q with degree less than pn ´ pt. Then

zijpq
t ´ 1q has degree less than pn. Since it’s in pqp

n

´ 1q, and qp
n

´ 1 is monic, it

must be 0. It’s easy to see that monic qp
t

´ 1 is not a zero divisor, so zij must be

zero. So zij must be a multiple of qp
n
´1

qpt´1
.

Conversely, if zij is a multiple of q
pn
´1

qpt´1
, zijpq

k´1q is clearly a multiple of qp
n

´1.

So Sp,P,k consists of all the polynomial that is multiple of qp
n
´1

qgcdpk,pnq´1
. By Theorem

4.3, the center is
n
ÿ

i“0

qp
n

´ 1

qpi ´ 1
WqpRq

ppiqrqs,

as desired. �

Proof of Theorem 5.2. Let P “ Φpn . Similar to the proof of Theorem 5.1, We only
need to consider z such that

pzpqk ´ 1qq P pΦpnpqqq

as ideals of Z{pNZrqs. Thus

pzpqk ´ 1q, zpqp
n

´ 1qq P pzpqk ´ 1q, z ¨ Φpnpqqq P pΦpnpqqq.

By Lemma 4.4,

pzpqk ´ 1q, zpqp
n

´ 1qq “ pzqpqgcdppn,kq ´ 1q.
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Denote gcdpk, pnq “ pt pt ď nq. Then

I “ pzqpqp
t

´ 1,Φpnpqqq P pΦpnpqqq.

Case 1. When t ă n, note that
Φpn pqq´p

qpt´1
P Zrqs. We have

p “ Φpnpqq ´ pq
pt ´ 1q ¨

Φpnpqq ´ p

qpt ´ 1
P pqp

t

´ 1,Φpnpqqq.

So

pzqppq P pΦpnpqqq.

Now consider z as a polynomial in Zrqs in a natural way, then we have

pz “ H1Φpn `H2p
N

for some H1, H2 P Zrqs. This implies p|H1; we may write H1 “ pH3, then we have
z “ H3Φpn ` H2p

N´1, so z P pΦpn , p
N´1q as an ideal of Z{pNZrqs. We need to

satisfy

pzqpqp
t

´ 1q “
`

H3Φpn `H2p
N´1

˘

pqp
t

´ 1q P pΦpnpqqq

which is equivalent to

pH2p
N´1qpqp

t

´ 1q “ ppN´1qpH2qpq
pt ´ 1q P pΦpnpqqq.

Therefore

pH2qpq
pt ´ 1q P pΦpnpqqq

as ideals of Fprqs. Since Fprqs is a UFD, and
Φpn pqq´p

qpt´1
¨ pqp

t

´ 1q “ Φpnpqq in Fp.

We have H2 P

´

Φpn pqq´p

qpt´1

¯

.

We have

z “ pN´1H
Φpnpqq ´ p

qpt ´ 1

in WqpZ{pNZq{pΦpnpqqq for some H.

If conversely z is a multiple of pN´1 Φpn pqq´p

qpt´1
, simple calculation yields that

zppk ´ 1q is a multiple of P .

So Sp,P,k consists of all the multiples of pN´1 Φpn pqq´p

qpt´1
.

Case 2. When t “ n. Then k is a multiple of pn. So qk ´ 1 is a multiple of
Φpnpqq. Regardless the value of z, zΦpnpqq is a multiple of P . So Sp,P,k consists of
all the polynomials.

Combine cases 1 and 2, and Theorem 4.3, we know that the center is
˜

n´1
ÿ

i“0

pN´1 ¨
Φpnpqq ´ p

qpi ´ 1
WqpRq

ppiqrqs

¸

`WqpRq
ppnqrqs,

as desired. �

6. The First q-Weyl Algebra

We recall the definition of the first q-Weyl algebra.

Definition 6.1. Let the first q-Weyl algebra over a ring R be

W p1q
q pRq “ Rxx, yy{pyx´ qxy ´ 1q.
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Now we recall the known homomorphism between the first q-Weyl algebra and
Weyl algebra, which is an isomorphism when P p1q is not a multiple of p (see e.g.
[HL17]).

Proposition 6.2. Let P P Zrqs be a polynomial such that P p1q ‰ 0. Then

WqpRq{P pqq »W p1q
q pRq{P pqq.

And the isomorphism map is given by

f : a ÞÑ x, b ÞÑ pq ´ 1qxy ´ 1.

Proof. We may do Euclidean division to P pqq by q´ 1 in Zrqs, then we get P pqq “
pq ´ 1qKpqq ` L, where L is a constant. Plug in q “ 1 we get L “ P p1q is not a
multiple of p. So L has an inverse, L´1, in Z{pNZ. Thus

´L´1pq ´ 1qKpqq “ 1

in Z{pNZrqs. So q ´ 1 has an inverse.
We now construct the isomorphism map f : a ÞÑ x, b ÞÑ pq ´ 1qxy ´ 1. To show

that this is a homomorphism, it’s sufficient to prove that fpbqfpaq “ qfpaqfpbq.
This is true because

fpbqfpaq ´ qfpaqfpbq “ ppq ´ 1qxy ` 1qx´ qxppq ´ 1qxy ` 1q

“ pq ´ 1qxpyxq ` x´ qpq ´ 1qx2y ´ qx

“ pq ´ 1q
`

xpqxy ` 1q ´ qx2y ´ x
˘

“ 0.

On the other hand, we may define inverse of homomorphisms f as

f´1 : x ÞÑ a, y ÞÑ pq ´ 1q´1a´1pb´ 1q.

Obviously they are respectively the inverse of f´1. Therefore f1 and is an isomor-

phism map between WqpRq and W
p1q
q pRq, as desired. �

Corollary 6.3. For any polynomial P such that P p1q is not a multiple of p, we
have

ZpWqpRq{P pqqq » ZpW p1q
q pRq{P pqqq.

If P is monic and irreducible modulo p, we have

ZpW p1q
q pRq{P pqqq » WN´lpP qpRrra

MpP q,rbMpP qsqrqs.

6.1. The center of the first Weyl algebra. In this section we show that the
underlying sets of the first Weyl algebra and the Weyl algebra has a natural bijection

ÿ

i,j

zijx
iyj ÞÑ

ÿ

i,j

zija
ibj .

Proposition 6.4. If P p1q is not a multiple of p and pq´ 1qQpqq is divided by P pqq
in Z{pNZ, then P divides Q in Z{pNZ.

Proof. Induct on N . When N “ 1, since P p1q is not a multiple of p, P pxq is coprime
with x´ 1 in Fprqs. Thus P must divide Q.

For the general cases, we may first do the Euclidean division to Q and P , and
then we may assume that degQ ă degP . Since P divides Q in Z{pN´1Zrqs, if Q is
non-zero in Z{pN´1Zrqs, there exists a Q1 P Z{pN´1Zrqs such that Q1P “ Q; look
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at the leading coefficient and degree, and we obtain a contradiction. Thus Q is a
multiple of pN´1. Thus we know that P divides Q{pN´1 in pq´ 1qZ{pZrqs. This is
reduced to the base case. Induction is completed. �

Theorem 6.5. When P p1q is not a multiple of p, the map

φ :
ÿ

i,j

zijx
iyj ÞÑ

ÿ

i,j

zija
ibj .

is a bijection from

ZpW p1q
q pZ{pNZq{P pqqq Ñ ZpWqpZ{p

NZq{P pqqq

.

Proof. By Lemma 2.5, z is in the center ring of W
p1q
q pZ{pNZq{P pqq if and only if

it commutes with both x and y. By Proposition 2.4, we may write

z “
ÿ

iPZě0,jPZ

zijx
iyj .

By Lemma 2.6,

xz “
ÿ

iPZě0,jPZ

zijx
i`1yj

and

zx “
ÿ

i,jPZ

ˆ

qjzij `
qj`1 ´ 1

q ´ 1
zi`1j`1

˙

xi`1yj .

Thus z commutes with a if and only if

ÿ

i,jPZ

ˆ

pqj ´ 1qzij `
qj`1 ´ 1

q ´ 1
zi`1j`1

˙

xi`1yj “ 0.

By Proposition 2.4, the equation above holds if and only if

pqj ´ 1qzij `
qj`1 ´ 1

q ´ 1
zi`1j`1 “ 0

in ring Z{pNZrqs{P pqq for all i, j. Thus it’s equivalent to that P pqq divides pqj ´

1qzij `
qj`1

´1
q´1 zi`1j`1 in Z{pNZrqs.

Now we prove zij P SP,pn,j by induction on j. Denote θij “
qj´1
q´1 zij , then

pq ´ 1qθij ` θi`1j`1 “ 0 for all i, j. When j “ ´1, we know θi0 “ 0 since θi,´1

doesn’t exist. Base case is done.
For the general cases, the result is immediate since pq ´ 1qθi´1j´1 ` θij “ 0 and

θi´1j´1 “ 0. Induction is completed.

Thus θij “ 0 in Z{pNZrqs{P pqq, so qj´1
q´1 zij is a multiple of P in Z{pNZrqs. So

pqj ´ 1qzij is a multiple of P and by definition zij P SP,pn,j .
On the other hand, we prove the converse is true. Namely, if zij P SP,pn,j , then

z is a center. Note that zij P SP,pn,j is equivalent to P dividing pqj ´ 1qzij in
Z{pNZrqs. By Proposition 6.4, this is equivalent to P dividing θij . The rest of the
proof above can be reversed without any complication.

So

z1 “
ÿ

iPZě0,jPZ

zijx
iyj P ZpW p1q

q pZ{pNZq{P pqqq
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if and only if

z “
ÿ

iPZě0,jPZ

zija
ibj P ZpWqpZ{p

NZq{P pqqq.

So φ is indeed a bijection. As desired. �
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