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Abstract

Jiang conjectured that the α-invariant for n-dimensional K-semistable
smooth Fano varieties has a gap between 1

n and 1
n+1 , where 1

n+1 can
only be achieved by projective n-space. Assuming a weaker version of
Ewald’s conjecture, we prove this gap conjecture in the toric case. We
also prove a necessary and sufficient classification for all possible val-
ues of the α-invariant for K-semistable smooth toric Fano varieties by
providing an explicit construction of the polytopes that can achieve
these values. This provides an important step towards understanding
the types of polytopes that correspond to particular values of the α-
invariant; in particular, we show that K-semistable smooth Fano poly-
topes are centrally symmetric if and only if they have an α-invariant
of 1

2 . Lastly, we examine the effects of the Picard number on the α-
invariant, classifying the K-semistable smooth toric Fano varieties with
Picard number 1 or 2 and their α-invariants.
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1 Introduction

One of the most important questions in differential geometry asks which
manifolds admit a Kähler-Einstein metric. In the case where a manifold
does admit a Kähler metric, there are three different cases to be considered
depending on the first Chern class, an important classification related to
complex vector bundles. When the first Chern class is negative, the manifold
is considered general type, and it was proved by Aubin [2] and Yau [1] that
general type Kähler manifolds all have a Kähler-Einstein metric. When the
first Chern class is zero, these manifolds are called Calabi-Yau, and Yau [1]
resolved this case and proved that all Calabi-Yau Kähler manifolds also all
have Kähler-Einstein metrics. This is related to the Calabi conjecture, and
Yau won the Fields medal in part for this work. The last case, when the first
Chern class is positive, is the most difficult to deal with. These manifolds
are called Fano.

It is not true that all Fano manifolds with a Kähler metric also admit a
Kähler-Einstein metric. In fact, in the Fano case, the Kähler-Einstein metric
was proved to be equivalent to a condition in algebraic geometry, called K-
stability. This was a result of the Yau-Tian-Donaldson conjecture, which was
recently resolved by Chen, Donaldson, and Sun [10].

As such, questions regarding K-stability were tied with geometric invari-
ant theory, and work with stability conditions could be used to calculate
whether a variety admits a Kähler-Einstein metric.

To better understand the manifolds and evaluate whether varieties ad-
mit the Kähler-Einstein metric, it is important to manipulate various nec-
essary or sufficient conditions on varieties that allow determination of the
K-stability of a variety. Tian [9] introduced the α-invariant, which gives a
sufficient numerical condition on whether a variety has a Kähler-Einstein
metric.

In some sense, the α-invariant measures the worst singularities that can
lie on a variety, where singularities are points are abrupt points that disrupt
the “smoothness” of a variety. Compared to other invariants related to K-
stability, the α-invariant is relatively easy to calculate, and it translates
nicely to a combinatorial condition when considering toric varieties.

In particular, this paper focuses on K-semistable smooth toric Fano va-
rieties, a type of variety which gives way to a combinatorial formulation of
the α-invariant. Applying K-semistability to the formulation is a novel tech-
nique that has enabled us to deduce important information on the behavior
of the α-invariant.

The α-invariant is inherently tied to K-semistability. Tian [9] showed
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that X admits a Kähler-Einstein metric if α(X) > n
n+1 . Fujita [7] provided

the equality case, showing that if α(X) = n
n+1 , then X is K-stable and thus

admits Kähler-Einstein metrics.
When considering smoothness with regard to K-semistability, other in-

equalities can also be established relating the α-invariant to K-semistability.
In fact, Jiang [8] proved that for small α-invariants X had to be a projective
variety.

Theorem 1.1 ([8]). If X is a K-semistable smooth Fano variety and α(X) ≤
1

n+1 , then X ∼= Pn.

Since α(Pn) = 1
n+1 , this means that 1

n+1 is the minimum possible value
of the α-invariant for smooth K-semistable varieties.

Furthermore, Jiang made the following conjecture.

Conjecture 1.2 ([8]). If X is a smooth K-semistable Fano variety and
α(X) < 1

n , then X ∼= Pn.

This conjecture would imply that there is a gap between 1
n+1 and 1

n for
the α-invariant on smooth K-semistable Fano varieties.

Our focus is on toric varieties, or varieties that contain a torus as an
open dense subset and have the torus action act on the variety. Toric va-
rieties are a crucial type of algebraic variety because they often serve as a
testing ground and an important case of theorems in algebraic geometry.
We use the polytopes of toric varieties to investigate the behavior of the
α-invariant. Many common examples of varieties are toric, including affine
space, projective space, and the products of projective space. we present the
background of toric varieties and polytopes in Section 2.

In this paper, we use combinatorial methods to show that Jiang’s con-
jecture is true for toric varieties, assuming a weaker form of the following
conjecture (Ewald’s conjecture).

Conjecture 1.3 ([6]). Up to a unimodular transformation, all vertices of a
Fano polytope have coordinates in {−1, 0, 1}. The polytope also contains all
of the standard basis vectors ei.

A unimodular transformation is a transformation by a matrix with deter-
minant ±1. This is needed because it preserves the volume of the polytope.
Essentially, this means that all vertices of a Fano polytope can be trans-
formed inside a cube with side length 2, where one specific face maps to the
standard basis.
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In fact, we only need all vertices to have coordinates no less than −1, a
weaker version of Ewald’s conjecture. We describe the relationship between
toric varieties and polytopes in Section 2.

Using this weakened conjecture and combinatorial inequalities, we prove
Jiang’s conjecture for the toric case.

Theorem 1.4. Let P be a K-semistable smooth Fano polytope. Assume
Conjecture 1.3 is true. Then, if XP , the variety corresponding to P , satisfies
XP = Pn, an α-invariant of 1

n+1 can be achieved by taking a dot product
between a point on P and a point on P ◦ can be achieved. Otherwise, a
polytope in n-dimensional space must have an α-invariant greater than or
equal to 1

n .

In addition, we provide an explicit classification of the α-invariants for
these varieties, showing a construction for each possibility.

Theorem 1.5. Let X be a n-dimensional K-semistable toric smooth Fano
variety. The possible values of α(X) for X are exactly 1

2 ,
1
3 , . . . ,

1
n+1 .

I can also explicitly pinpoint the varieties that satisfy α(X) = 1
2 , showing

that it exactly corresponds to polytopes that are centrally symmetric, which
means it is the same upon reflection about the origin. This is a powerful
necessary and sufficient condition that connects an important property of
polytopes to a particular value of the α-invariant.

Theorem 1.6. Let P be a K-semistable smooth Fano polytope. Then, we
have that α(P ) = 1

2 if and only if P is centrally symmetric.

I also perform computations based on the Picard number Pic(X), or
the rank of the Picard group of X. The Picard group denotes the group
of isomorphism classes of line bundles that lie on X, and in the polytope
formulation of toric varieties, it is n less than the number of vertices of
the polytope. Casagrande [3] showed that Pic(X) ≤ 2n if n is odd and
Pic(X) ≤ 2n − 1 if n is even. We prove the following theorem specifically
with polytopes of small Picard number, connecting the Picard number to
possible values of the α-invariant.

Theorem 1.7. Let X be a K-semistable smooth toric Fano variety. Then, if
Pic(X) = 1, there is one unique polytope with α(X) = 1

n+1 . If Pic(X) = 2,

there are
⌊
n
2

⌋
different varieties corresponding to the α-invariants of

1

n
,

1

n− 1
, . . . ,

1⌈
n
2

⌉ .
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1.1 Outline of the paper

We cover the background of toric varieties and the use of polytopes in
Section 2. In Section 3, we show the main result: that Jiang’s conjecture
can be proven true assuming Ewald’s conjecture. In Section 4 we provide
examples of varieties that satisfy certain α-invariants and we prove Theorem
1.5 and Theorem 1.6, classifying the attainable values for the α-invariant in
terms of polytopes. In Section 5, we prove Theorem 1.7, which gives a result
on the α-invariant of varieties with small Picard number.

2 Preliminaries

Throughout this paper, we will be working over the complex field C. An
affine variety on Cn is defined by the solution set of the polynomial equations
f1 = f2 = · · · = fk = 0, for some k. A projective variety is similarly defined
over the n-dimensional projective space Pn, with homogeneous equations.

2.1 Toric Varieties

I will begin by giving a brief introduction to toric varieties. Toric va-
rieties allow for the overlap between algebraic geometry and the geometry
of polyhedra. Just as affine varieties fitting together in order to construct
algebraic varieties, cones are fit together to form fans and polytopes when
considering the toric case.

Definition 2.1. A toric variety X is an algebraic variety in which there
exists an open dense embedding from (C×)n to X and where the action
from (C×)n to (C×)n extends to a morphism from (C×)n to X.

One can visualize toric varieties as those that can contain a torus inside
it. The way we will work with affine toric varieties is by using cones.

Definition 2.2. A cone σ ∈ Rn consists of the set of points
{λ1u1 + · · ·+ λlul ∈ Rn | λ1, . . . , λl ≥ 0},

where l is a positive integer and u1, . . . ,ul are lattice points in Zn. A face
of a cone is the intersection of σ with some linear form {l = 0}. An edge
of a cone is a face with dimension 1. A cone is called strongly convex if
σ ∩ (−σ) = {0}.

A cone is smooth if it is generated by a basis of points in Zn, and sim-
plicial if it is generated by points in Rn. The dual of a cone σ is the set
σ∨ = {m ∈ Rn |m · u ≥ 0, ∀u ∈ σ}, where m · u denotes the dot product.
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Proposition 2.1 (Correspondence between cones and affine toric varieties).
Given a strongly convex cone σ ∈ Rn, σ∨ ∩Zn is a finitely generated lattice.
Then, the affine toric variety associated with a cone σ is Uσ = Spec C[σ∨ ∩
Zn].

Here, Spec(R) denotes the spectrum of the commutative ring R. This
shows that the building blocks of toric varieties, affine toric varieties, corre-
spond directly to cones, which will be used to build polytopes.

Example 2.1. I present an example of a simplicial cone that is not smooth.
Consider the cone σ ∈ C2 generated by e2 and 2e1−e2. It generates all points
with R coefficients, but not Z coefficients, because e1 cannot be formed as
a linear combination of e2 and 2e1 − e2 with integer coefficients.

In order to find Uσ, we take the dual of σ and consider that Spec C[σ∨∩
Zn] is generated by the points (1, 0), (1, 1), and (1, 2), which correspond to
the polynomials x, xy, and xy2, respectively. Then,

Uσ = Spec C[x, xy, xy2] = Spec C[u, v, w]
/

(v2 − uw).
It is well known that this has a singularity that is not smooth; it is known

as the ordinary double point A1 [5].

This directly connects cones to affine toric varieties. It can be seen that
just like affine toric varieties can be glued together to form toric varieties,
cones can be glued together to form objects called fans. Properties that
apply to cones, such as smoothness, will also still hold when glued together.

Definition 2.3. A fan Σ is a finite collection of cones in Rn such that each
of the cones is strongly convex and rational, and the intersection of two
cones is a face of both cones.

There is a variety XΣ created by gluing together the affine varieties Uσ
for all of the cones σ along their intersections. Every fan corresponds to a
normal toric variety, and every normal toric variety has a corresponding fan.

Cones are shown to directly correspond to toric varieties by the Orbit-
Cone Correspondence [4], which states that there is a bijective correspon-
dence between cones on a fan Σ and the torus actions, or orbits, on its toric
variety XΣ.

2.2 Polytopes

In this section, we introduce polytopes, the central combinatorial struc-
tures analyzed in this paper. This polytope construction is equivalent to
using the fan notation, and it directly allows us to perform calculations on
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toric varieties using polytope geometry. As such, one can think of every
polytopes as directly corresponding to a toric variety.

Definition 2.4 ([4]). A lattice polytope P is the convex hull of a finite set
of points S in Zn, or

P = Conv(S) =

{∑
u∈S

λuu | λu ≥ 0,
∑
u∈S

λu = 1

}
.

We will be considering polytopes in dimension n, which means there is
no affine subspace of Zn that contains P . A face of the polytope is defined
as the nonempty intersection of P and a hypersurface H such that P is
contained in one of the closed half-spaces defined by H; in other words,
a certain part of the outside of P , much like vertices, edges, and faces of
polyhedra are considered in 3 dimensions.

Faces of dimension 0 are called vertices, faces of dimension 1 are called
edges, and faces of dimension n − 1 are called facets. We assume that the
polytopes considered contain the origin as an interior point; in fact, because
of the smooth Fano condition, the origin is the only interior point of P .
We denote the vertex set of P as V(P ); this set is important because our
computations of the α-invariant center around the vertices of a polytope.

Throughout this paper, we will denote points in Rn as (x1, x2, . . . , xn).
As we am considering lattice polytopes, these points will also always lie in
Zn.

Similarly to how cones have duals, we can define the dual polytope of P ,
in terms of the intersection of half spaces determined by the vertices of P .

Definition 2.5. The dual polytope P ◦ to a polytope P is defined by
P ◦ = {u ∈ Rn | 〈u, v〉 ≥ −1 ∀v ∈ V(P )}.

Each point on P corresponds to a hyperplane on P ◦, and vice versa;
hence the duality. It is also possible to confirm that the dual of P ◦ is P ; in
other words, the dual of the dual is the original polytope. The dual polytope
will be necessary to convert the Fano condition to polytopes and also in order
to define the α-invariant using polytope geometry.

Example 2.2. I give a few examples of toric varieties and their correspond-
ing polytopes and dual polytopes.

1. Projective space Pn corresponds to the polytope with vertices at the
point (−1,−1, . . . ,−1) and the standard basis points ei, which consists
of only a 1 on the ith coordinate. The dual polytope has one vertex at
(−1,−1, . . . ,−1) and other vertices at the n distinct permutations of
(n,−1,−1, . . . ,−1).
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2. The variety P1 × P1 × · · · × P1, consists of the product of n copies of
the projective line P1. The polytope corresponding to this variety has
vertices at the standard basis points ei as well as their negatives −ei.
The dual polytope is thus defined by the hyperplanes xi = ±1 for all
coordinates xi, and it has vertices at the points with all coordinates
±1.

(a) P3 (b) P1 × P1 × P1

Figure 1: The polytopes of these two varieties (black) along with their dual poly-
topes (red)

Analyzing the relationship between polytopes and their duals will be
key to evaluating the α-invariant. All properties we consider, including K-
semistability and smooth Fano, hold true for all equivalent polytopes corre-
sponding to a particular variety.

I can provide a combinatorial formulation of those other properties seen
in varieties and translate them to polytopes. A Fano toric variety corre-
sponds to a Fano polytope, which we will define. The same holds for the
smooth and K-semistable conditions we assume of varieties.

Definition 2.6. A reflexive lattice polytope is one whose dual is also a
lattice polytope.

It turns out that Fano varieties correspond to reflexive polytopes, so
we can call these Fano polytopes. When applying the smooth condition, we
have that a smooth Fano polytope in Zn is one in which the vertices of every
facet form an integral basis for Zn.

It is also important to note that the representations shown in Figure
1 are not the only possible representations for those toric varieties. One
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toric variety can correspond to multiple different polytopes, all of which
can be mapped to each other via a linear transformation with determinant
±1. This is because a unimodular transformation preserves the volume of
the polytope, as well as the volume of each individual simplex, or polytope
between the origin and the vertices of a particular facet. A simplex is the
convex hull of n+ 1 points, and it turns out that every simplex with a facet
and the origin in a smooth Fano polytope must have minimal area.

In a smooth Fano polytope, every single simplex has the same volume,
which is the same as the volume of the standard simplex consisting of the
standard basis points ei as well as the origin.

As any integral basis can be mapped to the standard basis via a uni-
modular transformation, we can apply the following proposition:

Proposition 2.2. Every smooth Fano polytope can be mapped into one that
contains the standard basis, defined by e1, e2, . . . , en.

Due to this proposition, we make the assumption that all of the polytopes
we consider contain the standard basis points ei.

In fact, Øbro showed that all smooth Fano polytopes can be bounded in
the following space upon making this type of transformation.

Theorem 2.3 (Øbro [11]). There exists an embedding of the vertex set of
any n-dimensional smooth Fano polytope P into Wn, a set of lattice points,
such that the points in Wn are primitive lattice points (a1, a2, . . . , an) and∑

i ai = a, then −n ≤ a ≤ −1 and:

1. If a = 1, 0 ≤ ai ≤ 1.

2. If a = 0, −1 ≤ ai ≤ n− 1.

3. If a < 0, a ≤ ai ≤ n+ a.

for all 1 ≤ i ≤ n.

This gives a condition and a bound on all smooth toric Fano varieties,
showing that there is, in fact, a finite number of equivalence classes of smooth
Fano varieties.

The last condition we consider in varieties is K-semistability, which fur-
ther narrows down the range of possibilities. K-semistability had not been
significantly addressed for toric varieties, and not in the context of the α-
invariant at all.

Theorem 2.4 ([7]). A polytope P corresponds to a K-semistable toric Fano
variety if and only if its barycenter, or center of mass, is the origin.

9



The computation of the barycenter of general polytopes is difficult, so we
will provide the following proposition that applies to smooth Fano polytopes,
which allows us to evaluate K-semistability purely based on the vertices. It
is the smoothness that allows us to translate K-semistability into a very
powerful condition.

Proposition 2.5. For K-semistable smooth Fano polytopes, the average of
all vertices is the origin, or the barycenter.

Remark. In general, it is not true that the average of the vertices of a
polytope is the same point as its barycenter.

I give an example of these polytopes in the 2-dimensional case.

Example 2.3. There are 16 equivalence classes of reflexive polygons, cor-
responding to Fano toric varieties in 2 dimensions. They are shown in the
Figure 2. Of these, 5 are smooth Fano; they are labeled 3, 4a, 4b, 5a, and 6a.
These are the polytopes such that no edge has more than 2 lattice points.
Three of the smooth Fano polytopes are also K-semistable, and they are
labeled 3, 4a, and 6a.

Figure 2: 2-dimensional reflexive polytopes [4]

I can use the fact that K-semistability and smooth Fano are both strong
conditions, which allows us to analyze the polytopes using combinatorial
tools more easily. It turns out that there are always a finite number of

10



reflexive polytopes, because the reflexivity ensures that the volume of these
polytopes must stay somewhat small.

Another important concept important to varieties is the Picard number,
which very conveniently translates into the combinatorial formulation. It
turns out that Pic(X) = |V(P )| − n. We will investigate the α-invariants of
polytopes with small Picard number using a combinatorial bounding argu-
ment.

Finally, an important class of polytopes is those that are centrally sym-
metric, which means that reflecting all points across the origin gives the
same polytope. These polytopes were studied by Ewald [6] and Øbro [11].

This completes the description of the polytopes we will consider. Now,
we define the α-invariant, our central topic of study, in terms of polytopes
and the tools described in this section. This requires using the dot prod-
uct between points on P and P ◦ in order to assign a numerical value
to the polytopes considered. If we have a point u = (u1, u2, ·, un) and
v = (v1, v2, . . . , vn), then

u · v = u1v1 + u2v2 + · · ·+ unvn.

Proposition 2.6 (α-invariants using polytopes). Given a K-semistable smooth
toric Fano polytope P corresponding to a variety XP and its dual polytope
P ◦, α(XP ) is the smallest possible value of 1

u·v+1 , where u is a vertex of P
and v is a vertex of P ◦.

Since each polytope corresponds to exactly one toric variety, we will
denote α(XP ) as simply α(P ) on the polytope.

This allows us to find the α-invariant purely by considering the vertices
present in P and P ◦. It is also true that under a unimodular transformation,
the α-invariant stays the same, which means our previous assumption trans-
forming the polytopes considered into the standard basis vectors still holds
with the α-invariant. This is because the dot products we use to define the
α-invariant are not altered upon such a transformation. Now we can restate
Conjecture 1.2 in the toric case, by translating conditions on varieties into
conditions on polytopes.

Conjecture 2.7. Given a K-semistable smooth toric Fano polytope P , α(P ) ≥
1
n unless α(P ) = 1

n+1 , in which P must be the polytope corresponding to Pn.

3 Jiang’s Gap Conjecture

In this section, we will assume the following version of Ewald’s conjecture
in order to prove Theorem 1.4.

11



Conjecture 3.1 (Weak Ewald [6]). Up to a unimodular transformation, all
vertices of a Fano polytope have coordinates greater than or equal to −1, and
the polytope also contains all of the standard basis vectors ei.

However, Ewald’s conjecture is not needed for the complete proof; the
first half is not dependent on Ewald’s conjecture.

Now, using these lemmas, we can prove Jiang’s conjecture in the toric
case, in the following form.

Theorem 3.2. Suppose that Conjecture 3.1 is true. If XP , the variety cor-
responding to a polytope P , gives XP = Pn, we can achieve a dot product
of n between a point on P and a point on P ◦. Otherwise, a polytope in n
dimensional space must have a dot product of at most n− 1 between the two
polytopes.

Proof. Consider the point on P which the dot product is the maximum. Take
a unimodular transformation that takes this point to e1 = (1, 0, . . . , 0), and
one of the facets it lies on as e2, e3, . . . , en. Note that this means the rest of
the points on P add up to (−1,−1, . . . ,−1) due to K-semistability.

The point on P ◦ with the greatest first coordinate must have first coor-
dinate at least n. Call this point Z. We want to prove that this only works
if P is the polytope corresponding to Pn.

The steps of the proof are as follows.

1. We claim that all points on P that are not ei must have a dot product
of 0 or −1 with Z. The only way this works is if the sum of the
nonnegative coordinates of Z is at least n. However, we only need to
consider when the first coordinate is n, because it provides the greatest
dot product.

2. We prove using Ewald’s conjecture that the only possibility for Z is
(n,−1,−1, . . . ,−1); none of its coordinates can be 0.

3. We prove that if Z = (n,−1,−1, . . . ,−1), P must be the polytope
corresponding to Pn.

I begin by noting that because we transformed a facet of P to contain
the standard basis vectors ei, this provides a constraint on the location of
the points on P ◦. Recall that the definition of the dual polytope means that
each point on P corresponds to a facet on P ◦, in a way such that the dot
product of all points on P with P ◦ are at least −1.
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This means that each point ei on P defines the hyperplane xi ≥ −1. As
such, points on the dual polytope cannot have coordinates less than −1.

This means we can express Z as Z = (a1, a2, . . . , ak,−1, . . . ,−1,−1) for
some positive integer k, where we can assume without loss of generality that
the −1 coordinates are at the end and ai ≥ 0 for all i.

Consider the point S = (−1,−1, . . . ,−1). We have that S · Z = n− k −∑k
i=1 ai. Also, note that because of the K-semistable condition, the sum of

the non basis points is S. Thus, taking the dot product with Z, we have∑
u6=ei,u∈P

u · Z = S · Z.

It turns out that we can complete step 1 of the proof with the following
lemma:

Lemma 3.3. Let P be a K-semistable smooth Fano polytope. Given any
point on P ◦, the sum of the nonnegative coordinates of that point are at
most n.

Proof. Consider a point Y on P ◦. we will express Y as (b1, b2, . . . , bk,−1, . . . ,−1,−1)
where we can assume without loss of generality that the −1 coordinates are
at the end and bi ≥ 0 for all i.

Since Y is on P ◦, because of the duality condition, it creates a half space
in P , defined by Y · p ≥ −1 for all points p, or

b1x1 + b2x2 + · · ·+ bkxk − xk+1 − · · · − xn ≥ −1.
There are n points that lie on the hyperplane, which is the equality case

of the above inequality, because Y corresponds to a facet on P which must
have n vertices. However, this facet also contains n− k of the basis vectors,
which correspond to et where coordinate t of Y is −1. This means that at
most k of these vectors contribute to the sum of the dot products of Y .

Since we know that the dot product of Y with any point in P is at least
−1, and there are at most k non basis points on p that give a dot product
of −1, we find that ∑

u 6=ei,u∈P
u · Y ≥ −k.

Now, we use the equation
∑

u6=ei,u∈P u · Y = S · Y to get

S · Y ≥ −k =⇒ n− k −
k∑
i=1

bi ≥ −k =⇒ n ≥
k∑
i=1

bi.

This is the inequality we wanted to prove; bi are the nonnegative coor-
dinates of of Y , and we have proved that their sum is at most n.

This lemma can be directly applied to Z, which we put in the form
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(a1, a2, . . . , ak,−1,−1, . . . ,−1). However, we also assume that a1 is at least
n, in order to get a dot product of n. This means that the only possibility
is a1 = n and a2 = a3 = · · · = ak = 0. Otherwise, the dot product could be
at most n− 1.

This also means that the inequality
∑

u∈P u · Z ≥ −k is an equality,
which implies that there are no u 6= ei in P such that u · Z > 0, because
exactly k of them are −1.

Thus, we have shown that Z is of the form (n, 0, 0, . . . , 0,−1,−1, . . . ,−1)
and that for all non basis points u ∈ P , the dot product Z · u is either 0 or
−1. This finishes part 1 of the proof.

For the rest of this proof, we will assume the Conjecture 3.1, or that all
coordinates xi satisfy xi ≥ −1.

Now, we will solve part 2 of the proof. we know that all points other
than the ei have a dot product of 0 or −1 with Z, and the vector sum of
these points is S, with all negative coordinates. This means that there must
be at least one point w on P which has first coordinate −1, since we are
assuming all coordinates have magnitude at most 1.

Then, w ·Z = −n+C2 +C3 + · · ·+Cn, where Ci denotes the dot product
achieved from the ith coordinate. However, due to Ewald’s conjecture, Ci ≤
1 for all i, because the respective term in Z is either −1 or 0, and the
respective coordinate in w is at least −1. Now, we have that

−n+ C1 + C2 + · · ·+ Cn−1 ≤ −n+ (n− 1) = −1
The only way we can get a value of 0 or −1 here is in the equality

case, where Ci = 1 for all i. This means that Z = (n,−1,−1, . . . ,−1), and
w = (−1,−1, . . . ,−1).

Finally, we will prove the following lemma, which gives step 3 of the
proof.

Lemma 3.4. If Z = (n,−1,−1, . . . ,−1) ∈ P ◦, the only possible polytope is
the one corresponding Pn. In other words, the only points on the polytope
are the ei and the point S = (−1,−1, . . . ,−1).

Proof. Assume otherwise, so P is not the polytope corresponding to Pn.
First, we prove that S must lie on the polytope P . This can be done by
considering the facet on P that corresponds to the dual of the point Z,
which must have n vertices. Z defines a hyperplane with equation

nx1 − x2 − x3 − · · · − xn = −1.
Note that this facet must already contain the n− 1 points e2, e3, . . . , en.

The first coordinate of the last vertex must be −1, so that this facet can be
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an integral basis, since the first coordinate of all other points is 0, and the
rest of the points are already connected to e1, with first coordinate 1.

This means that this vertex must satisfy −n −
∑n

i=2 xi = −1, which
means that

∑n
i=2 xi = 1− n. But each xi ≥ −1 by Ewald’s conjecture, so

n∑
i=2

xi ≥ −(n− 1) = 1− n,

with equality only when each xi = −1. Thus, the last vertex on this facet
must be S = (−1,−1, . . . ,−1).

Now, we have proved that P must contain S and the standard basis
points ei. This means it contains at least one other point, because it is
distinct from the polytope for Pn.

Consider a vertex B = (b1, b2, . . . , bn) ∈ P , such that B is not ei or S.
we showed the dot product of any vertex not equal to ei on P and Z is 0
or −1 in Lemma 3.3. However, the product cannot be −1, because there
are already n points with dot product −1 with Z on P ; namely, the facet
consisting of S, e2, e3, . . . , en.

This means that
B · Z = nb1 − b2 − b3 − · · · − bn = 0.

Adding
∑
bi to both sides gives (n + 1)b1 =

∑
bi, so

∑
bi ≡ 0 mod n + 1.

However, we know that −n ≤
∑
bi ≤ 1, so the only possibility is b1 = 0.

This also implies that
∑n

i=2 bi = 0.
Now, notice that it is also true that for all coordinates, we have bi ≥ 1,

and there must be at least one negative bi, so one of the coordinates in B
must be −1. Without loss of generality, let this coordinate be b2. Also, there
must be another odd coordinate, since the total sum is even, so without
loss of generality, let b3 be odd. We can make these assumptions because all
coordinates are interchangeable by symmetry.

Consider the following hyperplane: x1 = 0, x3 +x4 + · · ·+xn = 1. It has
dimension n−1, and it contains the following n−1 points: B, e3, e4, . . . , en.
This means that no other points in P can lie on this hyperplane. This also
means that B is connected to e3, e4, . . . , en.

B is also connected to e1 and S, as e1 and S are the only points with
nonzero first coordinates of 1 and −1, respectively. In fact, this means that
e1 and S are both connected to all other points on P .

Now, we find that B is connected to n other points, forming n different
facets. Consider the facet formed by e1, e4, e5, . . . , en, S, and B. Since we
assumed that b3 was odd, then b2 + b3 must be even. we can see here that in
all points on this facet, x2 + x3 is even. This means that the points on this
facet are not a basis for Zn.
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Thus, we have arrived at a contradiction, since P is smooth Fano, and
we have finished the proof using the fact that this facet must exist and that
its vertices are not a basis.

This concludes the proof of Theorem 3.2. Given a K-semistable smooth
Fano polytope, we can achieve an α-invariant of 1

n+1 if and only if the
polytope P corresponds to Pn, and for all other polytopes, the α-invariant
is at least 1

n .

4 Classification of the α-invariant

In this section, we will not assume Ewald’s Conjecture. we still adopt the
notion that all polytopes contain the standard basis, which works because it
is possible to map any facet to the standard basis in a smooth Fano polytope.

First, we will prove a theorem that evaluates the α-invariant for a certain
type of polytopes with no positive coordinates outside of the standard basis
ei.

Theorem 4.1. Consider a partition cj of n, where
∑

1≤j≤m cj = n and
m is the number groups in the partition. Then, consider a set of points Dj

where point Dj has cj coordinates of −1, and no two Dj both have the same
coordinate as −1. Take the polytope P with the standard basis ei as well
as these points Dj. Then, P is a K-semistable smooth Fano polytope that
satisfies α(P ) = 1

max(cj)+1 , where the sum is taken over the m groups of the
partition.

Proof. I begin with an example to demonstrate this construction. Consider
n = 7 and let the partition be c = (3, 2, 1, 1). Then, we would have D1 =
(−1,−1,−1, 0, 0, 0, 0), D2 = (0, 0, 0,−1,−1, 0, 0), D3 = (0, 0, 0, 0, 0,−1, 0),
D4 = (0, 0, 0, 0, 0, 0,−1). This polytope satisfies α(P ) = 1

4 because the point
(3,−1,−1, 2,−1, 1, 1) would lie on the dual P ◦ and it is possible to prove
that no point with a coordinate greater than 3 does.

Now, we proceed to the proof that this construction always yields a K-
semistable smooth Fano polytope. Clearly, it is always smooth Fano; all of
the Dj sum to S = (−1,−1, . . . ,−1). In order to show that it is smooth
Fano, we need to show that each facet is an integral basis for Zn. It actually
turns out that we can show that any set of n linearly independent points
from this set form an integral basis.

I can do this by considering each individual Dj as well as the standard
basis vectors with coordinates in Di, because we partitioned the coordinates

16



into distinct groups. Without loss of generality, takeD1 = (−1,−1, . . . ,−1, 0, 0, . . . , 0),
with t of the first coordinates being −1. Then, if we were to take a set of N
linearly independent points from P , D1 can either be part of the set or not.
We consider both cases.

If D1 is not part of the set, then e1, e2, . . . , et must all be in the set,
because these are the only remaining points with a nonzero coordinate at
their respective values. Clearly, this forms an integral basis for this copy of
Zt that lies inside Zn.

If D1 is part of the set, then we choose any t − 1 of the basis points
e1, e2, . . . , et. It is easy to see that this collection of t points also forms an
integral basis for the first t coordinates.

Thus, we can put together the coordinates for all Dj , finding that each
individual set of points is distinct and is able to generate all lattice points
spanned by those coordinates. Since this proves that any linear combination
of points in this construction is an integral basis, the construction thus holds
and these are valid K-semistable smooth Fano polytopes.

All that is left to do at this point is evaluate their α-invariants.
Consider the half-spaces in the dual defined by each of the points on the

polytope. All of the ei points guarantee that the dual points all must have
every coordinate at least −1. Each Di corresponds to a group of coordinates,
and the sum of the coordinates in its group must be at most 1, because
a point (0, 0, . . . , 0,−1,−1, . . . ,−1, 0, 0, . . . , 0) with the coordinates a to b
being −1 gives the equation

−xa − xa+1 − · · · − xb ≥ −1 =⇒
b∑
a

xi ≤ 1.

Since each of the individual coordinates is at least −1, we can compute
that

b∑
a

xi ≤ 1 =⇒ xa ≤ 1−
b∑

a+1

xi ≤ 1− (b− a) · (−1) = b− a+ 1.

This implies that the maximum possible coordinate on P ◦ from each
set of vertices from Di is exactly the number of nonzero coordinates in Dj ,
which is b− a+ 1. This means that taking the dot product of any of the ej
gives a maximum equal to max1≤j≤m cj .

Taking the dot product with one of the Dj points is similar. Because
Dj has coordinates only 0 and −1, and because we know all points in the
dual have every coordinate at least −1, the maximum possible dot product
between Dj and a point on the dual is the number of −1 coordinates that
Dj has, or cj .

Thus, the overall maximum possible dot product for our constructed
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polytope is max1≤j≤m cj , as desired.

Now, using Theorem 4.1 as a key example of the α-invariants that can
be achieved, we will prove Theorem 1.5, which states that no other values
of the α-invariant are possible.

Proof of Theorem 1.5. Once again, let P be the polytope corresponding to
X, a K-semistable smooth toric Fano variety.

I want to show that the maximum possible value of the dot product
between a point on P and a point on P ◦ can be any positive integer less than
or equal to n. We will first show that these are the only possible numbers
that can be achieved, and then we will show a construction for all of these
dot products.

Again, we assume without loss of generality that the largest possible dot
product corresponds to e1 = (1, 0, . . . , 0) on P . This means we want to find
the point on P ◦ with the largest first coordinate. Because the dual polytope
is n-dimensional and it must also contain the origin as an interior point, it
must have a point with first coordinate greater than 0, which implies that
the dot product must be greater than 0.

In order to show that the dot product must be at most n, we use Lemma
3.3, which showed that the sum of the nonnegative coordinates for any point
on P ◦ is at most n. This means that each individual coordinate must be at
most n as well, which proves that n is the maximum.

Since we are considering only integral points, it is clearly true that the
only possible values of the dot product are thus 1, 2, . . . , n.

Now, because of Theorem 4.1, we know that there is an explicit calcula-
tion for all of these possible α-invariants, because there exist partitions of n
for which the maximum number is any integer between 1 and n, inclusive.
Thus, the classification is complete.

Now, we take a closer look at a larger case of the α-invariant: when it is
1
2 . We prove Theorem 1.6, connecting the centrally symmetric polytopes to
this particular value of the α-invariant.

Proof of Theorem 1.6. First, we prove that all K-semistable smooth Fano
polytopes P that are centrally symmetric satisfy α(P ) = 1

2 .
Let u be the point in the vertex set V(P ) that corresponds to the largest

possible dot product with a point in P ◦. Since the polytope is centrally
symmetric, −u also lies in V(P ). What this means is that for all points v
on P ◦, we have that (−u) · v ≥ −1, by the definition of the dual. However,
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this rearranges to be u · v ≤ 1, which means the dot product of u with any
other point on the polytope is at most 1.

I also know that the sum of all vertices in the polytope is 0, which means

u ·
∑

v∈V(P ◦)

v = 0.

Not every term in the sum can dot to 0 with u, because the polytope is
n-dimensional, which means not all lie in a hyperplane perpendicular to u.
This implies that at least one of the points in P ◦ have a positive dot product
with u. Since the dot product must be an integer and it cannot exceed 1, it
has to be 1. Thus, α(P ) = 1

2 .
Now, we prove the opposite direction. We first assume that P is a K-

semistable smooth Fano polytope P such that α(P ) = 1
2 . Now, consider a

point u in the vertex set V(P ). We will prove that −u must also belong to
the vertex set.

I know that u ∈ P , which implies there is a facet defined by u in P ◦

which has at least n points. All points v on this facet satisfy u · v = −1.
Because α(P ) = 1

2 , the maximum possible dot product between u and a
point on P ◦ is 1. Since we know that the polytope is K-semistable, we know
that

u ·
∑

v∈V(P ◦)

v = 0,

which is the same equation used in the first part of the proof. This is
composed of dot products of only −1, 0, and 1. This means that there is
the same number of points which have a product of −1 and 1 with u, so
there are at least n points on the hyperplane defined by u · x = 1 for points
x = (x1, x2, . . . , xn).

However, if there are more than n points on this hypersurface, it cor-
responds to a facet, which translates back to the point −u, because the
hypersurface u · x = 1 is dual to the point −u. This proves that −u must
be on P . Since u is arbitrarily defined out of all of the vertices of P , this
holds for any choice of vertex, which means that P is centrally symmetric,
as desired.

Thus, both sides of the equivalence are shown, which means that the
conditions α(P ) = 1

2 and centrally symmetric are exactly equivalent for
K-semistable smooth Fano polytopes.
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5 α-invariants on varieties with small Picard num-
ber

In this section, we prove Theorem 1.7, regarding the polytopes with
Picard number 1 or 2. This essentially proves that all possible polytopes
with Picard number 1 or 2 are listed in Theorem 4.1.

Proof of Theorem 1.7. I first begin with polytopes with Picard number 1,
which means that they have exactly n+ 1 vertices. Since n of them are the
standard basis vectors ei, the last one must be S = (−1,−1, . . . ,−1) because
the polytopes are K-semistable. This means that there is only one possible
polytope in this case.

Now, we consider polytopes with Picard number 2. This means that
there are 2 vertices that are not standard basis vectors, and they sum to S
due to K-semistability. Call these points A and B.

First, we prove that none of the coordinates for any of these points can
be positive or less than −1. Assume otherwise for the sake of contradiction.
This means that we can assume without loss of generality that A has a
coordinate, say, the first coordinate, that is less than −1. This would imply
that the first coordinate of B is positive, since they sum to −1.

Now, consider the simplex formed by the n points A, e2, e3, . . . , en. This
simplex must exist because there is no other point on the polytope with a
negative first coordinate that can connect to the n−2 dimensional face with
e2, e3, . . . , en. It must be part of two facets; one is with e1, and the other
one must be with A, because A has negative first coordinate.

The volume of this simplex, however, is greater than that of the standard
simplex. Since A is a distance greater than 1 away from the hyperplane
x1 = 0 that the rest of the points lie on, it cannot be part of a valid polytope.
Thus, we arrive at a contradiction, because this means that P cannot be
smooth Fano. Another way to state this is to reason that the vertices of the
simplex do not form an integral basis, because only multiples of the first
coordinate, which is not 1, would be obtained for the first coordinate of any
linear combination.

This means we have proved that all coordinates of points that are not ei
in K-semistable smooth Fano polytopes with Picard number 2 must be −1
or 0. In order to find the remaining possibilities for point A, note that we can
arrange the different coordinates without loss of generality, so A can just be
(−1,−1, . . . ,−1, 0, 0, . . . , 0) for r different instances of −1 where 0 < r < n.
We can then immediately see that B must be (0, 0, . . . , 0,−1,−1, . . . ,−1),
because A and B must add to S. Without loss of generality A has at least as
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many coordinates of −1 as B, which means we can calculate the α-invariant
based on the number of such coordinates in A.

It turns out that these are all of the possibilities; there are exactly
⌊
n
2

⌋
different varieties. These are also all a subset of the construction shown in
Theorem 4.1. This means they are all K-semistable and smooth Fano, and
we can confirm that they have α-invariants one greater than the maximum
number of −1 coordinates in either A or B.

Thus, the theorem is proved and we have completely classified K-semistable
smooth Fano polytopes with Picard numbers 1 and 2.
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