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Abstract. Kusner asked if n + 1 points is the maximum number of points in Rn such that the `p
distance between any two points is 1. We present an improvement to the best known upper bound
when p is large in terms of n, as well as a generalization of the bound to s-distance sets. We also
study equilateral sets in the `p sums of Euclidean spaces, deriving upper bounds on the size of an
equilateral set for when p =∞, p is even, and for any 1 ≤ p <∞.

1. Introduction

1.1. Background

A classic exercise in linear algebra asks for the maximum number of points in Rn such that the
pairwise distances take only two values. One can associate a polynomial to each point in the set
such that the polynomials are linearly independent. Then, one can show that the polynomials all
lie in a subspace of dimension (n+ 1)(n+ 4)/2. Since the number of linearly independent vectors
cannot exceed the dimension of the subspace, the cardinality of the set is at most (n+ 1)(n+ 4)/2.
This beautiful argument was found by Larman, Rogers, and Seidel [LRS77] in 1977, illustrating
the power of algebraic techniques in combinatorics.

We can ask the much more general question: “In a metric space X, what is the maximum
number of points such that the pairwise distances take only s values?” We use es(X), or just
e(X) if s = 1, to denote the answer to this question (by convention, we do not count 0 as a
distance). A set of points S ⊆ X satisfying this question’s conditions, i.e., the cardinality of the
set {d(x, y) : x, y ∈ S, x 6= y} is s, is called an s-distance set. A 1-distance set is also known as an
equilateral set. Also, we typically restrict the metric space to a normed space, so that the specific
distances used do not matter. Thus, we will always assume that the largest of the s distances is 1.

The posed question has been studied on many different spaces. The most famous result would
be the upper bound

(
n+s
s

)
on an s-distance set in n-dimensional Euclidean space, found by Bannai,

Bannai, and Stanton [BBS83]. This result was also discovered independently by Blokhuis [Blo83].
Another important case is when all points lie on the n-dimensional sphere. There is strong motiva-
tion for this problem as it has many applications in coding theory and design theory [DGS77]. In
particular, having tight upper bounds can help us find extremal configurations which satisfy unique
properties.

Similar results have been obtained in the hyperbolic space [Blo83], the Hamming space [MN11],
and the Johnson space [MN11]. Not as much is known in an arbitrary finite-dimensional normed
space, known as a Minkowski space, other than Petty’s [Pet71] general bound of e(X) ≤ 2n, where
n = dimX. Swanepoel [Swa99] then conjectured that es(X) ≤ (s + 1)n for a Minkowski space X
with dimension n and proved it for the n = 2 case. We should mention that equilateral sets in
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Minkowski spaces have been applied in differential geometry, where they are used to find minimal
surfaces [Mor92].

1.2. Definitions

In our paper, we investigate this problem on Rn with the `p norm, as well as on the `p sum of
Euclidean spaces. For a point x = (x1, . . . , xn) ∈ Rn and a p ≥ 1, the `p norm is defined to be

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

,

and the `∞ norm is defined to be

‖x‖∞ = max
1≤i≤n

|xi|.

The `1 norm is the well-known “taxicab” norm, and the `2 norm is the standard Euclidean norm.
Throughout the paper, we write ‖·‖ instead of ‖·‖2 to emphasize that we are using the Euclidean
norm. We also use En to emphasize that we are in n-dimensional Euclidean space.

For Euclidean spaces Ea1 , . . . ,Ean , we define their `p sum as the product space Ea1 × · · · × Ean
equipped with the norm

‖(x1, . . . , xn)‖p =

(
n∑
i=1

‖xi‖p
) 1

p

,

where xi ∈ Eai for i = 1, . . . , n. We use Ea1 ⊕p · · · ⊕p Ean to describe this space.
When p =∞, the norm is just

‖(x1, . . . , xn)‖∞ = max
1≤i≤n

‖xi‖ .

Although our notation for the norm in `p spaces and in `p sums is the same, the norm being
used should be clear from context.

1.3. Previous Work and Our Results

We first study s-distance sets in Rn equipped with the `p norm. This space is denoted by
`np = (Rn, ‖·‖p). The two most famous questions pertaining to this problem are Kusner’s [Guy83]
conjectures on equilateral sets.

Conjecture 1 (Kusner). e(`n1 ) = 2n.

Conjecture 2 (Kusner). e(`np ) = n+ 1 for 1 < p <∞.

For Conjecture 1, note that the set {±ei : i = 1, . . . , n}, where ei is the i-th standard basis vector,
is equilateral in `n1 , so e(`n1 ) ≥ 2n. Currently, the best known upper bound is e(`n1 ) ≤ cn log n due
to Alon and Pudlák [AP03]. It is also known that Conjecture 1 holds for n = 3 (Bandelt, Chepoi,
and Laurent [BCL98]) and n = 4 (Koolen, Laurent, and Schrijver [KLS00]).

As for Conjecture 2, note that the set {e1, . . . , en, λ
∑n

i=1 ei} is equilateral for a suitable choice
of λ, so e(`np ) ≥ n + 1. For 1 < p < 2 and n large enough, Swanepoel [Swa04b] actually showed
that e(`np ) > n + 1, disproving Conjecture 2 in this case. The first nontrivial upper bound of

e(`np ) ≤ cpn(p+1)/(p−1) was found by Smyth [Smy01] using an approximation argument. This result
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was later improved by Alon and Pudlák [AP03] and is currently the best known upper bound on
e(`np ) for arbitrary n and p.

Theorem 1 (Alon and Pudlák). For every p ≥ 1, we have e(`np ) ≤ cpn(2p+2)/(2p−1), where one may
take cp = cp for an absolute c > 0.

Our first result is an improvement of Theorem 1 when p is large in terms of n. One can check
that c > 2, so Theorem 2 is indeed an improvement.

Theorem 2. Let c > 0 be the constant from Theorem 1. If n > 1 and p ≥ c(n log n)2, then
e(`np ) ≤ 2(p+ 1)n.

We should mention that when p satisfies other special properties, Theorem 1 can be strengthened.
If p is an even integer, Swanepoel [Swa04b] used a linear independence argument to show that

e(`np ) ≤

{
(p2 − 1)n+ 1 if p ≡ 0 (mod 4),
p
2n+ 1 if p ≡ 2 (mod 4).

If p is an odd integer, Alon and Pudlák’s argument for e(`n1 ) extends to e(`np ), giving the bound
e(`np ) < cpn log n in this case.

Our next result is a generalization of Theorem 1 to s-distance sets. As far as we know, the only
literature on s-distance sets in `np is by Smyth [Smy13]. Our theorem below is strictly stronger than
Conjecture 5 in [Smy13].

Theorem 3. If s is a positive integer and p is a real number satisfying 2p > s, then es(`
n
p ) ≤

cp,sn
(2ps+2s)/(2p−s) for a constant cp,s depending on p and s.

Our next three results are on equilateral sets in the `p sum of Euclidean spaces. As far as
we know, this problem has not been well studied in this space. Swanepoel [Swa18] showed that
e(X ⊕∞ Y ) ≤ e(X)bf (Y ) for normed spaces X and Y , where bf is the finite Borsuk number.
However, explicit bounds are still unknown when X and Y are Euclidean spaces and when we take
an `p sum instead of an `∞ sum. Our first result in this area almost completely resolves the problem

for Ea⊕∞Eb. Note that we have the obvious lower bound e(Ea⊕∞Eb) ≥ e(Ea)e(Eb) = (a+1)(b+1)
by taking the Cartesian product of the two equilateral sets. This lower bound actually meets the
upper bound when a = 2, 3 [Swa18].

Theorem 4. Let Ea and Eb be Euclidean spaces. Then, e(Ea ⊕∞ Eb) ≤ (a+ 1)(b+ 1) + 1.

Our second result in this area provides an upper bound when p is even.

Theorem 5. Let Ea and Eb be Euclidean spaces, and let p be an even integer. Then, e(Ea⊕pEb) ≤(
a+p/2
a

)
+
(b+p/2

b

)
.

Finally, we extend Alon and Pudlák’s [AP03] result on equilateral sets in `np to `p product spaces.
We present an upper bound on the `p sum of n Euclidean spaces for any 1 ≤ p <∞. Observe that
Theorem 1 is a special case of our theorem below when a1 = · · · = an = 1.

Theorem 6. Let Ea1 , . . . ,Ean be Euclidean spaces and set a = max
1≤i≤n

ai. If 2p > a, then e(Ea1 ⊕p

· · · ⊕p Ean) ≤ cp,an
2p+2a
2p−a for a constant cp,a depending on p and a.
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Our paper is structured as follows. In Section 2, we introduce two important tools used in our
proofs. Then, we prove Theorems 2, 3, 4, 5, and 6 in Sections 3, 4, 5, 6, and 7 respectively.

2. Preliminaries

In this section, we present two famous results that we use later. The first is the Rank Lemma,
which allows us to estimate the rank of a symmetric matrix. The second is Jackson’s Theorem,
a celebrated result from approximation theory. This theorem allows us to approximate |x|p by a
polynomial with sufficiently small error.

2.1. The Rank Lemma

Lemma 1 (Rank Lemma). For a real symmetric n× n nonzero matrix A,

rankA ≥
(
∑n

i=1 aii)
2∑n

i,j=1 a
2
ij

.

We will frequently make use of the following corollary.

Corollary. Let A be a real symmetric n× n matrix with aii = 1 and |aij | ≤ ε for all i 6= j. Then

rankA ≥ n

1 + (n− 1)ε2
.

Choosing ε = n−1/2 gives rankA ≥ n/2.

2.2. Jackson’s Theorem

Theorem 7 (Jackson, [Jac30]). For any f ∈ Ck[−1, 1] and positive integer d, there exists a poly-
nomial P with degree at most d such that

|f(x)− P (x)| ≤ ck

(n+ 1)k
ω(f (k), 1/d) for all x ∈ [−1, 1],

where c > 0 is an absolute constant, ω(f, δ) denotes the modulus of continuity of f , and (n+ 1)k =
(n+ 1)n · · · (n− k + 2) uses falling factorial notation.

From Theorem 7, we can recover the following lemma. For its proof, see [Swa04a].

Lemma 2. For any p ≥ 1 and d ≥ dpe, there exists a polynomial P with degree at most d such that

(1) |P (x)− |x|p| ≤ B(p)

dp
for all x ∈ [−1, 1]

where B(p) = (dpep(1 + π2/2)dpe(p)dpe−1)/dpe!.

We will always assume that the polynomial P in Lemma 2 is even and that P (0) = 0. If P is not
even, we can take the even part of P . If P (0) 6= 0, we can take the polynomial Q(x) = P (x)−P (0)
as this only increases the error term by a factor of 2.
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3. Bound on equilateral sets in `np for large p

We start with an important lemma about the `p norm.

Lemma 3. Suppose 1 ≤ p ≤ q. Then for any x ∈ Rn,

‖x‖q ≤ ‖x‖p ≤ n
1
p
− 1

q ‖x‖q .

Proof. The left hand inequality is a well-known property of the `p norm. The right hand inequality
is the Power Mean Inequality, which can be proven using Jensen’s Inequality. �

Suppose our equilateral set is {p1, . . . , pm}. Let k be the closest even integer to p, rounding up if
p is odd. The main idea is that by Lemma 3, we can approximate ‖·‖p by ‖·‖k. If p is large enough
in terms of n, the error term is sufficiently small. From there, it suffices to bound the size of an
approximately-equilateral set in `nk , which can be done with a linear algebra argument.

Proof of Theorem 2. We use the notation explained above. There are two cases to consider de-
pending on whether k is greater than or less than p.

Case 1. We have bpc is odd, so p < k.

From our bound on p and the fact that p ≥ 2,

m ≤ cpn(2p+2)/(2p−1)

≤ cpn2

≤ p2

(log n)2

≤ (1− n−1/p)−2,

where the first inequality holds by Theorem 1. Assuming without loss of generality that m > 1, we
may rearrange the result above into

−p logn

(
1− 1√

m

)
≥ 1.

Because k is the smallest even integer greater than p, we have

(2) p < k ≤ p+ 1 ≤ p− p logn

(
1− 1√

m

)
.

Now, embed the m points into `nk . Since p < k, Lemma 3 implies

(3) n
1
k
− 1

p ≤ ‖pi − pj‖k ≤ 1
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for all i 6= j. Consider the m functions fi : Rn → R given by fi(x) = 1 − ‖pi − x‖kk, and let A be
the matrix with aij = fi(pj). Clearly, aii = 1, and from (2) and (3),

|aij | ≤ 1− n1−
k
p

≤ 1− n1−(1−logn(1−1/
√
m))

=
1√
m
,

for all i 6= j. Since A is symmetric, Lemma 1 tells us rankA ≥ m/2. For the upper bound on the
rank, note that every fi lies in the span of the set of polynomials

S = {1, x1, . . . , xn, x21, . . . , x2n, . . . , xk−11 , . . . , xk−1n ,
n∑
t=1

xkt }.

The i-th row vector of A is (fi(p1), . . . , fi(pm)). Hence, every row vector belongs to the subspace
spanned by {(f(p1), . . . , f(pm)) : f ∈ S}, which has dimension at most |S| = (k− 1)n+ 2 ≤ kn. It
follows that rankA ≤ kn ≤ (p+ 1)n. Combining the upper and lower bound, we have

m ≤ 2(p+ 1)n,

as desired.

Case 2. We have bpc is even, so p ≥ k.

Since c, n ≥ 2, p > 4. So, similar to in Case 1, we have

m ≤ cpn(2p+2)/(2p−1)

≤ cpn2−2/p

≤ n−2/p · p2

(log n)2

≤ n−2/p(1− n−1/p)−2

= (n1/p − 1)−2.

Rearranging the result gives us

p logn

(
1 +

1√
m

)
≥ 1.

Because k is the largest even integer less than or equal to p, we have

(4) p ≥ k ≥ p− 1 ≥ p− p logn

(
1 +

1√
m

)
.

Embed the m points into `nk . This time, Lemma 3 implies

(5) 1 ≤ ‖pi − pj‖k ≤ n
1
k
− 1

p .
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We define fi and A like in Case 1. Again, aii = 1, and from (4) and (5),

|aij | ≤ n1−
k
p − 1

≤ n1−(1−logn(1+1/
√
m)) − 1

=
1√
m
,

for all i 6= j. Applying Lemma 1, rankA ≥ m/2. Similar to in Case 1, we have the bound
rankA ≤ kn ≤ pn. The final result is

m ≤ 2pn < 2(p+ 1)n.

Having considered all cases, the proof is complete. �

4. Bound on s-distance sets in `np

We would like to extend Alon and Pudlák’s [AP03] idea of combining Jackson’s Theorem with
the rank lemma to the s-distance case. However, as pointed out by Smyth [Smy13], if one of the
distances is arbitrarily small, we need arbitrarily high degrees of approximation. So, we want to
impose a lower bound on our distances.

Consider a two-distance set with distances 1 and a, where a is very small. Intuitively, this set
should look like several “clusters” of points, such that the distance between each cluster is 1. So, if
we look globally, this set looks like an equilateral set with distance 1, but if we look locally at each
cluster, we have an equilateral set with distance a. This means that we have essentially reduced
the problem from one about two-distance sets to one about equilateral sets. We carry this intuition
to s-distance sets and formalize this argument with an induction.

Proof of Theorem 3. We use strong induction on s. The base case is s = 1, which was proven by
Alon and Pudlák [AP03]. For the inductive step, assume that the statement holds true for all
1 ≤ s < k. We prove that it is true for s = k.

Let S be a k-distance set in `np . Let our k distances be 1 = a1 > a2 > · · · > ak. There are two
cases to consider depending on whether the k distances are lower bounded or not.

Case 1. The smallest distance ak is less than 21−k.

There exists an index 1 ≤ i < k such that ai > 2ai+1. Let S′ ⊆ S be a maximal i-distance set
using the distances a1, . . . , ai. From the maximality of S′, every point p ∈ S \ S′ is within ai+1

of some point in S′. Draw a closed ball of radius ai+1 around every point in S′. These balls are
disjoint from our condition. The condition also implies that within each ball, the distance between
any two points is at most ai+1. Thus, within every ball, we have a (k − i)-distance set using the
distances ai+1, . . . , ak. This implies the bound

ek(`
n
p ) ≤ ei(`np ) · ek−i(`np ).

Applying the inductive hypothesis gives us

ek(`
n
p ) ≤ cp,in

2pi+2i
2p−i · cp,k−in

2p(k−i)+2(k−i)
2p−(k−i)

≤ cp,kn
2pk+2k
2p−k ,
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as desired. The second inequality follows by analyzing the function

f(x) =
2px+ 2x

2p− x
+

2p(k − x) + 2(k − x)

2p− (k − x)

on the interval [0, k]. It is symmetric about x = k
2 , and its first derivative is

f ′(x) =
4p(p+ 1)

(2p− x)2
− 4p(p+ 1)

(2p− (k − x))2
.

Since 2p > k, f is decreasing on [0, k2 ] and increasing on [k2 , k]. Thus, it is maximised at x = 0 and
x = k.

Case 2. The smallest distance ak is at least 21−k.

Suppose S consists of the points {p1, . . . , pm}. For convenience, let π = ap1a
p
2 · · · a

p
k. Fix B(p) as

the constant from Lemma 2. Define c as

c = max(B(p)k · 2pk2−pk+2k, (21/p − 1)−p).

Then, let d be a positive integer satisfying

cn
√
m < dp < 2cn

√
m,

which is possible since c ≥ (21/p − 1)−p.
Lemma 2 allows us to pick an even polynomial P with P (0) = 0 and degree at most d such that

|P (x)− |x|p| ≤ B(p)

dp
for all x ∈ [−1, 1].

Consider the m functions fi : Rn → R given by

fi(x) =
1

π

k∏
u=1

(
apu −

n∑
t=1

|xt − pit|p
)
,

and their polynomial approximations

gi(x) =
1

π

k∏
u=1

(
apu −

n∑
t=1

P (xt − pit)

)
.

Let A be the m×m matrix given by aij = gi(pj). First, since P (0) = 0, aii = 1 for all i. We now
estimate aij for i 6= j. Expand

fi(x) =
1

π

k∑
`=0

(−1)k+`σ(`)

(
n∑
t=1

|xt − pit|p
)k−`

,

and

gi(x) =
1

π

k∑
`=0

(−1)k+`σ(`)

(
n∑
t=1

P (xt − pit)

)k−`
,
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where σ(`) denotes the `-th elementary symmetric polynomial in ap1, . . . , a
p
k. For convenience, we

define Xij =
∑n

t=1 |pjt − pit|p and Yij =
∑n

t=1 P (pjt − pit). Applying the triangle inequality with
(1), we have

|Xij − Yij | ≤
nB(p)

dp
.

Since i 6= j, recall that Xij ≥ 21−k. Combining this with the fact that c > B(p) · 2k−1 implies that
Yij is positive. Now, we are ready to attack aij .

|aij | =
1

π

∣∣∣∣∣
k∑
`=0

(−1)k+`σ(`)(Y k−`
ij −Xk−`

ij )

∣∣∣∣∣
≤ 1

π
· nB(p)

dp

k−1∑
`=0

σ(`)

k−∑̀
r=1

|Xk−`−r
ij Y r−1

ij |

≤ 1

π
· nB(p)

dp

k−1∑
`=0

σ(`)
k−∑̀
r=1

∣∣∣∣(k − `− r)Xij + (r − 1)Yij
k − `− 1

∣∣∣∣k−`−1

=
1

π
· nB(p)

dp

k−1∑
`=0

σ(`)
k−∑̀
r=1

∣∣∣∣(r − 1)(Yij −Xij)

k − `− 1
+Xij

∣∣∣∣k−`−1

≤ 1

π
· nB(p)

dp

k−1∑
`=0

σ(`)(k − `)
(
nB(p)

dp
+ 1

)k−`−1

≤ 1

π
· nB(p)k

dp
· 2k

k−1∑
`=0

σ(`).

Now, since au ≥ 21−k, we can lower bound π with

π = ap1a
p
2 · · · a

p
k ≥ (2(1−k)p)k = 2pk−pk

2
.

On the other hand, since at ≤ 1, we can upper bound σ(`) with

σ(`) =
∑

1≤j1<j2<···<j`≤k
apj1a

p
j2
· · · apj` ≤

(
k

`

)
.

This gives us
∑k−1

`=0 σ(`) < 2k. Putting everything together, we have

|aij | < 2pk
2−pk+2k · nB(p)k

dp

<
1√
m

from our choice of c and d.
Recall that P is even, so the matrix A is symmetric. Lemma 1 then tells us that rankA ≥ m/2.

We now find an upper bound for the rank.
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Note that the polynomials apu −
∑n

t=1 P (xt − pit) belong to the span of the set

{1, x1, . . . , xn, x21, . . . , x2n, . . . , xd−11 , . . . , xd−1n ,
n∑
t=1

xdt }.

This set consists of (d− 1)n + 2 ≤ dn polynomials. Thus, all the gi belong to the span of a set S
of at most (dn)k polynomials. The i-th row vector of A is (gi(p1), . . . , gi(pm)). Hence, every row
vector belongs to the subspace spanned by

{(f(p1), . . . , f(pm)) : f ∈ S},

which has dimension at most |S| ≤ (dn)k. This implies rankA ≤ (dn)k.
The upper and lower bound combine to give (dn)k ≥ m/2. Using the upper bound on dp and

rearranging the inequality, we obtain

m ≤ cp,kn(2pk+2k)/(2p−k).

This completes the induction. �

5. Bound on equilateral sets in `∞ product spaces

Proof of Theorem 4. Write x = (x̃1, x̃2) for each point x ∈ Ea ⊕∞ Eb, where x̃1 ∈ Ea and x̃2 ∈ Eb.
Let S be our equilateral set with cardinality m. Consider the m functions fu : Ra+b → R defined
by

fu(x) =
(

1− ‖x̃1 − ũ1‖2
)(

1− ‖x̃2 − ũ2‖2
)
,

for all u ∈ S. Note that fu(v) = δuv, so the fu are linearly independent.
We can expand fu as

fu(x) =

(
1−

a∑
t=1

(x̃1t − ũ1t)2
)(

1−
b∑
t=1

(x̃2t − ũ2t)2
)

=

(
1− ‖ũ1‖2 − ‖x̃1‖2 + 2

a∑
t=1

x̃1tũ1t

)(
1− ‖ũ2‖2 − ‖x̃2‖2 + 2

b∑
t=1

x̃2tũ2t

)
So, the fu are all spanned by the following set of (a+ 2)(b+ 2) polynomials

{1, x̃1i, x̃2j , x̃1ix̃2j , ‖x̃1‖2 , ‖x̃2‖2 , ‖x̃2‖2 x̃1i, ‖x̃1‖2 x̃2j , ‖x̃1‖2 ‖x̃2‖2 : 1 ≤ i ≤ a, 1 ≤ j ≤ b}.

This implies the bound m ≤ (a+ 2)(b+ 2).

We will now prove that the set of polynomials {fu, 1, xk, ‖x̃1‖2 : u ∈ S, 1 ≤ k ≤ a+ b} is linearly
independent. Assume for the sake of contradiction that we have a dependence

(6)
∑
u∈S

αufu +
a+b∑
k=1

βkxk + γ ‖x̃1‖2 + δ = 0.
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The left hand side of (6) is a polynomial in the xk that is identically zero. Thus, extracting the

coefficient of ‖x̃1‖2 ‖x̃2‖2, we have

(7)
∑
u∈S

αu = 0.

Extracting the coefficient of ‖x̃r‖2 xk, for the appropriate r ∈ {1, 2}, we have

(8)
∑
u∈S

αuuk = 0.

Extracting the coefficient of ‖x̃2‖2 and applying (7), we have

(9)
∑
u∈S

αu ‖ũ1‖2 = 0.

Now, plug u into (6), multiply both sides by αu, and sum over all u ∈ S.

∑
u∈S

α2
u +

a+b∑
k=1

βk
∑
u∈S

αuuk + γ
∑
u∈S

αu ‖ũ1‖2 + δ
∑
u∈S

αu = 0.

Applying (7), (8), and (9) implies αu = 0 for all u ∈ S. It easily follows that all other coefficients
are zero, as desired.

Now, we know that m+a+b+2 ≤ (a+2)(b+2). This rearranges into m ≤ (a+1)(b+1)+1. �

6. Bound on equilateral sets in `p product spaces for even p

Proof of Theorem 5. Let S be an equilateral set in Ea⊕pEb with m points. For every u ∈ S, define

the function fu : Ra+b → R by

fu(x) = 1− ‖x̃1 − ũ1‖p − ‖x̃2 − ũ2‖p

for all x = (x̃1, x̃2) ∈ Ea ⊕p Eb so that fu(v) = δuv. It follows that the m polynomials are linearly
independent. Now, we can expand fu as

fu(x) = 1−

(
a∑
t=1

(x̃1t − ũ1t)2
)p/2

−

(
b∑
t=1

(x̃2t − ũ2t)2
)p/2

= 1−

(
‖x̃1‖2 + ‖ũ1‖2 − 2

a∑
t=1

x̃1tũ1t

)p/2
−

(
‖x̃2‖2 + ‖ũ2‖2 − 2

b∑
t=1

x̃2tũ2t

)p/2
= 1− f̃u1(x)− f̃u2(x)

Utilizing multi-index notation, we can expand

f̃u1(x) =
∑
ε,g

ε+γ≤p/2

(−2)γ
(
γ

g

)(
p/2

ε, γ, p/2− ε− γ

)
ũg1 ‖ũ1‖

p−2ε−2γ x̃g1 ‖x̃1‖
2ε .
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The sum is taken over all non-negative integers ε and non-negative integer vectors g with a entries
such that ε+ γ ≤ p/2, where γ is the sum of the components of g. Similarly, we can expand

f̃u2(x) =
∑
ε,g

ε+γ≤p/2

(−2)γ
(
γ

g

)(
p/2

ε, γ, p/2− ε− γ

)
ũg2 ‖ũ2‖

p−2ε−2γ x̃g2 ‖x̃2‖
2ε .

We want to count the number of monomials in each polynomial. Since f̃u1 is a polynomial in

x̃11, . . . , x̃1a and f̃u2 is a polynomial in x̃21, . . . , x̃2b, the two sets of monomials are disjoint, except

for the constant monomial. Let us consider f̃u1 first. By choosing ε = 0, we must count all the

monomials with degree at most p/2. There are
(
a+p/2
a

)
of these. If the degree is greater than p/2,

say p/2 + c, we only need to count the monomials formed when ε = c and γ = p/2− c. Hence, the

total number of monomials in f̃u1 is(
a+ p/2

a

)
+

(
a+ p/2− 2

a− 1

)
+

(
a+ p/2− 3

a− 1

)
+ · · ·+

(
a− 1

a− 1

)
=

(
a+ p/2

a

)
+

(
a+ p/2− 1

a

)
.

Similarly, there are
(b+p/2

b

)
+
(b+p/2−1

b

)
monomials in f̃u2. In total, fu has

(
a+p/2
a

)
+
(
a+p/2−1

a

)
+(b+p/2

b

)
+
(b+p/2−1

b

)
−1 monomials (we subtract 1 as the constant monomial is counted twice). This

gives an upper bound on m.
By finding a larger linearly independent set of polynomials, a trick first used by Blokhuis [Blo81],

we can lower this bound to
(
a+p/2
a

)
+
(b+p/2

b

)
. We prove that the set of polynomials

{fu, x̃m1 , x̃n2 , 1 : u ∈ S, 0 < µ < p/2, 0 < ν < p/2}

is linearly independent. The details are very similar to those in Blokhuis’s [Blo83] bound for the
s-distance set in Rn.

Suppose we have a dependence

(10)
∑
u∈S

aufu(x) +
∑

0<µ<p/2

amx̃
m
1 +

∑
0<ν<p/2

anx̃
n
2 + δ = 0.

The main claim is the following lemma.

Lemma 4. For all m with µ < p/2, ∑
u∈S

auũ
m
1 = 0.

Similarly, for all n with ν < p/2, ∑
u∈S

auũ
n
2 = 0.

Proof. We only prove the first statement. The argument for the second statement is identical.
Suppose µ = t < p/2. Consider the part of the left hand side of (10) that is homogeneous in

x̃11, . . . , x̃1a with degree p − t. Note that the monomials x̃m1 do not contribute to this, so we only
have to look at the part from the fu. Using our expansion of fu above, the part of fu homogeneous
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in the a variables with degree p− t is

−
∑
ε,g

2ε+γ=p−t
ε+γ≤p/2

(−2)γ
(
γ

g

)(
p/2

ε, γ, p/2− ε− γ

)
ũg1 ‖ũ1‖

p−2ε−2γ x̃g1 ‖x̃1‖
2ε .

The left hand side of (10) is a polynomial in the xi which is identically zero. Thus, we have∑
ε,g

2ε+γ=p−t
ε+γ≤p/2

(−2)γ
(
γ

g

)(
p/2

ε, γ, p/2− ε− γ

)∑
u∈S

auũ
g
1 ‖ũ1‖

p−2ε−2γ x̃g1 ‖x̃1‖
2ε = 0.

Now, substitute x = v, multiply by av ‖ṽ1‖2t−p, and sum over all v ∈ S.∑
ε,g

2ε+γ=p−t
ε+γ≤p/2

(−2)γ
(
γ

g

)(
p/2

ε, γ, p/2− ε− γ

)(∑
u∈S

au ‖ũ1‖p−2ε−2γ ũg1

)2

= 0.

This is a sum of squares where all coefficients have the same sign. So,∑
u∈S

au ‖ũ1‖p−2ε−2γ ũg1 = 0.

Plugging in γ = t proves the lemma. �

Now, plug in u into (10), multiply by au and sum over all u ∈ S,∑
u∈S

a2u +
∑

0<µ<p/2

am
∑
u∈S

auũ
m
1 +

∑
0<ν<p/2

an
∑
u∈S

auũ
n
2 + δ

∑
u∈S

au = 0.

Applying Lemma 4, we obtain au = 0 for all u. We already know that the other polynomials in

our set are linearly independent, so all coefficients vanish, as desired. This implies m ≤
(
a+p/2
a

)
+(b+p/2

b

)
�

Remark. This proof can be easily extended to the `p sum of n Euclidean spaces. If we consider the

product space Ea1 ⊕p · · · ⊕p Ean , our bound is just
(
a1+p/2
a1

)
+ · · ·+

(
an+p/2
an

)
.

7. Bound on equilateral sets in `p product spaces for 1 ≤ p <∞

Proof of Theorem 6. Let {p1, . . . , pm} be an equilateral set in Ea1 ⊕p · · · ⊕p Ean , and write pi =
(p̃i1, . . . , p̃in) where p̃ik ∈ Eak for k = 1, . . . , n.

Let B(p) be the constant from Lemma 2. Take c = max(B(p), (21/p − 1)−p) and set d to be a
positive integer satisfying

cn
√
m < dp < 2cn

√
m.

By Lemma 2, there exists an even polynomial P with P (0) = 0 and degree at most d that approx-
imates |x|p. Thus, for i 6= j and k = 1, . . . , n,∣∣P (

∥∥p̃ik − p̃jk∥∥)−
∥∥p̃ik − p̃jk∥∥p∣∣ ≤ B(p)

dp
.
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Next, for i = 1, . . . ,m define the functions fi : Ra1+···+an → R by

fi(x) = 1−
n∑
k=1

P (‖p̃ik − x̃k‖).

Let M be the m×m matrix given by mij = fi(pj). Since P (0) = 0, we have mii = 1. For i 6= j,

|mij | =

∣∣∣∣∣
n∑
k=1

∥∥p̃ik − p̃jk∥∥p − n∑
k=1

P (
∥∥p̃ik − p̃jk∥∥)

∣∣∣∣∣
≤

n∑
k=1

∣∣∥∥p̃ik − p̃jk∥∥p − P (
∥∥p̃ik − p̃jk∥∥)

∣∣
≤ nB(p)

dp

<
1√
m
,

with the last inequality following from our conditions on c and d. Because M is symmetric, we can
apply Lemma 1 to get rankM ≥ m/2.

Now, we look for an upper bound on the rank. We can write any point x ∈ Ea1 ⊕p · · · ⊕p Ean as

x = (x̃
(1)
1 , x̃

(2)
1 , . . . , x̃

(a1)
1 , x̃

(1)
2 , x̃

(2)
2 , . . . , x̃

(a2)
2 , . . . , x̃(1)n , x̃(2)n , . . . , x̃(an)n ).

Because P is even, all terms in the expansion of P (‖p̃ik − x̃k‖) have integer exponent, i.e., fi is
actually a polynomial. Additionally, since P has degree at most d, each fi is in the span of the set

S = {1,
n∑
k=1

‖x̃k‖d} ∪ S1 ∪ S2 ∪ · · · ∪ Sn,

where each set Si consists of all the monomials with degree less than d formed by x̃
(1)
i , . . . , x̃

(ai)
i .

Thus, the fi are spanned by at most 2 +
∑n

k=1

(
ak+d−1
ak

)
− n polynomials. Because every row

vector of M , each of the form (fi(p1), . . . , fi(pm)), belongs to the subspace spanned by the set
{(f(p1), . . . , f(pm)) : f ∈ S}, we have

rankM ≤ 2 +
n∑
k=1

(
ak + d− 1

ak

)
− n

≤
n∑
k=1

(
ak + d− 1

ak

)
≤ n

(
a+ d− 1

a

)
< nea

(
1 +

d

a

)a
,
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where we let a = max
1≤i≤n

ai. Now, recall that d ≥ B(p)1/p ≥ p and 2p > a, so d > a/2. Thus,

m

2
≤ rankM < n

(
3ed

a

)a
.

Combining this inequality with the condition dp < 2cn
√
m yields

m < cp,an
2p+2a
2p−a ,

as desired. �
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