
Computer science problems.

About the problems. The theme of this year’s problems is context free
grammars and probabilistic context free grammars. Context free grammars
are used in a variety of applications, including compilers, bioinformatics, and
natural language processing.

What you need to do. For these problems we ask you to write a program
(or programs), as well as write some “paper-and-pencil” solutions (use any text
editor that you see fit, or scan an actual handwritten solution; convert the result
to pdf format if possible).

You may use any programming language you want for your programs, as long
as its full implementation is available at no cost and with an easy installation
for both a Mac and Windows (free trial versions do not qualify). It is best
to implement each problem as a separate function so that we can run them
separately. We will be looking for the following in your submissions:

• Correct code that we can run. You need to send us all your code files,
including the header files for languages like C++. If you are using standard
libraries, make sure to include all “import” statements, as required by the
language you are using. Make sure to send the files under the correct
names, including the file extension (.java, .c, etc). Make sure that the file
names do not contain any identifying information about you, such as your
first or last name.

• Test data for your code that you have used (you can write it in comment
or in a separate file). Make sure to test your code well – you don’t want
it to fail our tests!

• Code documentation and instructions. Important: do not include

your name in comments or in any file names. If you are submitting
your answers to non-code problems in a separate file, also make sure that it
does not have your name in the contents or in the file name. The only place
where you specify your name is the zip file with your solutions which must
be of the form yourlastname-CS-solution.zip (replace yourlastname

by your actual last name). Make sure that you use zip compression,

and not any other one, such as tar. In the beginning of each file
specify, in comments:

1. Problem number(s) in the file. If you have a file with “helper” func-
tions, mark it as such.

2. The programming language, including the version (Java 1.11, for in-
stance), the development framework (such as Visual Studio) that you
used, unless you were using just a plaintext editor (notepad, emacs,
etc), and the platform (such as Windows, Mac, Linux)

3. Instructions for running your program (how to call individual func-
tions, pass the input (if any), etc), either in comments in your pro-
gram file or as a separate file, clearly named. Your program may get

input from the user (i.e. it asks to enter some data and then reads it)
or you may store the data in specific variables within your program.
You need to clearly explain how to input or set the data.

4. Some of your code may be commented out if it is not used in the
final run of your program. Make sure it is clear what needs to be
uncommented to run code for each of the problems.

5. All of your test data.

6. If you were using sources other than the ones listed here (i.e. text-
books, online resources, etc) for ideas for your solutions, please clearly
credit these contributions. This is a courtesy to work of others and
a part of ethics code for scholars.

7. Make sure that you clearly specify where input files are supposed to
be located, provide an example input file and an example of how the
file name would be specified in the input. Use relative paths (from
the top of the project or from the executable), not absolute paths.
All input files must have an extension .in, all output files

an extension .out.

• Clear, understandable, and well-organized code. This includes:

1. Clear separation between problems; comments that help find individ-
ual problems and explain how to run the corresponding functions.

2. Breaking down code into functions that are clearly named and de-
scribed (in comments), using meaningful names for variables and
function parameters. Your code should be as self-explanatory as
possible. While using comments helps, naming a variable average

is better that naming it x and writing a comment “x represents the
average”.

3. Minimization of code repetition. Rather than using a copy-paste
approach, use functions for repeated code and reuse these functions.

4. Using well-chosen storage structures (use an array or a list instead of
ten variables, for instance) and well-chosen programming constructs
(use loops or recursion when you can, rather than repeated code).

5. While we are not asking for the fastest program (it’s better to make
it more readable), you should avoid unnecessary overhead.

Background and problems.

We start by briefly defining the key terms. For more details and discus-
sion see [3] or https://en.wikipedia.org/wiki/Context-free_grammar or
any other resources on CFGs.

Definition 1. A context-free grammar (CFG) is a set of 4 elements: {V,Σ, R, S},
where:

• V is a finite set of variables (called non-terminals or variables). We use
upper-case letters for elements of V .

https://en.wikipedia.org/wiki/Context-free_grammar

• Σ (called the alphabet) is a finite set of symbols (called terminals). We use
lower-case letters for elements of Σ.

• R is a set of rules of the form V1 → w where the left-hand side V1 is an
element of V , and the right-hand side w is a finite string of terminals and
non-terminals. w may be an empty string, denoted as ε.

• S is an element of V called the start variable or start symbol.

Definition 2. A string of terminals w is derived from a grammarG = {V,Σ, R, S}
if there is a sequence w0 → w1 → w2 . . . wn such that w0 = S,wn = w and in
each step wi → wi+1 is performed by replacing a non-terminal V ′ in wi by a
string w′ such that V ′ → w′ is a member of R. This sequence is called a deriva-
tion of w in G. Note that w consists only of terminals, and therefore no further
derivation steps can be performed.

A derivation in which in each wi the leftmost non-terminal is replaced is
called a leftmost derivation.

The set of all strings that are derived from a grammar G are called its
language and is denoted L(G). We say that G generates L(G).

Example 1. Consider the following grammar: V = {S,A},Σ = {a, b}, R =
{S → aA,A → ε, A → aA,A → bA}, and the start variable is S. We will be
using a slightly different way of writing grammars in which we don’t explicitly
specify V or Σ since they may be determined from the rules, we S as the start
variable (unless explicitly stated otherwise), and combine rules for the same
non-terminal into one string using | as a separator. In this format the same
grammar will be written as:

S → aA

A → ε | aA | bA

The string ab is in L(G) and has a derivation S → aA → abA → ab. The last
step uses the rule A → ε. It is easy to observe that any string of a and b that
starts with a is derivable in G, and no other strings are, so L(G) is the set of
all strings over a, b that start with a.

Another way of representing a derivation of a string in a grammar is a
parse tree. A parse tree for string w ∈ L(G) is a tree that’s rooted in S and
represents a rule-based substitution V ′ → w′ by positioning symbols of w′ in
order as children of V ′. The derived string is all the terminals at the leaves of
the tree in left-to-right order.

Example 2. The parse tree for the derivation in Example 1 is as follows:
S

a A

b A

ε

Problem 1. Consider the following CFG:

S → ε | aS | A

A → ε | aAb

Question 1. Construct derivations and draw parse trees for the following
strings: ε, a, aab, aabb.
Question 2. What is the language of this CFG?

Note that there may be multiple derivations corresponding to the same parse
tree. For instance, consider the grammar G1:

S → AB

A → ε | aA B → ε | bB

The following two derivations both derive ab:

• S → AB → aAB → aB → abB → ab

• S → AB → AbB → Ab → aAb → ab

However, there is only one leftmost derivation for ab and only one parse tree. In
general, each parse tree corresponds to only one leftmost derivation, and each
leftmost derivation corresponds to a unique parse tree.

Problem 2. Question 1. Are there other derivations for ab in G1? If yes,
show one, otherwise explain why there are no other ones.
Question 2. What is the leftmost derivation for ab in G1?
Question 3. Draw a parse tree for ab in G1.
Question 4. What is the language of G1

Definition 3. Given a CFG G, if at least one string w ∈ L(G) has two different
parse trees (or equivalently, two different leftmost derivations) then G is called
an ambiguous grammar.

Example 3. Consider the following grammar:

S → aA

A → ε | aA | bA | Aa | Ab

Problem 3. The problem refers to the grammar defined in Example 3

• Find a string derived in G that has at least two different leftmost deriva-
tions. Show either the derivations or the parse trees.

• Explain why this grammar defines the same language as the one given in
Example 1.

• Explain why the grammar in Example 1 is not ambiguous.

The CFG in Example 3 is ambiguous, but it has an equivalent (i.e. defin-
ing the exact same language) unambiguous CFG. However, some ambiguous
CFGs don’t have an equivalent unambiguous CFG. These grammars are called
inherently ambiguous.

One common application of CFGs is parsing expressions in a program-
ming language. In this case we would like to eliminate ambiguity. For in-
stance, an expression 2 + 3 × 4 − 5 should be parsed as if it has the set of
parentheses (2 + (3 × 4)) − 5, otherwise the result would be not what we
would expect. [3], as well as a large number of compilers textbooks, dis-
cuss setting correct precedence of operations (which operator must be exe-
cuted first in the absence of parentheses) and associativity (if there is an am-
biguity between two operators of the same precedence, should the expression
be evaluated from left to right or from right to left). This online resource
http://www.cs.ecu.edu/karl/5220/spr16/Notes/CFG/precedence.htmlhas
a concise informative overview of the problem and the solutions. More informa-
tion is available in books on compiler design, e.g. [1].

Problem 4. Design an unambiguous CFG for a language that consists only
of variable names, operators +, -, = (assignment statement, as in C or Java),
and parentheses. The CFG should be unambiguous with the following ways of
determining order of operations:

1. + and - have the same precedence, and = has a lower precedence than +

and -. For instance, in a = b + c the subexpression b + c is evaluated
first, and its result is assigned to a. Note that although the expression
a+b = c doesn’t make sense in most programming languages, for simplicity
we consider it to be a valid expression and parse it as if parentheses were
placed as (a+ b) = c.

2. + and - are left-associative, so a + b − c is evaluated left to right, as in
(a+ b)− c, and a− b− c is evaluated as (a− b)− c.

3. = is right-associative, so a = b = c is evaluated as a = (b = c) (in
many programming languages the value, or the “result”, of an assignment
statement is the assigned value, so the expression a = b = c assigns the
value of c to both a and b).

4. Parentheses may surround any valid subexpression. They overwrite the
default order of operations and can be nested arbitrarily. For instance, the
following is a valid expression: a = (b+(c = d)). In this case d is assigned
to c, then the sum of b and the result of the assignment is assigned to a.
Note that the outer set of parentheses is not needed, but that’s not an
error. Surrounding a single variable or an expression in parentheses by a
set of parentheses is allowed.

Use a non-terminal V to denote a variable, i.e. V → a | b | c +, -, =

and both parentheses are terminals, i.e. a part of Σ. Write your CFG as a
set of rules. Show parse trees or leftmost derivations for all expressions in this
problem and at least 2 more that show different cases.

http://www.cs.ecu.edu/karl/5220/spr16/Notes/CFG/precedence.html

Definition 4 (Chomsky normal form). A CFG is said to be in Chomsky normal
form (CNF) if all the rules in it have one of the following forms:

• V1 → a1, where V1 ∈ V, a1 ∈ Σ.

• V1 → V2V3, where V1, V2, V3 ∈ V , V2 6= S, V3 6= S.

• S → ε.

The advantage of Chomsky normal form is that it provides an upper bound
on the length of derivation of a string: if w is a string of terminals of the length
n > 0 then the length of a derivation for w in G is 2n− 1. This allows a naive
way of checking whether w is in L(G): run all derivations of 2n− 1 steps and
check if w is one of the resulting strings (see [3] or online resources for details).

Problem 5. Question 1. Given a grammar G in CNF, how do you determine
whether ε is in L(G)?
Question 2. Prove the above claim: if w is a string of terminals of the length
n > 0 then the length of a derivation for w in G is 2n− 1.
Question 3. What is the running time of the naive way of checking if w of
length n is in L(G) in the worst case (clearly state what situation would be the
worst case), assuming that each derivation step takes a constant time? Give the
result as a function of n, justify your answer. Ignore constants and lower terms.

The Cocke, Younger and Kasami (usually abbreviated as CYK, sometimes
as CKY) algorithm is a bottom-up algorithm that builds all parse trees (equiv-
alently, all leftmost derivations) for a string in O(n3) time. The grammar is
given in CNF. The first pass of the algorithm is to determine non-terminals
that produce each of the terminals of a string, the next one is to determine
which non-terminals produce pairs of neighboring non-termimals produced by
the first pass, etc. At the end the algorithm determines whether the result
is derived from S (the start variable) or not. For more details see [3] or
https://en.wikipedia.org/wiki/CYK_algorithm.

Problem 6. Write a program that reads a file name (see above instructions for
how to specify a file name) and a string. The file name gives a CFG G in the
following format:

S:aA

A:$

A:aA

A:bA

This is the CFG from Example 1. Each rule is on its own line, the left hand
side followed by :, followed by the right hand side of the rule. All non-terminals
are capital letters, all terminals are lower-case. The $ denotes ε. Your program
will output Yes if the string is in L(G) and No if it’s not. Input $ denotes the
empty string. Rules may be given in any order; the start variable is always S.

https://en.wikipedia.org/wiki/CYK_algorithm

You may use a naive method described above (trying all derivation of length
2n−1), but it’s preferable to use CYK algorithm. Even though its implementa-
tion may be available in a library, you need to develop your own. Note that the
grammar might not be in CNF, so you need to convert it first. The conversion
algorithm is described in [3].

Definition 5. Given an alphabet Σ (assumes to have its own order which we
referred to as alphabetical) and a set L ⊆ Σ, short-lex (sometimes mistakenly
called lexicographic) order is an order in which a string w1 is before a string w2

if the length of w1 is less than the length of w2 or w1 and w2 have the same
length and the first different symbol in the the two strings is alphabetically
smaller in w1 than in w2. For instance, if the alphabet is {a, b, c} (with the
usual alphabetical ordering) then ab is before aaa (because it’s shorter), and
aab is before aba because at the position of their first difference (the second
symbol) aab has a, whereas aba has b which is later in the alphabet.
An empty string ε is the first string in any set in which it appears.

Problem 7. Write a program that reads an input file name, an output file
name, and a positive integer n. The input file contains the description of a
CFG, as in Problem 6. The program outputs the first n strings in L(G) in
short-lex order (see Definition 5) into the output file, 10 per line (the last line
may have fewer than 10; make sure to add the end-of-line marker at the end of
the last line and close the file). You may assume that n ≤ 1000.

Definition 6. A probabilistic context free grammar (PCFG) is a CFG with a
probability p (0 ≤ p ≤ 1) assigned to every rule in R. For any non-terminal
V1 ∈ V the sum of all rules in R for which V1 is the left-hand side equals 1.

Probabilities attached to rules indicates how likely the rule would be chosen
when generating strings. Thus, PCFGs generate distributions of parse trees and
of strings of terminals. Note that since the same string may have multiple parse
trees (because the underlying CFG may be ambiguous), a parse tree may have
a different probability among all trees than the string it generates has among
all strings.

Certain conditions need to be satisfied to make sure that most probably
derivations are likely to terminate. We assume that only such grammars are
considered in all problems and questions.

One of the most common applications of PCFGs is to describe natural lan-
guages where interpretation of a sentence may depend on its structure. For
instance, assigning likely the most meaning to a grammatically ambiguous sen-
tence Time flies like an arrow depends on what the most likely parsing of it
is.

If you are curious about the details and connections to other statistical
models, see a foundational work on PCFG [2].

Example 4. Consider the following PCFG, where each rule is followed by its

probability:

S → A 0.3 | B 0.7

A → aA 0.3 | bA 03 | a 04

B → aB 0.3 | bB 03 | b 04

This language contains all strings over the alphabet {a, b} except ε. However,
strings that end with a appear 30% of the time, and those that end with b

appear 70% of the time. Note that in this PCFG each string has a unique parse
tree.

Problem 8. Given the PCFG in Example 4, what is the probability of a parse
tree of the string a? Of the string aa? Of the string abb? Show your computa-
tions.

Problem 9. Develop a PCFG for a language of all strings over {a, b} in which
groups of repetition of the same symbol in a row even number of times (2 and
larger) appear 30% of the time groups of odd number of repetitions of the same
symbol. Within each group the probability of a sequence of length n is twice
higher than of all lengths higher than n combined. The probability of a string
with n groups of repetition is also twice higher than of all of the strings with
the larger number of groups combined. The empty string doesn’t appear in the
language.

Problem 10. Write a program that reads an input file name, an output file
name, and a number n. The file contains description of a PCFG in the following
format:

S:A 0.3

S:B 0.7

A:aA 0.3

A:bA 0.3

B:aB 0.3

B:bB 0.3

A:a 0.4

B:b 0.4

Rules are one per line in the same format as in Problem 6, but additionally each
rule is followed by its probability. You may assume that probabilities are valid,
i.e. add up to 1 for each non-terminal.

The program generates n strings in the language (with possible repetitions),
strings are listed in any order. Strings are printed to the output file 10 per line,
as in Problem 7.

The CYK algorithm directly generalizes to PCFGs: in addition to all possi-
ble parse trees it also computes the probabilities of each subtree rooted in each
encountered non-terminal and eventually of the entire parse trees. An example is
given here https://courses.cs.washington.edu/courses/cse590a/09wi/pcfg.pdf.
Note that the grammar must be in CNF. If it is given in a different from, prob-
abilities of rules must be recomputed when converting into CNF.

https://courses.cs.washington.edu/courses/cse590a/09wi/pcfg.pdf

Problem 11. Write a program that reads an input file name and a string.
The file contains PCFG rules, as in Problem 10. The grammar is given in

Chomsky normal form. The program outputs all possible parse trees (in
any format) or leftmost derivations for the given string, with their probabilities,
starting with the most probably one. If the string is not in the language, it
outputs “Not in the language”.

Try your program on the following grammar and the strings aab, abab, abb.

S:AB 1.0

A:a 0.6

A:AA 0.2

A:AB 0.2

B:b 0.5

B:AB 0.5

Problem 12. This problem is the opposite of the previous one: you are given
a thousand strings generated by a PCFG. However, the PCFG is given with-
out the probabilities. Based on the distribution of strings, approximate the
probabilities. The grammar is:

S:NM

S:MN

A:a

B:b

N:AP

N:BR

P:NA

R:NB

N:a

N:b

M:AM

M:BM

M:a

M:b

The output is given here: problem12.out.
You may use any methods you’d like. However, more general methods will

earn higher points. You may assume that any grammar given to you is in CNF.

References

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools (2Nd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[2] Zhiyi Chi. Statistical properties of probabilistic context-free grammars.
Comput. Linguist., 25(1):131–160, March 1999.

problem12.out

[3] Michael Sipser. Introduction to the Theory of Computation. Cengage Learn-
ing, Boston, MA, third edition, 2012.

