
Symmetric Operations on Domains of Size at Most 4

Zarathustra Brady and Holden Mui

January 15, 2021

Abstract

To convert a fractional solution to an instance of a constraint satisfaction problem into a solution, a
rounding scheme is needed, which can be described by a collection of symmetric operations with one of
each arity. An intriguing possibility, raised in a recent paper by Carvalho and Krokhin, would imply that
any clone of operations on a set D which contains symmetric operations of arities 1, 2, . . . , |D| contains
symmetric operations of all arities in the clone. If true, then it is possible to check whether any given
family of constraint satisfaction problems is solved by its linear programming relaxation.

We characterize all idempotent clones containing symmetric operations of arities 1, 2, . . . , |D| for all
sets D with size at most four and prove that each one contains symmetric operations of every arity,
proving the conjecture above for |D| ≤ 4.

1 Introduction

The Constraint Satisfaction Problem, commonly abbreviated as the CSP, is the decision problem where we
are given a list of variables and a list of constraints on the variables, and we must determine whether or not
there exists an assignment of the variables which satisfies every constraint. While this decision problem is
NP-hard in general, certain classes of CSPs can be solved in polynomial time. Among those are the CSPs
that are solved by their linear programming relaxation; that is, a “fractional solution” to an instance of such
a CSP can be rounded to a solution. Such CSPs have been characterized as the CSPs for which the clone of
operations preserving its relations contains symmetric operations of every arity. In this paper, we investigate
a conjecture that, if true, gives a sufficient condition for a clone to contain symmetric operations of every
arity.

Conjecture 1. Suppose a clone over a domain D contains symmetric operations of arities 1, 2, . . . , |D|.
Then it contains symmetric operations of every arity.

This conjecture is a weak form of an open problem mentioned in section 6 of [7]: its authors speculate
that a finite algebraic structure A has symmetric terms of every arity if and only if A has no subquotient B
such that the automorphism group of B contains a pair of automorphisms with no common fixed point.

In this paper, we prove Conjecture 1 for |D| ≤ 4.

Theorem 2. Suppose a clone over a domain D with |D| ≤ 4 contains symmetric operations of arities
1, 2, . . . , |D|. Then it contains symmetric operations of every arity.

In the appendix, we sketch a more ambitious conjecture about the solvability of certain types of weakly
consistent constraint satisfaction problems attached to an algebraic structure satisfying the assumption of
Conjecture 1.

1.1 Motivation

If Conjecture 1 is true, then it gives an efficient way of determining whether or not combinatorial puzzles
can be solved using systems of linear inequalities.

1

To understand Conjecture 1’s implications, it is helpful to characterize the types of combinatorial puzzles
we want to look at; a good example of such a puzzle is Sudoku. Sudoku is a constraint satisfaction problem
over the domain D = {1, 2, 3, 4, 5, 6, 7, 8, 9} with ten types of constraints. There is the 9-ary constraint
which asserts that its inputs are pairwise distinct, and there are nine unary constraints, each of the form
“this variable is equal to d” for some d ∈ D. Instances of this constraint satisfaction problem have 81
variables, and the variables that the constraints apply to depend on the specific instance. Other examples
of CSPs include HornSAT and 3Coloring: HornSAT is the constraint satisfaction problem where the task
is to determine whether or not a set of Horn clauses (implications) admits an assignment of the variables
satisfying each Horn clause, and 3Coloring is the constraint satisfaction problem whose task is to determine
whether or not a given graph admits a 3-coloring.

The linear programming relaxation of an instance of a CSP is, informally, the set of all locally consistent
probability distributions over its variables and constraint relations, and is defined by a collection of linear
inequalities (a rigorous but terse definition is given in section 2). A CSP is solved by its linear programming
relaxation iff there is a way to turn points in the linear programming relaxation of every instance of the CSP
to a solution of that CSP, known as a rounding scheme.

While finding solutions to instances of a general CSP is NP-hard, solving the linear programming relax-
ation of any CSP only takes polynomial time, so there is an efficient way to find a solution to an instance
of a CSP if it is solved by its linear programming relaxation. Usually this is not the case, but for these
special CSPs, local probability distributions of solutions, called fractional solutions, can be converted to true
solutions using the rounding scheme.

The CSPs solved by their linear programming relaxation have been characterized in [9]. They are precisely
the ones for which the clone of operations preserving each relation defining the CSP contains symmetric
operations of every arity.

Theorem 3 (Theorem 2 of [9]). The CSP defined by a collection of relations Γ is solved by the linear
programming relaxation if and only if the clone of operations that preserves each relation in Γ contains
symmetric operations of every arity.

An equivalent characterization of clones with symmetric operations of every arity appears in a recent
article by Butti and Dalmau about solving CSPs with distributed algorithms [6]. In their setup, each agent
has access to a single variable or to a single constraint, agents can communicate only when one owns a
constraint involving the variable owned by the other, and the agents are anonymous, so there is no obvious
way to elect a leader.

Theorem 4 (Theorem 6 of [6]). The CSP defined by a collection of relations Γ can be solved in the distributed
setting described above if and only if the clone of operations that preserves each relation in Γ contains
symmetric operations of every arity. If it can be solved in the distributed setting at all, then it can be solved
in this setting in polynomial time.

For brevity, we call such clones round, as they can be used to construct a rounding scheme that turns
fractional solutions into solutions of instances of CSPs. However, determining whether or not a given clone
is round is difficult (possibly undecidable); that is, unless Conjecture 1 is true.

Recall that Conjecture 1 states that the existence of symmetric operations of arities 1, 2, . . . , |D| is a
sufficient (and necessary, but this direction is obvious) condition for a clone to contain symmetric operations
of every arity. Equivalently, Conjecture 1 asserts that given |D| symmetric operations of arities 1, 2, . . . , |D|,
one can create a symmetric operation of any desired arity by composing the |D| “base” operations in some
way. If Conjecture 1 is true, then determining whether or not a clone is round becomes a finite case check!

Although Conjecture 1 remains an open problem in full generality, we prove Conjecture 1 for all clones
over a domain of size at most 4. We achieve this by classifying all minimal idempotent clones over a domain
of size at most 4 satisfying Conjecture 1’s hypothesis and proving that each one is round. It is our hope that
this classification will help future researchers form stronger hypotheses, verify their truth for a large number
of examples, and ultimately take steps closer towards a proof (or a disproof) of Conjecture 1.

2

1.2 Road Map

The remainder of our paper is organized as follows. In section 2, we go over definitions. In section 3,
we summarize related results. In section 4, we prove results that simplify the enumeration of all minimal
idempotent round clones over a domain of size at most four. In section 5, we enumerate all such clones.
In section 6, we sketch a plausible line of attack on the general case of Conjecture 1. In the appendix,
we describe connections between the linear programming relaxation of a CSP and certain weak consistency
conditions, and we conjecture a precise connection between them.

2 Definitions

2.1 Constraint Satisfaction Problems

A domain, denoted by the capital letter D, is a set of values a variable can be assigned to. A k-ary relation
R over a domain D is a subset of the k-fold Cartesian product Dk := D × . . . × D; k is known as the
constraint’s arity, denoted ar(R). A tuple (a1, . . . , ak) satisfies a relation R if (a1, . . . , ak) ∈ R. A constraint
is a pair consisting of a relation R and an ar(R)-tuple of variables. A constraint satisfaction problem is a pair
P = (D,Γ) where D is its domain and Γ is a set of relations over D. An instance of a constraint satisfaction
problem (D,Γ) is a pair I = (X,T) where

• X =
{
x1, . . . , x|X|

}
is a finite set of variables, and

• T is a set of constraints involving the variables in X, such that each constraint relation is an element
of Γ. Formally, T is a set of pairs (x, R), where R ∈ Γ and x ∈ Xar(R) is the tuple of variables the
relation R is applied to.

An assignment x1 = a1, . . ., xn = an of the variables to elements of D is a solution to that instance if,
for each pair (x, R) ∈ T , R is satisfied by the tuple x after replacing each xi in x with ai. The linear
programming relaxation of a k-ary relation R =

{
r1, . . . , r|R|

}
over a finite domain D =

{
d1, . . . , d|D|

}
is the

polyhedron in
(
R|D|

)k
defined by the set of all points((

(v1)d1 , (v1)d2 , . . . , (v1)d|D|
)
,(

(v2)d1 , (v2)d2 , . . . , (v2)d|D|
)
,

...(
(vk)d1 , (vk)d2 , . . . , (vk)d|D|

))
for which there exist reals pr1

, . . . , pr|R| such that

0 ≤ pr1
, . . . , pr|R| ≤ 1,∑

r∈R
pr = 1,

and
(vi)dj =

∑
r∈R|ri=dj

pr

3

for all 1 ≤ i ≤ k and 1 ≤ d ≤ |D|. The linear programming relaxation of an instance I = (X,T) of a CSP

over a domain D is the polyhedron in
(
R|D|

)|X|
defined by the set of all points((

(x1)d1 , (x1)d2 , . . . , (x1)d|D|
)
,(

(x2)d1 , (x2)d2 , . . . , (x2)d|D|
)
,

...((
x|X|

)
d1
,
(
x|X|

)
d2
, . . . ,

(
x|X|

)
d|D|

))
such that for each pair (x, R) ∈ T , x lies in R’s linear programming relaxation when each variable in x is
replaced by its corresponding |D|-tuple. A fractional solution of an instance of a CSP is a point inside its
linear programming relaxation. We say that a CSP is solved by its linear programming relaxation if, for
every instance I of the CSP, the existence of a fractional solution implies the existence of a solution.

Let P = (D,Γ) be a constraint satisfaction problem, let X =
{
x1, . . . , x|X|

}
be a set of variables, and let

I =
(
X, {(x1, R1), . . . , (x|R|, R|R|)}

)
be an instance of P . A step s = (k, (i, j)) in I is defined to be a constraint relation (xk, Rk) and a pair of
integers 1 ≤ i, j ≤ ar(Rk); we think of the step s as connecting the variable (xk)i to the variable (xk)j . A
cycle p in I is a finite sequence of steps

s1, . . . , s|p| = (k1, (i1, j1)) , . . . ,
(
k|p|, (i|p|, j|p|)

)
for which (xk1)j1 = (xk2)i2 , (xk2)j2 = (xk3)i3 , (xk|p|−1

)j|p|−1
= (xk|p|)i|p| , and (xk|p|)j|p| = (xk1)i1 , where

the subscript n on each (xi)n represents the variable in X corresponding to the nth coordinate of xi. If B
is a subset of D and s = (k, (i, j)) is a step in I, then we define the sum B + s as

B + s := {d ∈ D | ∃a ∈ Rk s.t. ai ∈ B ∧ aj = d}

and the sum B − s as
B + s := {d ∈ D | ∃a ∈ Rk s.t. aj ∈ B ∧ ai = d},

where the subscript ai denotes the ith coordinate of the tuple a. If p = s1, . . . , s|p| is a cycle in I, then we
define the sum B + p as

B + p := B + s1 + . . .+ sp

and the sum B − p as
B − p := B − sp − . . .− s1.

2.2 Clones

Let D be some domain. An operation f is a function f : Dk → D for some positive integer k, known as its
arity. An operation with arity 1 is unary, an operation with arity 2 is binary, and an operation with arity 3
is ternary. In general, an operation f with arity k is k-ary, and its arity is denoted ar(f). The output of an
operation f with inputs x1, x2, . . . , xk is denoted

f(x1, x2, . . . , xk).

Let f : Dk → D be an operation. We extend f to an operation on vectors inDn by applying it coordinatewise,
i.e.,

f

(a1)1

(a1)2

...
(a1)n

 ,

(a2)1

(a2)2

...
(a2)n

 , . . . ,

(ak)1

(ak)2

...
(ak)n

 :=

f((a1)1, (a2)1, . . . , (ak)1)
f((a1)2, (a2)2, . . . , (ak)2)

...
f((a1)n, (a2)n, . . . , (ak)n)

 .

4

A k-ary operation f : Dk → D preserves a relation R if

f(r1, . . . , rk) ∈ R

for all r1, . . . , rk ∈ R (note that the arity of f has nothing to do with the arity of R). The relation generated
by f with generators x1,x2, . . . is the smallest relation containing x1,x2, . . . that f preserves, and is denoted

Sgf(x1,x2, . . .) .

For every k ∈ Z+ and integer 1 ≤ i ≤ k, the projection operation πki : Dk → D over a domain D is
defined as

πki (d1, . . . , dk) := di.

Note that π1
1 is the identity operation over D. A clone over a domain D is a set O of finite-arity operations

that contains every projection operation over D and is closed under multiple composition; that is, if f ∈ O
is an m-ary operation and g1, . . . , gm ∈ O are n-ary operations, then the operation

h(x1, . . . , xn) := f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

is also in O. Note that O is closed under any “natural” way of composing operations because every projection
operation is in O. A clone is compatible with a cyclic automorphism if there is a renaming defined by a
cyclic permutation of the domain elements such that the renamed clone contains the same operations as the
original clone.

A subclone O′ of a clone O is a subset of O that is a clone. The subclone is proper if O′ 6= O. The clone
generated by a set of operations {f1, f2, . . .} is the smallest clone containing {f1, f2, . . .} and is denoted

〈f1, f2, . . .〉 .

An operation f over a domain D is idempotent if

f(x, . . . , x︸ ︷︷ ︸
ar(f) x’s

) = x

for all x ∈ D. A clone O is idempotent if every operation in O is idempotent. A k-ary operation f is
symmetric if

f(x1, . . . , xk) = f
(
xσ(1), . . . , xσ(k)

)
for all x1, . . . , xk ∈ D and permutations σ : {1, . . . , k} → {1, . . . , k}. We call a clone round if it contains
symmetric operations of every arity. We call a clone over a domain D semi-round if it contains symmetric
operations of arities 1, 2, . . . , |D|. The relation generated by a clone O with generators x1,x2, . . . is the
smallest relation that every operation in O preserves, and it is denoted

SgO(x1,x2, . . .) .

Let P be a property of a clone. We say a clone is minimal with respect to property P if it does not
contain a proper subclone with property P . For example, a clone is minimally round if it does not contain
a proper round subclone, and a clone is minimally semi-round if it does not contain a proper semi-round
subclone. Lastly, a minimal idempotent round clone is an idempotent clone that is minimally round, and a
minimal idempotent semi-round clone is an idempotent clone that is minimally semi-round.

2.3 Algebraic concepts

An algebraic structure A = (A, f1, f2, . . .), also known as an algebra, is a domain A, which we call the
underlying set of A, with some operations fi : Aki → A, which we call the basic operations of A. Algebraic
structures will always be written in blackboard bold. The sequence of arities k1, k2, . . . is called the signature
of the algebra A.

5

Given an algebraic structure A = (A, f1, f2, . . .), we define the power Am = (Am, f1, f2, . . .) to be an
algebraic structure of the same signature, where each fi acts coordinatewise on Am. A subalgebra B of an
algebra A, denoted as B ≤ A, consists of a subset B ⊆ A closed under the basic operations of A, and basic
operations which are restrictions of the basic operations of A to B. If B is any subset of Am, then we define
the subalgebra generated by B, denoted SgAm(B), to be the smallest subalgebra of Am which contains B.

The clone of an algebraic structure A, written Clo(A), is the clone generated by the basic operations of
A. When we study algebraic structures, we will mainly be interested in properties which only depend on
their clones instead of their basic operations.

A relation R ≤ Am on an algebra A will always refer to a subalgebra of Am for some integer m, known
as the arity of R. Alternatively, a relation R ≤ Am is a subset of Am which is compatible with the basic
operations of A; that is, for each basic operation fi of arity ki and for every choice of ki tuples a1, . . . ,aki ∈ R,
we have f(a1, ...,aki) ∈ R, where f acts coordinatewise. Whether or not a given set R ⊆ Am defines a relation
compatible with the basic operations of A only depends on the clone of A.

A congruence θ on an algebraic structure A is an equivalence relation θ ≤ A2 compatible with the basic
operations of A, and the quotient A/θ is an algebraic structure with domain A/θ with the basic operations
defined in the natural way.

If R ≤ Am is a relation and I is a subset of the coordinates {1, . . . ,m}, then we define the existential
projection πI(R) as

πI(R) :=
{
x ∈ AI | ∃y ∈ R s.t. yi = xi ∀i ∈ I

}
.

For brevity, define πi,j,...(R) to be π{i,j,...}(R). A relation R ≤ Am is subdirect, denoted R ≤sd Am, if the ith

projection πi(R) is equal to A for every integer 1 ≤ i ≤ m.
If R,S ≤ A2 are binary relations, then we define their composition as

R ◦ S :=
{

(x, z) ∈ A2 | ∃y ∈ A s.t. (x, y) ∈ R ∧ (y, z) ∈ S
}
.

We define the reverse of the binary relation R, denoted R−, as

R− := {(y, x) ∈ A2 | (x, y) ∈ R}.

If R ≤sd A2, then we define the linking congruence of R on the first coordinate to be the congruence⋃
n≥1

(R ◦ R−)◦n.

The linking congruence on the second coordinate is defined similarly, with R and R− swapped. If B ⊆ A is
a set and R ≤ A2 is a binary relation, then we define the sum B + R as

B + R := {y ∈ A | ∃x ∈ B s.t. (x, y) ∈ R}.

and we define the difference B − R as

B − R := B + R− = {x ∈ A | ∃y ∈ B s.t. (x, y) ∈ R}.

If A is a collection of algebraic structures which all have the same signature, then we define P (A) to
be the collection of all products of algebras in A, S(A) to be the collection of all subalgebras of algebras
in A, and H(A) to be the collection of all homomorphic images of algebras in A (which is the collection
of all algebras which are isomorphic to the quotient of some algebra A in A by some congruence on A). If
B ∈ HS(A), then we call B a subquotient of A.

A clone is Taylor if it contains idempotent operations that satisfy some functional equation that cannot
be satisfied by projection operations. An algebra is called Taylor if its clone is Taylor. By Birkhoff’s HSP
theorem, an idempotent algebra is Taylor if and only if HSP (A) does not contain a two-element algebra
with each of its basic operations equal to a projection.

6

2.4 Miscellaneous

For sets A and B, the set A+B is defined as

A+B := {a+ b | a ∈ A, b ∈ B}.

The function sgn : R→ R is defined as

sgn(x) :=

−1 if x < 0

0 if x = 0

1 if x > 0.

For a (k − 1)-ary operation f , we define cf : Dk → Dk as

cf ((x1, . . . , xk)) := (f(x2, x3, . . . , xk−1, xk),

f(x1, x3, . . . , xk−1, xk),

f(x1, x2, . . . , xk−1, xk),

...,

f(x1, x2, x3, . . . , xk−1)).

We also define
cf (x1, . . . , xk) := cf ((x1, . . . , xk))

for convenience. Additionally, given a tuple x = (x1, . . . , xk) and a k-ary operation f , define

f(x) := f(x1, . . . , xk).

We say an operation f over a domain D acts like a height-1 semilattice over a subset D′ ⊆ D of its
domain if it is idempotent and

f
(
x1, . . . , xar(f)

)
is the same fixed value c ∈ D′ over all non-constant tuples

(
x1, . . . , xar(f)

)
∈ (D′)ar(f). We say a clone

acts like a height-1 semilattice over a subset D′ ⊆ D of its domain if all its operations act like a height-1
semilattice over D′, and the constant c is the same across all operations.

We say a binary operation f over a domain D acts linearly over a subset D′ ⊆ D if |D′| is odd and
the domain elements of f , when restricted to the domain D′, can be renamed such that the new operation
f ′ : (Z/|D′|Z)2 → Z/|D′|Z satisfies

f ′(x, y) =
x+ y

2
(mod |D′|)

for all x, y ∈ Z/|D′|Z.
A binary operation f over a domain D is a semilattice operation if there exists a poset on D such that

f represents “join”; that is,
f(x, y) = x ∧ y

for all x, y ∈ D.
Lastly, for all a, b, c ∈ {−, 0,+} we define fabc to be the symmetric binary operation

fabc − 0 +
− − c b
0 c 0 a
+ b a +

,

and for a, b, c, d ∈ {0, 1, 2, 3} we define fabcdef to be the symmetric binary operation

7

fabcdef 0 1 2 3
0 0 a b c
1 a 1 d e
2 b d 2 f
3 c e f 3

.

3 Related Results

Recall that our goal is to verify Conjecture 1 for all clones over a domain of size 4 or less; that is, our goal
is to prove that all semi-round clones over a domain of size at most 4 are round.

The relevance of this problem to CSPs has been demonstrated in [9]. The authors prove that a CSP is
solved by its linear programming relaxation if and only if the clone of all operations preserving the relations
defining the CSP is round.

A related result about cyclic operations is proved in [1]. They prove that every Taylor algebra contains
a cyclic operation of every prime arity greater than the size of its domain.

It turns out that the |D| bound is tight when |D| is prime.

Proposition 5. Let D be a domain with prime cardinality. Then there exists a clone O over D containing
symmetric operations of arities 1, 2, . . . , |D| − 1 that is not round.

Proof. By construction, we can force O to be compatible a cyclic automorphism. Let p be the cardinality of
the domain, let D = Z/pZ, and define the k-ary operation fk for k ∈ {1, 2, . . . , |D| − 1} to be any symmetric
operation satisfying

fk(x1 + c, . . . , xk + c) = fk(x1, . . . , xk) + c

for all (x1, . . . , xk) ∈ Dk and c ∈ D. For instance, we can take

fk(x1, ..., xk) :=
x1 + · · ·+ xk

k
(mod p).

Then
〈f1, f2, . . . , fp−1〉

is compatible with a cyclic automorphism, so no p-ary symmetric operation fp can exist, as

fp (x1, . . . , xp)

cannot be preserved by the automorphism.

Remark 6 (Lemma 4 of [7]). The theorem statement is false if |D| is not required to be prime; the
construction in [7] proves that a 4-ary symmetric operation f4(w, x, y, z) can be constructed from a binary
symmetric operation f2(x, y) and a ternary symmetric operation f3(x, y, z):

f4(w, x, y, z) = f3(f2(f2(w, x), f2(y, z)),

f2(f2(w, y), f2(x, z)),

f2(f2(w, z), f2(x, y)))

is symmetric.

8

4 Preliminary Theorems

These results will help us classify the semi-round clones over a domain of size at most four, up to a renaming
of the domain elements.

Theorem 7. Let Σ be a set of functional equations. Then every clone O containing operations that si-
multaneously satisfy each functional equation in Σ contains a minimal subclone containing operations that
simultaneously satisfy each functional equation in Σ.

Proof. For a set Σ1 of functional equations, let property PΣ1 of a clone O denote the assertion that O
contains a set of operations simultaneously satisfying each equation in Σ1.

For any finite subset Σ′ ⊆ Σ, there can only be finitely many combinations of operations in O that satisfy
Σ, since the domain is finite. Therefore, the intersection of every chain

O1) O2) . . .

of clones with property PΣ′ also has property PΣ′ for every finite subset Σ′ ⊆ Σ. By the logical compactness
theorem, O has property PΣ if O has property PΣ′ for every finite subset Σ′ ⊆ Σ, which allows us to conclude
that the intersection of every chain

O1) O2) . . .

of clones with property PΣ also has property PΣ. Therefore, every chain in the poset of subclones of O with
property PΣ, ordered by reverse inclusion, has an upper bound, so Zorn’s lemma implies the existence of a
minimal clone with property PΣ.

Corollary 8. Every round clone contains a minimal round subclone.

Proof. Let Σ be the set of functional equations

f2(x, y) = f2(y, x)

f3(x, y, z) = f3(x, z, y) = f3(y, x, z) = f3(y, z, x) = f3(z, x, y) = f3(z, y, x)

...,

where each line asserts the existence of a symmetric operation of some arity. Then PΣ is equivalent to
roundness, so there exists a minimal round subclone by Theorem 7.

Corollary 9. Every semi-round clone contains a minimal semi-round subclone.

Proof. This is the same as the proof of Corollary 8, except the set of equations Σ asserts the existence of
symmetric operations of arities 1, 2, . . . , |D|, where D is the domain, instead of symmetric operations of every
arity.

Theorem 10. Suppose O is a minimal counterexample to Conjecture 1 over the smallest possible domain.
Then O is idempotent.

Proof. This is a corollary of a folklore result that seems to have first shown up in the context of CSPs in
[5], but we reproduce it here. It suffices to show that the only unary operation in a minimal counterexample
O is π1

1 . To do this, let the domain be D and let fk be a k-ary symmetric operation in O for each
k ∈ {1, 2, . . . , |D|}. If there is a non-identity unary operation u(x) ∈ O, then either some unary operation is
not injective or all unary operations are permutations.

If all unary operations are permutations, then one can find idempotent symmetric operations of arities
1, 2, . . . , |D|. To do this, define

uk(x) = fk(x, . . . , x︸ ︷︷ ︸
k times

),

9

which must be a permutation. Then uNkk (x) = x for some positive integer Nk. Define

gk(x1, . . . , xk) = fk

(
uNk−1
k (x1), . . . , uNk−1

k (xk)
)

and note that gk is idempotent for each k. Finally,

〈g1, . . . , gk〉 (O

is an idempotent semi-round proper subclone of O which is also a counterexample to the conjecture, contra-
dicting the minimality of O.

If there is a unary operation u(x) that is not injective, then u2N (x) = uN (x) for some positive integer
N , and uN (a) = uN (b) = a for some distinct a, b ∈ D. Define

gk(x1, . . . , xk) = uN
(
fk
(
uN (x1), . . . , uN (xk)

))
and note that each gk is a symmetric operation that acts on a and b the same way; that is, replacing a with
b or b with a in gk’s input will not change its output. Since

〈g1, . . . , gk〉 ⊆ O

is effectively a clone on the domain D \{b}, O is not minimal with respect to domain size, contradiction.

Proposition 11. Let f be a semilattice operation. Then 〈f〉 is round.

Proof. Consider the poset determined by f . By induction, the symmetric k-ary operation fk that returns
the greatest upper bound of its k inputs is in the clone.

Indeed, f1 = π1
1 and f2 = f . Now

fk+1(x1, . . . , xk+1) = f2(fk(x1, . . . , xk), xk+1)

by induction.

Theorem 12. Let O be an idempotent round clone over a domain D, and suppose some binary operation
in O acts like a height-1 semilattice over some subset D′ ⊆ D. Then O contains a round subclone that acts
like a height-1 semilattice over D′.

Proof. Let t2 be the given binary operation, and for each k ∈ Z+, let fk denote a k-ary symmetric operation
in O. Then the binary operation

g2(x, y) = f2(t2(x, y), t2(y, x))

is symmetric and acts like a height-1 semilattice over D′. By induction, the k-ary operation

gk(x1, . . . , xk) = fk

(
c2gk−1

(x1, . . . , xk)
)

is symmetric and acts like a height-1 semilattice over D′. (Recall that cgk−1
is the function that takes a

k-tuple and returns the k-tuple whose ith entry is gk−1 applied on the k−1 variables not in the ith coordinate,
for all 1 ≤ i ≤ k.) Then

〈g1, g2, . . .〉

is a round subclone of O that acts like a height-1 semilattice over D′, as desired.

Corollary 13. Let O be an idempotent semi-round clone over a domain D, and suppose some binary
operation in O acts like a height-1 semilattice over some subset D′ ⊆ D. Then O contains a semi-round
subclone that acts like a height-1 semilattice over D′.

Proof. This is the essentially the same as the proof of Theorem 12, except the induction stops after con-
structing the |D|-ary symmetric operation.

10

Theorem 14. Let O be an idempotent clone over a domain D with a binary symmetric operation f2 that
acts linearly on a subset D′ ⊆ D with odd prime cardinality, and suppose O contains a |D′|-ary symmetric
operation f|D′|. Then one can find symmetric operations g1, g2, . . . ∈ O and a constant c such that

gk(x1, . . . , xk) =

{
x if {x1, x2, . . . , xk} = {x}
c otherwise

for all k ∈ Z+ and tuples (x1, x2, . . . , xk) ∈ (D′)k.

Proof. We prove this by induction on k. Define c := f|D′|(d1, . . . , d|D′|) where D′ = {d1, . . . , d|D′|}, and for
k = 1 note g1 = π1

1 . For the k = 2 construction, assume D′ = {0, 1, . . . , p− 1} for some odd prime p. Since
f2(x, y) = x+y

2 (mod p) over D′, one can construct any operation that acts like

a

2b
x+

2b − a
2b

y (mod p)

over D′ by composing f2 with itself for any a, b ∈ Z+ with 0 ≤ a ≤ 2b; in particular, by choosing b = p− 1,
the operation

ax− (a− 1)y (mod p)

can be constructed using only f2 for any a ∈ Z, by Fermat’s Little Theorem. Finally, define

g2(x, y) := fk(x, 2x− y, 3x− 2y, . . . , px− (p− 1)y) (mod p);

this works because

{x, 2x− y, 3x− 2y, . . . , px− (p− 1)y} = {0, 1, . . . , p− 1} (mod p)

whenever x− y 6= 0, by the primality of p. To construct gk+1 given gk, define

gk+1(x1, x2, . . . , xk+1) := g2(gk(x1, x2, . . . , xk),

gk(f2(x1, xk+1), f2(x2, xk+1), . . . , f2(xk, xk+1))).

This works by casework on whether or not x1 = x2 = . . . = xk; if they are not all equal, then both arguments
of g2 are c, and if they are all equal, then both arguments of g2 are distinct elements of D′.

Lemma 15. Suppose a semi-round clone O over a domain D with |D| ≤ 4 contains a binary symmetric
operation that acts linearly on a three-element set D′ ⊆ D. Then O is not minimally semi-round.

Proof. Let c be the constant guaranteed by Theorem 14. If c ∈ D′ then we are done by Corollary 13. Thus
we can assume D = {0, 1, 2, 3}, D′ = {0, 1, 2}, and c = 3.

The binary symmetric operation that acts linearly over D′ must be of the form

f21a0bc 0 1 2 3
0 0 2 1 a
1 2 1 0 b
2 1 0 2 c
3 a b c 3

and g2 must be of the form

f33d3ef 0 1 2 3
0 0 3 3 d
1 3 1 3 e
2 3 3 2 f
3 d e f 3

.

11

If at least two of d, e, f are equal to 3, then f33d3ef acts like a height-1 semilattice over a subset D′ ⊂ D
with size 3, so we can apply Corollary 13 to show that O is not minimally semi-round. The set D′ contains
3 and the corresponding domain elements for the two of d, e, f that are equal to 3.

If there is at most one 3 among d, e, and f , we can assume there is at most one 3 among a, b, and c by
Corollary 13 on a two-element subset of D; otherwise O is not minimally semi-round. If a ∈ {1, 2} then one
can check that [

a
a

]
∈ SgO

([
1
2

]
,

[
2
1

])
.

Thus, some binary operation acts like a height-1 semilattice over {1, 2}, so O is not minimally semi-round.
Similarly, if b ∈ {0, 2} or c ∈ {0, 1} then O is not minimally semi-round.

If exactly one of a, b and c is equal to 3, then without loss of generality assume c = 3, so the binary
operation that acts linearly over D′ is forced to be f210013 :

f210013 0 1 2 3
0 0 2 1 0
1 2 1 0 1
2 1 0 2 3
3 0 1 3 3

.

Since we can assume a /∈ {1, 2} and b /∈ {0, 2}, by Corollary 13 either O is not minimally semi-round, or the
binary symmetric operation f330313 guaranteed by Theorem 14 is in O:

f330313 0 1 2 3
0 0 3 3 0
1 3 1 3 1
2 3 3 2 3
3 0 1 3 3

.

Then one can check that [
1
1

]
∈ SgO

([
1
2

]
,

[
2
1

])
so O is not minimally semi-round by Corollary 13.

If 3 /∈ {a, b, c}, then the binary operation that acts linearly over D′ is forced to be f210012:

f210012 0 1 2 3
0 0 2 1 0
1 2 1 0 1
2 1 0 2 2
3 0 1 2 3

.

By Corollary 13 either O is not minimally semi-round, or the binary symmetric operation f330312 guaranteed
by Theorem 14 is in O:

f330312 0 1 2 3
0 0 3 3 0
1 3 1 3 1
2 3 3 2 2
3 0 1 2 3

.

Then
f330312(f330312(x, y), f330312(f330312(x, z), f330312(y, z)))

is a ternary symmetric operation, so
〈f330312〉 (O

is a semi-round clone by Remark 6, and one can check that it does not contain a symmetric binary operation
other than f330312.

12

5 Classification

In this section, we present a complete catalogue of every minimal idempotent semi-round clone over a domain
of size at most 4, up to a renaming of the domain elements. Additionally, we prove that every semi-round
clone over a domain of size 4 is also round. Non-idempotent clones are not considered, as Theorem 10 states
that a minimal counterexample to the conjecture is idempotent, and non-minimal round clones are not
considered, as Corollary 9 guarantees the existence of a minimally semi-round subclone of every semi-round
clone.

5.1 Domain of Size 1

There is only one clone over a domain of size 1, which is both semi-round and round.

5.2 Domain of Size 2

There is only one minimal semi-round clone over a domain of size 2, up to a renaming of the domain elements.
To prove this, let D = {0, 1} and let f2(x, y) be the clone’s binary symmetric operation. We can, without
loss of generality, assume that f2(x, y) = xy:

f2 0 1
0 0 0
1 0 1

.

Then 〈f2〉 is round by Proposition 11 because f2 is a semilattice operation, so it is the unique minimal
semi-round clone over {0, 1}, up to a renaming of the domain elements.

5.3 Domain of Size 3

Assume D = {−1, 0, 1}, which we abbreviate as {−, 0,+}. By a finite case check, any minimal clone must
contain, up to a renaming of the domain elements, one of following symmetric binary operations:

f000 − 0 +
− − 0 0
0 0 0 0
+ 0 0 +

f++0 − 0 +
− − 0 +
0 0 0 +
+ + + +

f+00 − 0 +
− − 0 0
0 0 0 +
+ 0 + +

f00+ − 0 +
− − + 0
0 + 0 0
+ 0 0 +

f+0− − 0 +
− − − 0
0 − 0 +
+ 0 + +

f+−0 − 0 +
− − 0 −
0 0 0 +
+ − + +

f−0+ − 0 +
− − + 0
0 + 0 −
+ 0 − +

.

To determine the minimal round clones, we casework on the symmetric binary operation.

• 〈f000〉 is minimally round by Proposition 11, since f000 is a semilattice operation.

• 〈f++0〉 is minimally round by Proposition 11, since f++0 is a semilattice operation.

13

• 〈f++0〉 ⊆ 〈f+00〉, so f+00 does not need to be considered, since

f+00(f+00(x, f+00(x, y)), f+00(y, f+00(x, y))) = f++0(x, y).

• 〈f++0〉 ⊆ 〈f00+〉, so f00+ does not need to be considered, since

f00+(f00+(x, f00+(x, y)), f00+(y, f00+(x, y))) = f++0(x, y).

• 〈f+0−〉 is minimally semi-round and minimally round, since all operations of the form

fk(x1, . . . , xk) = sgn(x1 + . . .+ xk)

are in 〈f−+0〉. For k = 1 take f1 = π1
1 , and for k = 2 take f2 = f−+0. To construct fk+1 inductively,

the identity

fk+1(x1, . . . , xk+1) = f2(fk(fk(x2, x3, . . . , xk, xk+1),

fk(x1, x3, . . . , xk, xk+1),

fk(x1, x2, . . . , xk, xk+1),

...,

fk(x1, x2, x3, . . . , xk+1)), fk(x1, . . . , xk))

will suffice.

• 〈f+−0〉 is not semi-round because the existence of a symmetric ternary operation is forbidden by the
automorphism sending 0 to +, + to −, and − to 0. Hence, we will determine all minimal semi-round
clones of the form 〈f+−0, g〉, where g is some symmetric idempotent ternary operation.

By Corollary 13 there must be a symmetric ternary operation in O of the form

f3(x, y, z) =

{
f+−0(d1, d2) if ∃ (d1, d2 ∈ D) {x, y, z} = {d1, d2}
c if {x, y, z} = D

for some c ∈ D; without loss of generality assume c = 0. Now, 〈f+−0, f3〉 is round because each
operation of the form

fk(x1, . . . , xk) :=

{
f+−0(d1, d2) if ∃ (d1, d2 ∈ D) {x1, . . . , xk} = {d1, d2}
0 otherwise

is in 〈f+−0, f3〉. Note that the base cases k ∈ {1, 2, 3} are true, so it suffices to construct fk inductively.
Define x = (x1, . . . , xk+1), and define y = cNfk(x), y′ = cNfk(f2(x,y)), and y′′ = cNfk(f2(x,y′)) for a
sufficiently large integer N . Then

fk+1(x) = f3(y,y′,y′′)1,

where the subscript denotes the first element of the tuple; this works because y = cNfk(x) is a constant
tuple for sufficiently large N , so {y,y′,y′′} = {(−, . . . ,−), (0, . . . , 0), (+, . . . ,+)} or y = y′ = y′′.

• No clone containing f−0+ is minimally semi-round by Lemma 15, so this case does not need to be
considered.

14

5.4 Domain of Size 4

The characterization of all minimal idempotent semi-round clones over a domain of size 4 will be done

through casework on the symmetric binary operation it contains. There are 4(4
2) = 4096 such operations but

they fall into 192 distinct equivalence classes under isomorphism; representative elements are listed below.

f000000, f000001, f000002, f000011, f000012, f000013, f000021, f000023, f000033, f000111,

f000112, f000121, f000122, f000123, f000132, f000321, f001000, f001001, f001002, f001003,

f001010, f001011, f001012, f001013, f001020, f001021, f001022, f001023, f001030, f001031,

f001032, f001033, f001100, f001101, f001102, f001103, f001110, f001111, f001112, f001113,

f001120, f001121, f001122, f001123, f001130, f001131, f001132, f001133, f001200, f001201,

f001202, f001203, f001210, f001211, f001212, f001213, f001220, f001221, f001222, f001223,

f001230, f001231, f001232, f001233, f001300, f001301, f001302, f001303, f001310, f001311,

f001312, f001313, f001320, f001321, f001322, f001323, f001330, f001331, f001332, f003000,

f003001, f003002, f003011, f003012, f003013, f003021, f003100, f003101, f003102, f003110,

f003112, f003113, f003120, f003121, f003122, f003300, f003301, f003302, f003311, f003312,

f003321, f011000, f011001, f011002, f011010, f011011, f011012, f011013, f011020, f011021,

f011022, f011023, f011030, f011031, f011032, f011120, f011121, f011122, f011123, f011130,

f011131, f011132, f011220, f011223, f011230, f011231, f011320, f011321, f011322, f012000,

f012001, f012002, f012003, f012010, f012011, f012012, f012013, f012020, f012021, f012022,

f012030, f012031, f012032, f012100, f012101, f012102, f012103, f012120, f012121, f012122,

f012130, f012131, f012132, f012200, f012203, f012210, f012213, f012230, f012300, f012301,

f012302, f012310, f012311, f012313, f012320, f012321, f012330, f013002, f013010, f013011,

f013012, f013021, f013022, f013102, f013310, f013321, f022101, f022301, f022321, f023321,

f032000, f032001, f032020, f032021, f032030, f032230, f032320, f032321, f211000, f211020,

f211300, f211301.

Many of these operations do not need to be considered because the clones they generate contain other
binary operations. For example, only operations in the image of repeated composition of the map

f(a, b) 7→ f(f(a, f(a, b)), f(b, f(a, b)))

need to be considered, which results in the following 37 operations:

f000000, f000002, f000012, f000013, f000033, f000111, f000112, f000123, f000132, f000321,

f001030, f001031, f001032, f001033, f001130, f001132, f001133, f001230, f001231, f001232,

f001233, f003012, f003013, f003112, f003113, f003312, f003321, f011231, f011321, f013310,

f022101, f023321, f032230, f032320, f032321, f211000, f211020.

Under the map
f(a, b) 7→ f(f(a, f(a, f(a, b))), f(b, f(b, f(a, b))))

the operations f001030, f001130, f001230, f011321, f013310 can be removed from the list. Similarly, under the
map

f(a, b) 7→ f(f(a, f(b, f(a, b))), f(b, f(a, f(a, b))))

the operations f211000 and f022101 can be removed, and f211020 can be removed by considering the map

f(a, b) 7→ f(a, f(a, f(b, f(b, f(a, b))))).

15

Lastly, the operations f000321, f003321, f023321, f032230, f032320, and f032321 all act linearly over a three-element
subset of their domain, so by Lemma 15 they don’t need to be considered. Therefore, only the following 23
operations need to be considered for analysis:

f000000, f000002, f000012, f000013, f000033, f000111, f000112, f000123, f000132, f001031,

f001032, f001033, f001132, f001133, f001231, f001232, f001233, f003012, f003013, f003112,

f003113, f003312, f011231.

Sixteen of these operations already generate minimal round clones. The following five operations generate
round clones by Proposition 11 because they are semilattices:

f000000 0 1 2 3
0 0 0 0 0
1 0 1 0 0
2 0 0 2 0
3 0 0 0 3

f000002 0 1 2 3
0 0 0 0 0
1 0 1 0 0
2 0 0 2 2
3 0 0 2 3

f000012 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

f000111 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 2 1
3 0 1 1 3

f000112 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 2 2
3 0 1 2 3

.

The following eight operations also generate round clones:

f000013 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 3
3 0 1 3 3

f000033 0 1 2 3
0 0 0 0 0
1 0 1 0 3
2 0 0 2 3
3 0 3 3 3

f000123 0 1 2 3
0 0 0 0 0
1 0 1 1 2
2 0 1 2 3
3 0 2 3 3

f001031 0 1 2 3
0 0 0 0 1
1 0 1 0 3
2 0 0 2 1
3 1 3 1 3

f001133 0 1 2 3
0 0 0 0 1
1 0 1 1 3
2 0 1 2 3
3 1 3 3 3

f001231 0 1 2 3
0 0 0 0 1
1 0 1 2 3
2 0 2 2 1
3 1 3 1 3

f001233 0 1 2 3
0 0 0 0 1
1 0 1 2 3
2 0 2 2 3
3 1 3 3 3

f011231 0 1 2 3
0 0 0 1 1
1 0 1 2 3
2 1 2 2 1
3 1 3 1 3

.

16

For each of these operations f , the (k + 1)-ary operation

fk+1(x1, . . . , xk+1) := f2(fk(fk(x2, x3, . . . , xk, xk+1),

fk(x1, x3, . . . , xk, xk+1),

fk(x1, x2, . . . , xk, xk+1),

...,

fk(x1, x2, x3, . . . , xk+1)), fk(x1, . . . , xk)),

where f2 = f , is symmetric; this is similar to the f+0− case from the domain of size 3 enumeration. Lastly,
the following three operations generate round clones:

f001032 0 1 2 3
0 0 0 0 1
1 0 1 0 3
2 0 0 2 2
3 1 3 2 3

f001033 0 1 2 3
0 0 0 0 1
1 0 1 0 3
2 0 0 2 3
3 1 3 3 3

f001232 0 1 2 3
0 0 0 0 1
1 0 1 2 3
2 0 2 2 2
3 1 3 2 3

.

For each of these operations, a (k+1)-ary symmetric operation fk+1 can be constructed through the following
induction, where

(y1, . . . , yk+1) = cNfk(x1, . . . , xk+1)

for a sufficiently large integer N .

fk+1(x1, . . . , xk+1) := f2(fk(fk(y2, y3, . . . , yk, yk+1),

fk(y1, y3, . . . , yk, yk+1),

fk(y1, y2, . . . , yk, yk+1),

...,

fk(y1, y2, y3, . . . , yk+1)), fk(y1, . . . , yk)).

This works because (y1, . . . , yk+1) always lies in (D′)k+1 for some three-element subset D′ (D for sufficiently
large N :

• For 〈f001032〉, repeatedly applying cfk to the tuple (x1, . . . , xk+1) will always result in an element of
{0, 1, 3}k+1, unless (x1, . . . , xk+1) ∈ {2, 3}k+1.

• For 〈f001033〉, repeatedly applying cfk to the tuple (x1, . . . , xk+1) will always result in an element of
{0, 1, 3}k+1, unless (x1, . . . , xk+1) = (2, . . . , 2).

• For 〈f001232〉, repeatedly applying cfk to the tuple (x1, . . . , xk+1) will always result in an element of
{0, 1, 2}k+1, unless (x1, . . . , xk+1) ∈ {1, 3}k+1.

The following five operations do not generate clones with a symmetric ternary operation, but they
generate round clones when symmetric ternary operations are added:

17

f000132 0 1 2 3
0 0 0 0 0
1 0 1 1 3
2 0 1 2 2
3 0 3 2 3

f003012 0 1 2 3
0 0 0 0 3
1 0 1 0 1
2 0 0 2 2
3 3 1 2 3

f003013 0 1 2 3
0 0 0 0 3
1 0 1 0 1
2 0 0 2 3
3 3 1 3 3

f003112 0 1 2 3
0 0 0 0 3
1 0 1 1 1
2 0 1 2 2
3 3 1 2 3

f003113 0 1 2 3
0 0 0 0 3
1 0 1 1 1
2 0 1 2 3
3 3 1 3 3

.

We casework on each one. For the remainder of this paragraph, let f2 be the binary symmetric operation
and let f3 be the ternary symmetric operation. The induction used to prove that each case yields a round
clone is similar to the f+−0 case from the domain of size 3 enumeration. To construct the k-ary operation
fk+1, define x := (x1, . . . , xk+1), and define y := cNfk(x), y′ := cNfk(f2(x,y)), and y′′ := cNfk(f2(x,y′)) for a
sufficiently large integer N . Then

fk+1(x) := f3(y,y′,y′′)1,

where the subscript denotes the first element of the tuple, is symmetric; this works for each case be-
cause y = cNk+1(x) is a constant tuple for sufficiently large N , so either y = y′ = y′′ or {y,y′,y′′} =
{(d1, . . . , d1), (d2, . . . , d2), (d3, . . . , d3)}, where {d1, d2, d3} is chosen such that f2, when restricted to the do-
main {d1, d2, d3} ⊂ D, can be renamed to f+−0.

The function θ that takes a binary operation f2 and a ternary operation f3 as input and outputs a ternary
operation is defined as

θ(f2, f3)(x, y, z) := cNf2
(
f2

(
cNf2(x, y, z), f3

(
cNf2(x, y, z)

)))
1

for a sufficiently large positive integer N . In each of the following cases, θ returns a symmetric ternary
operation that modifies only one or two outputs of f3. The casework on the binary symmetric operation is
below.

• Suppose a clone is generated by f000132 and a symmetric ternary operation. Using Corollary 13, one
can force the existence of a symmetric ternary operation of the form

gc(x, y, z) =

0 0 ∈ {x, y, z}
1 {x, y, z} ∈ {{1}, {1, 2}}
2 {x, y, z} ∈ {{2}, {2, 3}}
3 {x, y, z} ∈ {{3}, {1, 3}}
c {x, y, z} = {1, 2, 3}

for some c ∈ D. Since θ(f000132, gc) maps

g1 7→ g3 7→ g2 7→ g1,

this case gives two distinct minimal round clones.

18

• Suppose a clone is generated by f003012 and a symmetric ternary operation. Using Corollary 13, one
can force the existence of a symmetric ternary operation of the form

gc,d(x, y, z) =

0 {x, y, z} ∈ {{0}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2},
{1, 2, 3}}

1 {x, y, z} ∈ {{1}, {1, 3}}
2 {x, y, z} ∈ {{2}, {2, 3}}
3 {x, y, z} ∈ {{3}, {0, 3}}
c {x, y, z} = {0, 1, 3}
d {x, y, z} = {0, 2, 3}

for some c, d ∈ D. Since θ(f003012, gc) maps

g0,0 7→ g3,3 7→ g1,2 7→ g0,0

g0,2 7→ g3,0 7→ g1,3 7→ g0,2

g0,3 7→ g3,2 7→ g1,0 7→ g0,3

and maps each of g0,1, g1,1, g2,0, g2,1, g2,2, g2,3, g3,1 to one of the above three cycles, this case gives
three distinct minimal round clones.

• Suppose a clone is generated by f003013 and a symmetric ternary operation. Using Corollary 13, one
can force the existence of a symmetric ternary operation of the form

gc(x, y, z) =

0 {x, y, z} ∈ {{0}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}
1 {x, y, z} ∈ {{1}, {1, 3}}
2 {x, y, z} = {2}
3 {x, y, z} ∈ {{3}, {0, 3}, {2, 3}, {0, 2, 3}}
c {x, y, z} ∈ {{0, 1, 3}, {1, 2, 3}}

for some c ∈ D. Since θ(f003013, gc) maps

g0 7→ g3 7→ g1 7→ g0

and maps g2 to the above cycle, this case only gives one minimal round clone.

• Suppose a clone is generated by f003112 and a symmetric ternary operation. Using Corollary 13, one
can force the existence of a symmetric ternary operation of the form

gc,d(x, y, z) =

0 {x, y, z} ∈ {{0}, {0, 1}, {0, 2}, {0, 1, 2}}
1 {x, y, z} ∈ {{1}, {1, 2}, {1, 3}, {1, 2, 3}}
2 {x, y, z} ∈ {{2}, {2, 3}}
3 {x, y, z} ∈ {{3}, {0, 3}}
c {x, y, z} = {0, 1, 3}
d {x, y, z} = {0, 2, 3}

for some c, d ∈ D. Since θ(f003012, gc) maps

g0,0 7→ g3,3 7→ g1,2 7→ g0,0

g0,2 7→ g3,0 7→ g1,3 7→ g0,2

g0,3 7→ g3,2 7→ g1,0 7→ g0,3

and maps each of g0,1, g1,1, g2,0, g2,1, g2,2, g2,3, g3,1 to one of the above three cycles, this case gives
three distinct minimal round clones.

19

• Suppose a clone is generated by f003113 and a symmetric ternary operation. Using Corollary 13, one
can force the existence of a symmetric ternary operation of the form

gc(x, y, z) =

0 {x, y, z} ∈ {{0}, {0, 1}, {0, 2}, {0, 1, 2}}
1 {x, y, z} ∈ {{1}, {1, 2}, {1, 3}, {1, 2, 3}}
2 {x, y, z} = {2}
3 {x, y, z} ∈ {{3}, {0, 3}, {2, 3}, {0, 2, 3}}
c {x, y, z} = {0, 1, 3}

for some c ∈ D. Since θ(f003013, gc) maps

g0 7→ g3 7→ g1 7→ g0

and g2 to the above cycle, this case gives two distinct minimal round clones.

One can prove that each of the clones enumerated above are distinct by computing relations; for each pair
of distinct clones O1 and O2 in the above list, one can find a relation that is preserved by O1 but not by O2.

The following two operations also don’t generate clones with a symmetric ternary operation, but they
generate round clones when symmetric ternary operations are added:

f001132 0 1 2 3
0 0 0 0 1
1 0 1 1 3
2 0 1 2 2
3 1 3 2 3

f003312 0 1 2 3
0 0 0 0 3
1 0 1 3 1
2 0 3 2 2
3 3 1 2 3

.

For the remainder of this paragraph, let f2 be the binary symmetric operation and let f3 be the ternary
symmetric operation. To construct the k-ary operation fk+1 for each case, define:

x := (x1, . . . , xk+1)

y := cNfk

(
f2

(
cNfk(x), cN+1

fk
(x)
))

y′ := cNfk

(
f2

(
cNfk(f2(x,y)), cN+1

fk
(f2(x,y))

))
y′′ := cNfk

(
f2

(
cNfk(f2(x,y′)), cN+1

fk
(f2(x,y′))

))
for a sufficiently large integer N . Then

fk+1(x) := f3(y,y′,y′′)1,

where the subscript denotes the first element of the tuple, is symmetric; this works for each case because

y = cNfk

(
f2

(
cNfk(x), cN+1

fk
(x)
))

is a constant tuple for sufficiently large N , so either y = y′ = y′′ or

{y,y′,y′′} = {(d1, . . . , d1), (d2, . . . , d2), (d3, . . . , d3)}, where f2 restricted to the domain {d1, d2, d3} ⊂ D can
be renamed to f+−0.

The function Θ that takes a binary operation f2 and a ternary operation f3 as input and outputs a
ternary operation is defined as

Θ(f2, f3)(x, y, z) := cNf2

(
f2

(
f2(cNf2(x, y, z), cN+1

f2
(x, y, z)),

f3

(
f2(cNf2(x, y, z), cN+1

f2
(x, y, z))

)))
1

for a sufficiently large positive integer N . In each of the following cases, Θ returns a symmetric ternary
operation that modifies only one or two outputs of f3.

20

• Suppose a clone is generated by f001132 and a symmetric ternary operation. Using Corollary 13, one
can force the existence of a symmetric ternary operation of the form

gc(x, y, z) =

0 {x, y, z} ∈ {{0, 2}, {0, 1, 2}, {0, 2, 3}}
1 {x, y, z} = {1, 2}
2 {x, y, z} ∈ {{2}, {2, 3}}
σ−1(sgn(σ(x) + σ(y) + σ(z))) {x, y, z} ⊆ {0, 1, 3}
c {x, y, z} = {1, 2, 3}

for some c ∈ D, where σ(0) = −1, σ(1) = 0, and σ(3) = 1. This case only gives one minimal round
clone, since Θ(f001132, gc) maps

g1 7→ g3 7→ g2 7→ g1.

To prove that 〈f001132, g0〉 ⊆ 〈f001132, g1〉, let x := (x, y, z) and y := f2

(
cNf001132(x), cN+1

f001132
(x)
)

, which

will be constant unless {x, y, z} = {1, 2, 3}. Additionally, let y′ := cf001132(y) and y′′ := cf001132(y′) be
the cyclic rotations of y. Then

cNf003312(f2(f2(f2((g0(y), g0(y), g0(y)),y),y′),y′′))1 = g1(x)

where the subscript denotes the first element of the tuple, as desired.

• Suppose a clone is generated by f003312 and a symmetric ternary operation. Using Corollary 13, one
can force the existence of a symmetric ternary operation of the form

gc,d(x, y, z) =

0 {x, y, z} ∈ {{0}, {0, 1}, {0, 2}}
3 {x, y, z} ∈ {{0, 3}, {0, 1, 2}}
σ−1(sgn(σ(x) + σ(y) + σ(z))) {x, y, z} ⊆ {1, 2, 3}
c {x, y, z} = {0, 1, 3}
d {x, y, z} = {0, 2, 3}

for some c, d ∈ D, where σ(1) = −1, σ(2) = 1, and σ(3) = 0. This case gives three minimal round
clones, since Θ(f003312, gc,d) maps

g0,0 7→ g3,3 7→ g1,2 7→ g0,0

g0,2 7→ g3,0 7→ g1,3 7→ g0,2

g0,3 7→ g3,2 7→ g1,0 7→ g0,3

and also eventually maps all others to the above cycles, since g1,1 7→ g0,1 7→ g3,0, g2,2 7→ g2,0 7→ g0,3,
g2,1 7→ g1,2, g2,3 7→ g3,2, and g3,1 7→ g1,3.

Since we have exhausted all cases, we have established the proof of Theorem 2.

5.5 Domain of Size 5

With computer assistance, it has been shown that every idempotent clone over a domain of size 5 that
contains symmetric operations of arities 1, 2, 3, 4, and 5 contains symmetric operations of arities up to 20.
The code used to verify this is available on Github at https://github.com/The-Turtle/PRIMES.

6 Future Work

If we want to make progress on larger domains, we need a way to determine whether or not a clone has a
symmetric operation of a given arity without explicitly generating one.

21

https://github.com/The-Turtle/PRIMES

Definition 16. Let A be an algebra with underlying set A. For any tuple a = (a1, . . . , ak) ∈ Ak, define the
symmetric relation on a to be the set

Sym(a) := SgAk!

aσ1(1)

...
aσk!(1)

 , . . . ,
aσ1(k)

...
aσk!(k)

 ,

where σ1, σ2, . . . , σk! are the k! permutations of the tuple (1, . . . , k).

Proposition 17. Let A be an algebra with underlying set A, and suppose that for every j ≤ k and every
tuple a ∈ Aj, the symmetric relation Sym(a) contains a constant tuple. Then A has a symmetric operation
of every arity less than or equal to k.

Proof. We prove this by induction on k; for the base case k = 1, take f1 = π1
1 . By the inductive hypothesis,

there are symmetric operations f1, f2, . . . , fk−1 of every arity strictly less than k. Now suppose that f is a
k-ary operation such that the set T ⊆ Ak of tuples for which f acts symmetrically on is maximal. We claim
that T must equal Ak; to prove this, it suffices to show that if t ∈ Ak \ T is a tuple which f does not act
symmetrically on, then there is a k-ary operation g which acts symmetrically on T ∪ {t}.

We will first construct, for each j < k, an operation gj which acts symmetrically on T and which is
unchanged by every permutation of its first j variables. We start by taking g1 = f , and then we inductively
define gj as

gj(x1, . . . , xk) := fj(gj−1(x1, x2, . . . , xj−1, xj , xj+1, . . . , xk),

gj−1(x2, x3, . . . , xj , x1, xj+1, . . . , xk),

...,

gj−1(xj , x1, . . . , xj−2, xj−1, xj+1, . . . , xk)).

Finally, let a be the tuple

a := (gk−1(t1, . . . , tk), gk−1(t2, . . . , tk, t1), . . . , gk−1(tk, t1, . . . , tk−1)).

By assumption, Sym(a) contains a constant tuple, so there must be some k-ary operation h ∈ Clo(A) which
acts symmetrically on a. Then we define g by

g(x1, . . . , xk) := h(gk−1(x1, . . . , xk), gk−1(x2, . . . , xk, x1), . . . , gk−1(xk, x1, . . . , xk−1)).

The relation Sym(a) has a useful special property.

Proposition 18. Let A be an algebra with underlying set A. For any tuple a ∈ Ak and any pair of
permutations (σ, τ) on {1, . . . , k}, let P ≤ A2 be the binary relation πiσ,iτ (Sym(a)), where iσ and iτ are the
indices of σ and τ as defined in Definition 16. Then for any subset B ⊆ A, we have

B + P = B =⇒ B − P = B.

Proof. Define
P◦n := P ◦ · · · ◦ P︸ ︷︷ ︸

n P’s

.

Then we have P− ⊆ P◦(k!−1), since P◦(k!−1) contains the generators of P−, so B − P ⊆ B + P◦(k!−1) = B.
Similarly, B = B + P ⊆ B − P◦k!−1 ⊆ B. Hence B − P must in fact equal B.

Definition 19. Let A be an algebra with underlying set A. Say that a relation R ≤ Am is reversible if it
satisfies the following two properties:

22

• for all i, j we have πi(R) = πj(R), and

• for every sequence p = ((i1, j1), ..., (ik, jk)) of pairs of coordinates of R, if we define the binary relation
Pp ≤ A2 by

Pp := πi1,j1(R) ◦ · · · ◦ πik,jk(R),

then for every B ⊆ A, we have
B + Pp = B =⇒ B − Pp = B.

Proposition 20. For every algebra A with underlying set A and every tuple a ∈ An, the relation Sym(a)
is reversible.

Proof. Since the marginal distributions of each coordinate of the uniform distribution on the set of tuples in
Sym(a) are equal, this follows from the implication (e) =⇒ (a) of Proposition 23 below.

We have the following strong refinement of our main conjecture.

Conjecture 21. Suppose that A is a finite idempotent algebra, such that for every subquotient B ∈ HS(A)
there is some element b ∈ B which is fixed by every automorphism of B. Then every reversible relation
R ≤ An contains a constant tuple.

The condition involving arbitrary compositions of two-variable projections of the relation R in the defi-
nition of reversibility is necessary, as demonstrated by the following example.

Example 22. Let A = ({−, 0,+}, sgn(x+ y)) and let R ≤ A5 be the relation

R :=
{

(x1, x2, x3, x4, x5) ∈ A5 | x1 + x2 + x3 ≥ 1 ∧ x4 = −x5

}
.

Then every binary projection of R is reversible, but the relation R is not reversible: we have

{−}+ π1,2(R) + π4,5(R) = {−}

but
{−} − π4,5(R)− π1,2(R) = {−, 0,+}.

Since R does not contain any of the constant tuples (−, . . . ,−), (0, . . . , 0), or (+, . . . ,+), we need the stronger
condition about arbitrary compositions of two-variable projections.

For binary relations, the concept of reversibility simplifies.

Proposition 23. If R ≤sd A2 is a binary subdirect relation on a finite algebra A with underlying set A, then
the following are equivalent.

(a) For every B ⊆ A, we have
B + R = B =⇒ B − R = B.

(b) If we consider the ordered pairs of R as the edges of a directed graph G with vertex set A, then every
weakly connected component of G is also strongly connected.

(c) If we consider the ordered pairs of R as the edges of a directed graph G with vertex set A, then every
directed edge of G is contained in a directed cycle of G.

(d) There is some n ≥ 1 such that R− ⊆ R◦n.

(e) There is a positive probability distribution with support R such that the marginal distributions on the
first and second coordinates agree.

(f) The binary relation R is reversible; that is, every binary relation which can be written as a composition
of copies of R and R− satisfies (a).

23

Proof. (a) =⇒ (b): define a quasiorder � on A by a � b if there is any k ≥ 0 such that (a, b) ∈ R◦k. For
any a ∈ A, there is a �-maximal element b ∈ A such that a � b, by the finiteness of A. Let B be the set of
all b′ such that b � b′, then the �-maximality of b implies that B is a strongly connected component of R
and that B + R = B. Then (a) implies that we have B − R = B, so we have

a ∈ {b} − R◦k ⊆ B − R◦k = B,

and similarly any element in the weakly connected component containing a is also contained in B.
(b) =⇒ (c) is obvious. For (c) =⇒ (d), pick for each directed edge of R a directed cycle containing it,

and choose n such that n+ 1 is a common multiple of the lengths of all of these directed cycles. (d) =⇒ (a)
and (f) =⇒ (a) are also obvious.

To prove that (c) =⇒ (e), find a collection C of directed cycles of R that contains every edge of R at
least once. Define a probability distribution on R by the following two step process: first pick a uniformly
random cycle C ∈ C, then pick a uniformly random edge (x, y) ∈ C.

For (e) =⇒ (a), let p(a,b) > 0 be the probability assigned to a given element (a, b) ∈ R (and set p(a,b) = 0
for (a, b) 6∈ R), and let

pb :=
∑
a∈A

p(a,b) =
∑
c∈A

p(b,c)

be the marginal probability of seeing b on either the first or second coordinate. For any subset B ⊆ A, define
p(B) by

p(B) :=
∑
b∈B

pb.

Then we have

p(B + R) =
∑

b∈B+R
pb =

∑
b∈B+R

∑
a∈{b}−R

p(a,b) ≥
∑

b∈B+R

∑
a∈B

p(a,b) =
∑
a∈B

pa = p(B),

with equality only when every element b ∈ B + R has {b} − R ⊆ B. If B + R = B, then we must have
equality above, so B − R = B + R− R = B.

Given the equivalence between (a) and (e), (e) =⇒ (f) follows from the fact that if R and S are any
pair of binary relations such that there are positive probability distributions p and q supported on R and
S, respectively, such that the marginal of p on the second coordinate equals the marginal of q on the first
coordinate, then there is a positive probability distribution “p◦q” supported on R◦S such that the marginals
of p and p ◦ q on the first coordinate are equal, and the marginals of p ◦ q and q on the second coordinate
are equal.

The equivalence of (f) can also be shown by proving (d) =⇒ (f). Let R′ be a composition of i copies
of R and j copies of R−, in some order; it suffices to show that R′ satisfies (d). If i > j, then R′ ⊇ R◦(i−j),
so if R− ⊆ R◦n, then

(R−)◦(i−j) ⊆ R◦n(i−j) ⊆ R′◦n,

and we can finish since R′ and R′− are each contained in some composition of R◦(i−j) and (R−)◦(i−j). The
case i < j is similar, so we are left with the case i = j.

To deal with the case i = j, the case where R′ is a composition of an equal number of copies of R and
R− in some order, code the sequence of copies of R and R− as a sequence of i copies of + and i copies of
−. Let a and −b be the largest value and smallest value, respectively, of the partial sums of the sequence of
+’s and −’s. Then it’s easy to see that R′ contains the relations

R±a := R◦a ◦ (R−)◦a

and
R∓b := (R−)◦b ◦ R◦b.

Thus, both R′ and (R′)− are contained in some composition of copies of R±a and R∓b, as desired.

24

Theorem 24. Conjecture 21 is true for the algebra A = ({−, 0,+}, sgn(x+ y)).

Proof. Let A have underlying set A, and let R ≤ An be a reversible relation. If πi(R) 6= A, then πi(R) is a
semilattice - we leave this case to the reader. We are left with the case πi(R) = A for all i; that is, the case
where R is subdirect.

A brute force enumeration shows that every binary subdirect relation on A is one of the seven relations

{(x, y) ∈ A2 | x = y}, {(x, y) ∈ A2 | x = −y}, {(x, y) ∈ A2 | x ≤ y},

{(x, y) ∈ A2 | x ≥ y}, {(x, y) ∈ A2 | x+ y ≥ 0}, {(x, y) ∈ A2 | x+ y ≤ 0}, A2.

In particular, each binary subdirect relation S ≤sd A2 is completely determined by the intersection S ∩
{−,+}2; in fact, the composition of any pair of binary subdirect relations on A is also determined by the
composition of their restrictions to {−,+}.

Among these seven relations, the two binary relations {(x, y) ∈ A2 | x ≤ y} and {(x, y) ∈ A2 | x ≥ y} are
not reversible. Since

{(x, y) ∈ A2 | x = −y} ◦ {(y, z) ∈ A2 | y + z ≥ 0} = {(x, z) ∈ A2 | x ≤ z}

and
{(x, y) ∈ A2 | x+ y ≤ 0} ◦ {(y, z) ∈ A2 | y + z ≥ 0} = {(x, z) | x ≤ z},

we see that every reversible subdirect arity-k relation R either

(a) has πi,j(R) ∈
{
{(x, y) ∈ A2 | x = y}, {(x, y) ∈ A2 | x = −y}, A2

}
for all integers 1 ≤ i, j ≤ k,

(b) has πi,j(R) ∈
{
{(x, y) ∈ A2 | x = y}, {(x, y) ∈ A2 | x+ y ≥ 0}, A2

}
for all integers 1 ≤ i, j ≤ k, or

(c) has πi,j(R) ∈
{
{(x, y) ∈ A2 | x = y}, {(x, y) ∈ A2 | x+ y ≤ 0}, A2

}
for all integers 1 ≤ i, j ≤ k.

We will show that in case (a), we have (0, . . . , 0) ∈ R, in case (b) we have (+, . . . ,+) ∈ R, and in case (c) we
have (−, . . . ,−) ∈ R. By symmetry, we only have to consider cases (a) and (b). Case (b) follows from the
following claim.

Claim: For any relation S ≤ An such that (+,+) ∈ πi,j(S) for all i, j, we have (+, . . . ,+) ∈ S.

Proof: We will prove, by induction on |I| that for every subset I ⊆ {1, 2, . . . , n} there is a tuple
sI ∈ S such that its ith coordinate is + for all i ∈ I. The base case |I| ≤ 2 is our assumption on S.
For the inductive step |I| ≥ 3, let i,j, and k be any three distinct elements of I. Then we define sI
inductively by

sI := sgn
(
sI\{i}, sI\{j}, sI\{k}

)
,

using the fact that the three-variable operation sgn(x + y + z) is in the clone generated by the two-
variable operation sgn(x+ y), as proven in the 〈f+0−〉 case of section 5.3. �

Case (a) also follows from the claim. To see this, find a maximal subset I ⊆ {1, 2, . . . , n} such that no pair
of indices i, j ∈ I has πi,j(R) = {(x, y) ∈ A2 | x = −y}. Then we can use the claim to show that the tuple s
given by

πi(s) =

{
+ i ∈ I
− i 6∈ I,

is in R. By symmetry, −s ∈ R as well. Therefore sgn((s) + (−s)) = (0, . . . , 0) ∈ R, so we are done.

Using some stronger background theory, we can confirm that Conjecture 21 is true for binary relations.

Theorem 25. Conjecture 21 holds for binary relations: if every subquotient of a finite idempotent algebra
A has an element fixed by its automorphism group, then every binary reversible relation R ≤ A2 contains a
constant tuple.

25

Proof. For idempotent algebras, the assumption implies that A is Taylor by Proposition 4.14 of [4]; in fact,
a more general form of this result is proved in Proposition 2.1 of [8].

Let A and B be the underlying sets of A and B, respectively. Assume without loss of generality that R
is subdirect; that is, π1(R) = π2(R) = A. Let θ be the limit of the linking congruence of the binary relation
R◦m when m gets large. An alternative way to describe θ is as follows: consider R to be the edges of a
directed graph on A, and consider two vertices to be equivalent if there is an undirected path connecting
them such that the total number of forward edges along the path equals the total number of backward edges
along the path. Then R/θ is the graph of an automorphism of A/θ, so by assumption there is a congruence
class B of θ which is fixed by this automorphism. Since A is idempotent, B is a subalgebra of A, and since B
is fixed by this automorphism of A/θ, B+R = B. The fact that B is a congruence class of θ is equivalent to
the restriction of R to B defining a directed graph of “algebraic length 1,” so we can apply the Loop Lemma
of [1] to conclude that R contains a constant tuple (b, b) with b ∈ B.

7 Acknowledgements

We would like to thank the MIT-PRIMES program — including Dr. Tanya Khovanova, Dr. Alexander
Vitanov, Dr. Slava Gerovitch, and Prof. Pavel Etingof — for giving us the resources to make this research
possible.

References

[1] Libor Barto and Marcin Kozik. Absorbing subalgebras, cyclic terms, and the constraint satisfaction
problem. Log. Methods Comput. Sci., 8(1):1:07, 27, 2012.

[2] Libor Barto and Marcin Kozik. Robust satisfiability of constraint satisfaction problems. In Proceedings
of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12, pages 931–940, New
York, NY, USA, 2012. ACM.

[3] Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consistency methods.
J. ACM, 61(1):Art. 3, 19, 2014.

[4] Andrei Bulatov and Peter Jeavons. Algebraic structures in combinatorial problems. 2001.

[5] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of constraints using
finite algebras. SIAM J. Comput., 34(3):720–742, 2005.

[6] Silvia Butti and Victor Dalmau. The complexity of the distributed constraint satisfaction problem. arXiv
preprint arXiv:2007.13594, 2020.

[7] Catarina Carvalho and Andrei Krokhin. On algebras with many symmetric operations. Internat. J.
Algebra Comput., 26(5):1019–1031, 2016.

[8] Ralph Freese and Matthew A Valeriote. On the complexity of some maltsev conditions. International
Journal of Algebra and Computation, 19(01):41–77, 2009.

[9] Gabor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi Yoshida, and Yuan Zhou. Linear programming,
width-1 CSPs, and robust satisfaction. In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, pages 484–495. ACM, New York, 2012.

A Reversible instances and linear programming

The linear programming relaxation of a CSP is closely related to certain weak local consistency checking
procedures. The most basic form of local consistency is known as arc-consistency.

26

Definition 26. An instance I of a CSP with domain A is called arc-consistent if there is a way to associate
to each variable x of I a subset Ax ⊆ A such that for every constraint relation R of the instance which
involves the variable x, the set of possible values of x which are compatible with the relation R is exactly
Ax.

Originally it was believed that a CSP was solved by the basic linear programming relaxation if and only
if every arc-consistent instance had a solution – this claim appeared in [9], but the proof was flawed; the
CSP defined by the three element algebra ({−, 0,+}, sgn(x+ y)) is a counterexample.

A stronger form of local consistency was introduced in [3].

Definition 27. An instance I of a CSP is called a weak Prague instance if it satisfies the following three
conditions.

(P1) The instance I is arc-consistent.

(P2) For every variable x, every set B ⊆ Ax, and every cycle p from x to x,

B + p = B =⇒ B − p = B.

(P3) For every variable x, every set B ⊆ Ax, and every pair of cycles p, q from x to x,

B + p+ q = B =⇒ B + p = B.

An alternative form of condition (P2) is given in [2].

Proposition 28 (Barto, Kozik [2]). If an instance satisfies condition (P1), then (P2) is equivalent to the
following condition.

(P2*) For all variables x, sets B ⊆ Ax, and cycles p from x to x with first step s1 such that B + p = B,

B + s1 − s1 = B;

that is, B is a union of linked components of s1.

Conditions (P1) and (P2) are closely related to the basic linear programming relaxation of a CSP, while
condition (P3) is closely related to the basic semidefinite programming relaxation of a CSP (see [2]).

Theorem 29. If I is an instance of a CSP such that the basic linear programming relaxation of I has a
solution assigning probability vectors pR to each constraint R of I and probability vectors px to each variable
x, then the instance I ′ obtained by restricting each constraint relation of I to the support of the corresponding
probability distribution pR, and similarly for the variable domains, satisfies conditions (P1) and (P2).

Proof. Assume for simplicity that I = I ′; that is, all of the probability vectors have full support. The
compatibility of the probability vectors pR with the probability vectors on the variable domains ensures that
I is arc-consistent, so (P1) is satisfied. For (P2), it is easier to check condition (P2*) from Proposition 28.
For each set B ⊆ Ax, we attach a probability P (B) given by

P (B) :=
∑
a∈B

px,a.

Now consider any step p1 from a variable x to an adjacent variable y within a constraint with corresponding
relation R. Let S ⊆ Ax ×Ay be the binary projection of the corresponding relation R onto x and y, and let
pS be the corresponding marginal distribution of pR. Then we have

P (B + S) =
∑

b∈B+S

py,b ≥
∑

b∈B+S

∑
a∈B

pS,(a,b) =
∑
a∈B

px,a = P (B),

with equality when B + S − S = B. Thus if B + p = B, then we have

P (B) ≤ P (B + p1) ≤ P (B + p) = P (B),

so P (B + p1) = P (B), and thus we have B + p1 − p1 = B.

27

In fact, Theorem 29 has a converse when we restrict our attention to a single cycle at a time. The proof
is a straightforward generalization of the implication (a) =⇒ (e) from Proposition 23.

Theorem 30. If I is an instance of a CSP such that the associated hypergraph of variables and relations
consists of a single cycle, then I has properties (P1) and (P2) if and only if the basic linear relaxation of I
has a solution such that for each constraint R of I, the support of the corresponding probability distribution
pR is exactly equal to the relation corresponding to R.

The connections between the basic linear programming relaxation and conditions (P1) and (P2) make
the following conjecture natural.

Conjecture 31. A CSP defined by relations Γ is solved by its linear programming relaxation if and only if
every instance I of the CSP which satisfies conditions (P1) and (P2) has a solution.

Conjecture 21 is a slight strengthening of a special case of Conjecture 31, where we restrict to the case
of CSPs which have just a single variable and a single relation.

28

	Introduction
	Motivation
	Road Map

	Definitions
	Constraint Satisfaction Problems
	Clones
	Algebraic concepts
	Miscellaneous

	Related Results
	Preliminary Theorems
	Classification
	Domain of Size 1
	Domain of Size 2
	Domain of Size 3
	Domain of Size 4
	Domain of Size 5

	Future Work
	Acknowledgements
	Reversible instances and linear programming

