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Abstract

We consider certain class functions defined simultaneously on the groups Gln(Fq) for all
n, which we also interpret as statistics on matrices. It has been previously shown that these
simultaneous class functions are closed under multiplication, and we work towards computing
the structure constants of this ring of functions. We derive general criteria for determining which
statistics have nonzero expansion coefficients in the product of two fixed statistics. To this end,
we introduce an algorithm that computes expansion coefficients in general, which we furthermore
use to give closed form expansions in some cases. We conjecture that certain indecomposable
statistics generate the whole ring, and indeed prove this to be the case for statistics associated
with matrices consisting of up to 2 Jordan blocks. The coefficients we compute exhibit surprising
stability phenomena, which in turn reflect stabilizations of joint moments as well as multiplicities
in the irreducible decomposition of tensor products of representations of finite general linear
groups.

1 Introduction

Statistics of random matrices and representations of finite matrix groups are often of great interest in
mathematics. These topics were studied extensively by many people, and they contain applications
to areas of mathematics including group theory and random number generators (see for example the
work of Fulman [3, 4]).

Class functions are a central aspect in this field of study. When considering matrices in Gln(Fq)
for any n and q, that is, invertible matrices with entries in finite fields, one simple class function is
Fix(A), which counts the number of nonzero vectors fixed under A. Put explicitly, Fix(A) = |{v ∈
Fnq | Av = v and v 6= 0}|, where A is an invertible n × n matrix with entries in the finite field Fq.
A natural question to consider centers on finding the distribution of Fix(A) as A ranges uniformly
over all Gln(Fq). For example, it has been shown that the expectation is 1 (see [7, Corollary 1.3]).
Fulman and Stanton [5] previously determined moments of this class function through generating
functions. Surprisingly, the expectation of Fix(·)k is independent of n once n ≥ k.

Gadish extended this notion from fixed vectors to fixed subspaces in [6, Definition 2.5], where he
defined a collection of class functions XB with domain Gln(Fq) for all n simultaneously, known as q-
character polynomials. This extension of the number of nonzero fixed vectors preserves the property
that expectations of all powers are independent of n for sufficiently large n. We first provide a
definition for the class functions being considered.

Definition 1 (q-character polynomials). Given a finite field Fq, let B be an m×m matrix. Let XB

be the following function on the collection of square matrices of any dimension over Fq: if A is any
n× n matrix

XB(q,A) = |{W ≤ Fnq | dimW = m with A(W ) ⊆W and A|W ∼ B}|.

Here A|W ∼ B refers to matrix similarity. Because the matrices A and B are also defined over larger
fields Fqd , we could also consider XB(qd, A) for any d > 1. Unless otherwise specified, the size of
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the field is assumed to be fixed at some prime power q, and we use the simplified notation XB(A)
to mean XB(q, A).

It is clear from the definition that q-character polynomials are indeed class functions. Gadish [6,
7] previously showed that the functions XB span a ring.

Theorem 1.1 ([6, 7]). Given invertible matrices B1 and B2 of size k1 and k2 respectively, there
exists an expansion for the pointwise product XB1

·XB2
:

XB1
·XB2

=
∑
C

λCB1,B2
XC (1)

for some scalars λCB1,B2
, where the sum ranges over conjugacy classes of invertible matrices C of

size max(k1, k2) ≤ k ≤ k1 + k2.

However, the product expansion coefficients of two fixed statistics are not known in general.

Goal. This paper seeks to characterize the scalars λCB1,B2
that are associated with each product

and describe their properties.

We note below (see §5.4) that some special values of the functions XB are q-binomial coefficients,
also known as Gaussian binomial coefficients. Thus, in the same way that products of binomial
coefficients and q-binomial coefficients occur naturally in mathematics and are inherently interesting
objects of study, our statistics yield a generalization of these products. Our results can also be used
to obtain a stable formula for the factorization of the tensor products of representations, although
we do not pursue this particular application in any detail here.

As a first example, we compute the following product expansion.

Example 1.1.1. Let Jk be the unipotent Jordan block of size k and let Jk,` be the block matrix
consisting of blocks Jk and J`. For all n > 3,

XJn ·XJ3 = XJn + q(q − 1)XJn,1 + q3(q − 1)XJn,2 + q6XJn,3 .

For more extensive calculations of product expansions, see Section 5 for general calculations for
matrices with 1 or 2 Jordan blocks and Appendix A for a table of specific calculations in small cases.

Remark 1.1.1. The reader surely observes that the expansion coefficients in Example 1.1.1 are
polynomials in q with integer coefficients, and are independent of n. This pattern persists in general,
as we prove as part of this work.

Similar stabilization of the product expansion coefficients will be seen in more general expansions
in Section 5.

Main Results

To find product expansions of functions XB , we develop a recursive algorithm in Section 2. A key
tool in applying this algorithm is our characterization of evaluations of the functions XB . This
mainly take the form of our Evaluation Formula, given in Section 4, for evaluating XB(A) for any
two unipotent matrices A and B. Along side that formula we prove the following two general results.

Theorem 1.2. For every two invertible matrices A and B over Fq, there exists a polynomial PA,B(t)
with integer coefficients such that XB(qd, A) = PA,B(qd) for every positive integer d, where XB(qd, A)
counts subspaces over Fqd .

Moreover, suppose that A and B are unipotent matrices in Jordan form, thus defined over Fp
for every prime p. Then the same polynomial PA,B(t) satisfies XB(pd, A) = PA,B(pd) for any prime
power pd. I.e. the polynomial PA,B(t) does not depend on the field.
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Theorem 1.2 demonstrates that XB is in fact a polynomial in q and allows us to compute the
statistic XB when changing the size of the field. Theorem 1.3 below relates the general polynomials
PA,B(t) to polynomials for pairs of unipotent matrices. With that, we conclude that one must only
consider statistics on unipotent matrices to determine general product expansions.

Theorem 1.3. For every pair of partitions λ and µ there exists a polynomial Pλ,µ(t) ∈ Z[t], such
that for every pair of invertible matrices A and B over Fq,

PA,B(t) =
∏
i

Pλi,µi(t
ri)

where the partitions λi and µi denote the respective Jordan block sizes of A and B with common
eigenvalue ζi, for ζ1, . . . , ζk non-Galois-conjugate representatives of the common eigenvalues of A
and B with minimal polynomials of respective degrees r1, . . . , rk.

We further use our algorithm to show the following general expansion results for unipotent
matrices.

Theorem 1.4. Let A and B be unipotent matrices. The product expansion coefficients of XA ·XB

as in Equation (1) are polynomials in q with integer coefficients.

We also find that many product expansion coefficients vanish automatically, or don’t depend too
heavily on the largest Jordan block sizes. See the following proposition for example, and find more
results in this vein in Section 5.

Proposition 1.5. Let A and B be unipotent Jordan matrices such that the largest Jordan blocks of
A and B are a and b, respectively, with a ≤ b. Consider the expansion

XA ·XB =
∑
C

λCA,BXC .

If λCA,B 6= 0, then the largest Jordan block in C has size b.

Lastly, our product expansion calculations serve as a tool for evaluating joint moments of the
random variables XB . E.g. one easily deduces that the numbers of eigenvectors with distinct
eigenvalues λ1 and λ2 are uncorrelated among random matrices of size at least 2 × 2. One more
significant application of our calculations is the determination of the correlation between the random
variables XJa – counting the number of a-dimensional subspaces on which a random matrix acts
unipotently and indecomposably.

Theorem 1.6. The correlation between the random variables XJa and XJb in the uniform probability

space Gln(Fq) is
√

qa−1
qb−1 where b ≥ a and for all n ≥ 2b.

1.1 Organization

In Section 2, we outline a general procedure with which to approach the problem of finding the
product expansion scalars through an inductive method. In Section 3, we simplify the problem
at hand by noting a few significant lemmas which allow us to write all statistics in the form of
statistics on unipotent matrices with a Jordan form. In Section 4, we determine an explicit formula
for evaluating statistics at any given matrix using a basis and space-picking scheme.

Section 5 contains most of our substantial results. Namely, we prove the scalars in Theorem 1.1
are polynomials in q; we show for unipotent matrices A and B that if XC has a nonzero coefficient
in the product expansion XA ·XB , then the maximal Jordan block size in C is equal to the maximal
Jordan block size across A and B; we employ our evaluation formula to calculate the expansion
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coefficients for products of statistics on matrices composed of single Jordan blocks and propose
possible coefficients for products of statistics on matrices composed of multiple Jordan blocks. Lastly,
using a combinatorial argument, we examine the product expansion of statistics on identity matrices.

In Section 6, we use the results from Section 5 to compute joint moments of XB , thought of as
random variables. We explicitly determine the correlation coefficient between each pair of statistics
of single Jordan blocks based on our expansions in Section 5.

Lastly, in Appendix A, we provide a comprehensive list of calculated product expansions that
illustrate key properties and go beyond the general formulas provided in Section 5.

2 Algorithm

In this section, we describe a procedure for determining the expansion coefficients by evaluating
certain statistics at a series of specified matrices.

Notation. For a square matrix S, let dim(S) denote the number of rows of S.

We seek to determine the coefficients λCB1,B2
in the expansion XB1

·XB2
. One key observation

in the calculation process is the following:

Proposition 2.1. Given two matrices A, B where dim(A) ≤ dim(B), XB(A) = 0 unless A ∼ B,
in which case XB(A) = 1.

Proof. If we consider any subspace W ⊆ Fdim(A), then dim(W ) ≤ dim(A) ≤ dim(B). By the
definition of XB , dim(W ) = dim(B) so dim(W ) = dim(A) = dim(B) or else XB(A) = 0. If
XB(A) 6= 0, then W must be Fdim(A), so the condition A|W ∼ B simplifies to A ∼ B. In this case,
only one subspace is counted so XB(A) = 1.

By evaluating the statistics in the equation described in Theorem 1.1 at a given conjugacy class
of a matrix C, we see that

XB1(C) ·XB2(C) = λCB1,B2
XC(C) +

∑
dim(M)<dim(C)

λMB1,B2
XM (C).

In other words,

λCB1,B2
= XB1

(C) ·XB2
(C)−

∑
dim(M)<dim(C)

λMB1,B2
XM (C), (2)

allowing us to use an inductive procedure to calculate the coefficients.

• First, starting from k = max{dim(B1),dim(B2)}, we consider the conjugacy classes of k-
dimensional matrices.

• Next, for each conjugacy class of matrices of dimension k, we consider the Jordan matrix C
in that conjugacy class (possibly passing to a larger field, but the effect of this field extension
on evaluations is known by Theorem 1.2).

• Then, we evaluate XB1 , XB2 , and XM where dim(M) < dim(C), and using Eq. (2), we can
determine λCB1,B2

.

• Using this procedure to calculate the coefficients for matrices of a given dimension k, we
increment k by 1 and repeat the previous steps until k = dim(B1)+dim(B2), thus determining
all of the coefficients we seek.

It follows that to find the product expansion coefficients, one approach is to find a general formula
for evaluating any given statistic on a specified matrix.
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3 Reductions

In this section, we examine several reductions that simplify the problem to one concerning statistics
of unipotent Jordan matrices.

3.1 Relating General Matrices with those in Jordan form

We provide a method to determine all statistics XB in terms of statistics on matrices that have a
Jordan form. Consider the following simple example.

Example 3.0.1. Recall that over the field F2,

(
1 1
1 0

)
∼
(
ε 0
0 ε2

)
where ε ∈ F4 satisfies ε2+ε+1 =

0. Then, X(1110)
(2, A) = X(ε)(4, A) for every matrix A over F2.

We let F denote the Frobenius automorphism. In general, we have the following result.

Theorem 3.1. Let M0 be a nilpotent matrix in Jordan normal form, and denote Mµ = M0 + µI
for every scalar µ. Let B be a matrix with entries in Fq that is conjugate to

Mλ

MF (λ)

. . .

MFd−1(λ))


for d > 1 such that Fq[λ] = Fqd . Let A be an n× n matrix with coefficients in Fq. Then,

XB(q, A) = XMλ
(qd, A).

Proof. Let S = {W ≤ Fnq |W is A-invariant and A|W ∼ B} and T = {V ≤ Fnqd | V is A-invariant

and A|V ∼ Mλ}. We wish to construct a bijection between S and T since |S| = XB(q, A) and
|T | = XMλ

(qd, A).
Consider W ∈ S. Extend scalars to Fqd to form W . It is clear that W is still A-invariant and A

acts by B up to conjugation on W . Now, consider the function g : S → T given by sending W to
the λ-generalized eigenspace of A|W . This map produces a subspace that must be A-invariant, as it
is a subspace of W , and on which A acts by Mλ up to conjugation.

Conversely, consider V ∈ T . As V is A-invariant, Av ∈ V for all v ∈ V , so F i(Av) = AF i(v) ∈
F i(V ) for all i. Thus F i(V ) is A-invariant as well. Furthermore, for any sequence of vectors v1, . . . , vk
such that Avi = λvi+vi−1 (with v0 = 0), one has that A(F (vi)) = F (A(vi)) = F (λ)F (vi)+F (vi−1).
Thus, on F (V ) the operator A acts through a matrix conjugate to MF (λ).

Let W =
⊕d−1

i=0 F
i(V ). Since every F i(V ) is A-invariant, the sum is also. Furthermore, since

F : F i(V ) → F i+1(V ), the sum is also F -invariant. Lastly, A acts on W by the block matrix
containing the Jordan matrices MF i(λ) for 0 ≤ i ≤ d− 1, thus the A action on W is conjugate to B
by assumption. By Galois descent (see e.g. [2]), there exists a unique W ≤ Fnq whose extension to

Fnqd is precisely W . Explicitly, W consists of the F -fixed vectors in W .

As W is A-invariant, for all w ∈ W ⊂ W we have Aw ∈ W . However, we also have F (Aw) =
F (A)F (w) = Aw because W consists of the F -fixed vectors. Thus it follows that Aw is F -fixed,
and so we must have Aw ∈ W , i.e. W is A-invariant. Also, A acts by B up to conjugation on W
because B and A|W have the same rational canonical form. Thus, W ∈ S, so we have constructed a
map from h : T → S that sends V to W . We now show that g and h are inverses, thus establishing
|S| = |T | and completing the proof.

In the construction of g(h(V )) = g(W ), one first considers W after extending scalars. We then
consider the map from W to the λ-generalized eigenspace of A|W , which is V because V is a summand
of W and on all other summands A has different eigenvalues. We conclude that g(h(V )) = V .
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Now, consider h(g(W ′)) for someW ′ ∈ S, and letW ′ be the space formed by extending the scalars
of W ′ to Fqd . We claim that the F i(λ)-generalized eigenspace of A|W ′ is precisely F i(g(W ′)). Note
that for all v′ ∈ g(W ′) we have (A − λI)mv′ = 0 for some fixed m. Then, F ((A − λI)mv′) =
(A − F i(λ)I)mF i(v′) = 0, so F i(g(W ′)) must be equal to the F i(λ)-generalized eigenspace. Thus,
we observe that the map h on g(W ′) precisely takes a direct sum of the eigenspaces of W ′ to produce
W ′. Finally, h reduces W ′ back to W ′ by uniqueness of Galois descent. Therefore, h(g(W ′)) = W ′.

This implies g and h are bijections, so |S| = |T |.

The theorem thus proved shows that for B of the above form it suffices to consider statistics XB

where B does indeed have a Jordan normal form in Fq.

3.2 Disjoint Sets of Eigenvalues

We prove that statistics on matrices that have disjoint sets of eigenvalues have simple product
expansions. They interact trivially in the following sense.

Proposition 3.2 (Disjoint sets of eigenvalues). Let A and B be matrices with disjoint sets of
eigenvalues. Then the product XA ·XB is equal to X(A0

0B).

Proof. By Theorem 1.1 there exists coefficients such that,

XA ·XB =
∑
C

λCA,BXC

where C ranges over conjugacy classes of matrices where

max(dim(A),dim(B)) ≤ dim(C) ≤ dim(A) + dim(B).

For every such C, the evaluation XA(C) counts the number of dim(A)-dimensional subspaces of
Fdim(C)that are C-invariant and on which C acts by A up to conjugation. Let SA be the collection
of these subspaces, so that |SA| = XA(C). Similarly let SB be the set of the analogous subspaces
for the case where A is replaced by B.

Now we claim that for every V1 ∈ SA and V2 ∈ SB we have V1∩V2 = {0}. Indeed, the intersection
W = V1∩V2 is itself C-invariant, since both V1 and V2 are such. Assume for the sake of contradiction
that dim(W ) > 0. Then the restriction of C to W has some eigenvalue λ (perhaps only a member
of a larger field). But since the action of C on V1 is conjugate to that of A, this λ must then also
be an eigenvalue A, and similarly it must also be an eigenvalue of B. This is a contradiction, as A
and B have no common eigenvalues.

If the evaluation of C on the product XA ·XB is non-zero, then both SA and SB are non-empty.
Thus from the above argument we conclude that for any choice of V1 ∈ SA and V2 ∈ SB ,

dim(A) + dim(B) = dim(V1) + dim(V2) = dim(V1 ⊕ V2) ≤ dim(C)

showing that the only matrices C for which the product XA · XB is non-zero are of the maximal
dimension dim(A) + dim(B). It also follows that Fdim(C) = V1 ⊕ V2, that is the space has a basis
built from a basis for V1 followed by a basis for V2. Since both subspaces are C invariant, in every
such basis the matrix C is represented by

C ′ =
(
A′0
0B′

)
where A′ = C|V1

∼ A and B′ = C|V2
∼ B, so C ′ is conjugate to the block matrix (A0

0B). But
since change of basis corresponds to conjugation, it follows that C ∼ C ′. We thus found that the
only matrices of dimension ≤ dim(A) + dim(B) that may evaluate on XA ·XB nontrivially must be
conjugate to the block matrix built from A and B.
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Conversely, this block matrix clearly evaluates to 1 on both XA and XB , thus giving the desired
equality

XA ·XB = X(A0
0B).

3.3 Independence of Eigenvalues

The next reduction shows that the choice of eigenvalue for our matrices does not matter. To prove
this reduction, we begin with two lemmas.

Lemma 3.3. A subspace W is Aλ-invariant iff it is Aλ′-invariant.

Proof. Consider a subspace W that is Aλ-invariant. Note that

Aλ′(W ) = (Aλ + (λ′ − λ)I)W = Aλ(W ) + (λ′ − λ)W.

Since Aλ(W ) ⊆ W and (λ′ − λ)W ⊆ W , Aλ′(W ) ⊆ W . So, W is also Aλ′ -invariant. The other
direction follows similarly by symmetry.

Lemma 3.4. The restriction of Aλ to W is conjugate to Bλ iff the restriction of Aλ′ to W is
conjugate to Bλ′ .

Proof. Suppose that the restriction of Aλ to W is conjugate to Bλ. Then, there exists a matrix P
such that Aλ|W = PBλP

−1. Then,

Aλ|WP = PBλ

Aλ|WP + ((λ′ − λ)I)P = PBλ + P ((λ′ − λ)I)

(Aλ + (λ′ − λ)I|W )P = P (Bλ + (λ′ − λ)I)

Aλ′ |W = PBλ′P
−1.

So, the restriction of Aλ′ to W is also conjugate to Bλ′ . By symmetry, the backward direction
follows, concluding our proof.

With these lemmas we can now state and proof the proposition.

Proposition 3.5. Let A0 and B0 be nilpotent matrices, and denote Aλ = λI+A0 and Aλ′ = λ′I+A0.
Define Bλ and Bλ′ similarly. Note that Aλ and Aλ′ have the same Jordan form and generalized
eigenvectors but different eigenvalues. Then, we have XBλ(Aλ) = XBλ′ (Aλ′).

Proof. A space W is Aλ-invariant and Aλ|W ∼ Bλ if and only if W is Aλ′ -invariant and Aλ′ |W ∼ Bλ′ .
Therefore, by definition,

XBλ(Aλ) = XBλ′ (Aλ′).

Since our statistics are invariant under changing eigenvalues as above, we often work only with
unipotent matrices, i.e. ones in which all eigenvalues are 1.
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4 Evaluations

In this section, we introduce methods for calculating the polynomials PA,B(t) that determine eval-
uations of our statistics on unipotent matrices.

We first provide a definition of q-binomial coefficients, which prove useful in our subsequent
analysis.

Definition 2. The q-binomial coefficient
(
m
n

)
q

counts the number of n-dimensional subspaces in a

m-dimensional space in Fq. Explicitly,(
m

n

)
q

=
(qm − 1)(qm − q)(qm − q2) · · · (qm − qn−1)

(qn − 1)(qn − q) · · · (qn − qn−1)
=

n−1∏
i=0

qm − qi

qn − qi

if m ≥ n and 0 otherwise.

It is a fact that the q-binomial coefficients are polynomials in q (see e.g. [1]).
To begin, we consider the evaluation of statistics associated with matrices composed of Jordan

blocks of equal size.

Notation. For n1 +n2 + · · ·+ni = n let Jn1,n2,...,ni(λ) denote the n×n matrix in Jordan form with
blocks sizes n1, n2, . . . , ni and eigenvalue λ. We denote the unipotent matrix Jn1,n2,...,ni(1) simply
by Jn1,n2,...,ni .

Lemma 4.1. Let B = Jb1, . . . , b1︸ ︷︷ ︸
c1 times

and let A = Ja1,a2,...,ak . Let t1 be the largest integer such that

at1 ≥ b1. Then,

XB(A) =

(
t1
c1

)
q

· q
c1

[
(b1−1)(t1−c1)+

k∑
i=t1+1

ai

]

Proof. Denote our ambient space by V = F

k∑
i=1

ai

q . We need to count the number of A-invariant
subspaces W1 ≤ V that have A|W1 ∼ Jb1...b1 . Setting N := A − I – the nilpotent matrix with the
same Jordan blocks as A – the counting problem amounts to computing the cardinality of the set

K = {W1 < V | N(W1) ⊂W1, N |W1 ∼ Jb1, · · · , b1︸ ︷︷ ︸
c1 times

(0)}.

To do this, consider following quotients:

ker(N b1)

π

��

⊆ V

π

��
ker(N b1)/ ker(N b1−1) ⊆ V/ ker(N b1−1)

We want to establish that the quotient map π induces a surjection from K to the set of c1-
dimensional subspaces of ker(N b1)/ ker(N b1−1). The next couple of claims suffice: Lemma 4.2
shows that the function is well-defined, and Lemma 4.3 establishes surjectivity.

Lemma 4.2. For every W1 ∈ K we have that W 1 := π(W1) is a c1-dimensional subspace of
ker(N b1)/ ker(N b1−1)
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Proof. Fix W1 ∈ K. Then since N |W1 ∼ Jb1,...,b1
c1 times

(0) it follows that W1 has a basis of the form

{v1, Nv1, N2v1, . . . , N
b1−1v1

v2, Nv2, N
2v2, . . . , N

b1−1v2

...
...

...
...

vc1 , Nvc1 , N
2vc1 , . . . , N

b1−1vc1}

such that N b1vi = 0 for all i. Thus W 1 ≤ ker(N b1).
Furthermore, note that N b1−1(Nvi) = N b1vi = 0 so all N jvi project to 0 for j ≥ 1 under π. We

conclude that W 1 = π(W1) is spanned by 〈π(v1), π(v2), ..., π(vc1)〉 and is of dimension at most c1.
We show that π(vi) are indeed independent. Suppose

0 = λ1π(v1) + λ2π(v2) + ...+ λc1π(vc1)

then,
0 = π(λ1v1 + λ2v2 + ...+ λc1vc1).

Thus, we know that λ1v1 + λ2v2 + ...+ λc1vc1 ∈ ker(N b1−1). So,

0 = N b1−1(λ1v1 + λ2v2 + ...+ λc1vc1)

= λ1N
b1−1v1 + λ2N

b1−1v2 + · · ·+ λc1N
b1−1vc1 .

But since {N b1−1v1, N
b1−1v2, . . . , N

b1−1vc1} are members of a basis of W , we conclude λ1 = λ2 =
· · · = λc1 = 0. Thus π(v1), π(v2), ...π(vc1) are linearly independent and W 1 is of dimension c1.

Lemma 4.3. For all c1-dimensional subspaces W 1 ≤ ker(N b1)/ ker(N b1−1) there exists W1 ∈ K
such that π(W1) = W 1

Proof. Let W 1 be a c1-dimensional space in ker(N b1)/ ker(N b1−1) and pick {v1, . . . , vci} ⊂ ker(N b1)
such that {π(v1), π(v2), . . . , π(vc1)} form a basis for W . Consider

W1 = span(v1, Nv1, N
2v1, . . . , N

b1−1v1,

v2, Nv2, N
2v2, . . . , N

b1−1v2,

...
...

...

vc1 , Nvc1 , N
2vc1 , . . . , N

b1−1vc1).

We claim that W1 ∈ K and π(W1) = W 1.
Since N jvi ∈ ker(N b1−1) for j ≥ 1 vanishes in the quotient,

π(W1) = 〈π(v1), 0, 0, . . . , 0

π(v2), 0, 0, . . . , 0

...
...

...

π(vc1), 0, 0, . . . , 0〉
= 〈π(v1), π(v2), . . . , π(vc1)〉 = W 1.

To see that W1 ∈ K we must show that N(W1) ⊆ W1 and N |W1 ∼ Jb1,··· ,b1
c1 times

(0). The N -invariance

is clear on the spanning set defining W1, so the resulting span W1 must be N -invariant as well.
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To determine the conjugacy class of N |W1 , we only need to show that the spanning set is linearly
independent, since this would imply that {N jvi}i,j is a basis with respect to which N |W1 has the
desired Jordan form.

Suppose that

λ1,1v1 + λ1,2Nv1 + λ1,3N
2v1 + · · ·+ λ1,b1N

b1−1v1

+λ2,1v2 + λ2,2Nv2 + λ2,3N
2v2 + · · ·+ λ2,b1N

b1−1v2

...
...

...
...

...
...

+λc1,1vc1 + λc1,2Nvc1 + λc1,3N
2vc1 , · · ·+ λc1,b1N

b1−1vc1 = 0.

Applying π to this equation to get

λ1,1π(v1) + λ2,1π(v2) + λ3,1π(v3) + . . . λc1,1π(vc1) = 0.

But {π(v1), π(v2), . . . , π(vc1)} was chosen to be a basis for W 1 so λ1,1 = λ2,1 = · · · = λc1,1 = 0. We
continue this process by induction on j, the column number in the equation above.

Assume that all λi,k = 0 for all i and for k < j. So the linear relation reduces to

N j

 c1∑
i=1

b1−1∑
k=j

λi,kN
k−jvi

 = 0

which implies that the argument
∑
λi,kN

k−jvi already vanishes in the quotient. Applying π to the
argument, we get

λ1,jπ(v1) + . . .+ λc1,jπ(vc1) = 0

which again by linear independence of the π(vi)’s gives λ1,j = . . . = λc1,j = 0, thus completing the
induction step.

We conclude that {N jvi}i,j is indeed a basis, so W1 ∈ K and π(W1) = W 1, thus the proof is
complete.

Recall that t1 is the number of blocks in A and N of size at least b1. Then we have

dim(kerN b1) = (b1)(t1) +

k∑
i=t1+1

ai,

dim(kerN b1−1) = (b1 − 1)(t1) +

k∑
i=t1+1

ai,

thus there are (
dim(kerN b1)− dim(kerN b1−1)

c1

)
q

=

(
t1
c1

)
q

ways to pick a c1-dimensional subspace W 1 ≤ ker(N b1)/ ker(N b1−1).
So we have constructed a function from K to a set of size

(
t1
c1

)
q
. It remains to count the number

of preimages each W1 has in K.

Lemma 4.4. Fix a c1-dimensional subspace W 1 ≤ ker(N b1)/ ker(N b1−1). There are precisely

q
c1

[
(b1−1)(t1−c1)+

k∑
i=t1+1

ai

]

preimages W1 ∈ K such that π(W1) = W 1.
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Proof. If s : W 1 → ker(N b1) is any section of π, with image W0, then the proof of Lemma 4.3 shows
that W1 :=

∑
j N

j(W0) satisfies W1 ∈ K and π(W1) = W 1. So we begin by counting sections of

π : π−1(W 1)→W 1.
Fix a section s0 : W 1 →W0. Then the set of sections is in bijection with

hom(W 1, ker(N b1−1))

where a homomorphism φ : W → ker(N b1−1) corresponds to the section s0 + φ. It follows that the
number of sections is

qdimW 1·dimker(Nb1−1) = qc1((b1−1)t1+
∑
i>t1

ai).

However, in going from sections to preimages W1 ∈ K there is some overcounting, which we
now address. Fix some W1 ∈ K such that π(W1) = W 1, we wish to count the number of sections
of π : W1 → W 1. The same argument as in the previous paragraph shows that the number such
sections is

|hom(W 1,W1 ∩ ker(N b1−1))| = qc1·dimW∩ker(Nb1−1).

But because N |W1
∼ Jb1,...,b1(0), it follows that dim(W1∩ker(N b1−1)) = (b1−1)c1. This is the over-

counting involved in counting sections, so we divide by this amount to get the number of preimages:

qc1(b1−1)t1+
∑
i>t1

ai−c1(b1−1)c1

as claimed.

Combining all claims in the proof, the set K of interest maps onto a set of size
(
t1
c1

)
q

with fibers

of equal size given by the previous claim. It follows that

XB(A) = |K| =
(
t1
c1

)
q

· q
c1

[
(b1−1)(t1−c1)+

k∑
i=t1+1

ai

]
.

This completes the proof of Lemma 4.1.

With Lemma 4.1, we now prove the general case by induction.

Theorem 4.5 (General Evaluation Formula). Let

B = Jb1, . . . , b1︸ ︷︷ ︸
c1 times

,b2, . . . , b2︸ ︷︷ ︸
c2 times

,...,bn, bn, . . . , bn︸ ︷︷ ︸
cn times

where b1 > b2 > · · · > bn and there are ci Jordan blocks of size bi in B. Let A = Ja1,a2,...,ak where
a1 ≥ a2 ≥ · · · ≥ ak. Let ti be the number of blocks of A of size at least bi, i.e. the largest integer
such that ati ≥ bi. Then,

XB(A) =

 n∏
i=1

(
ti −

i−1∑
j=1

cj

ci

)
q

 · q n∑
i=1

ci

(
(bi−1)(ti+ci−2

i∑
j=1

cj)−
n∑

j=i+1
cj+

k∑
j=ti+1

aj

)
.

Proof. We prove this theorem by induction on the number of distinct block sizes in B.
The base case is when there are 0 blocks in B. This corresponds to the empty matrix on the zero

vector space. The only vector space counted is the zero space, so the count is 1. This is precisely
the right hand side of the formula, q0 = 1.

Assume by induction that the formula is true for matrices with n distinct Jordan block sizes.
We will prove the formula holds for matrices with n + 1 distinct block sizes. Let b1 be the largest
block size and c1 its multiplicity.

11



As in the proof of Lemma 4.1, we set N := A−I for the nilpotent matrix. Now, since (B−I)b1 = 0
we note that any A-invariant space W on which A|W ∼ B has N b1(W ) = (A− I)b1(W ) = 0. So for
the purpose of counting subspaces W of this form, it is sufficient to restrict the ambient space to
ker(N b1), which we denote by V . On this smaller ambient space, the transformations A and N have
their Jordan blocks restricted to have size at most b1. Thus, without loss of generality we assume
that b1 ≥ ai for all i.

By Lemma 4.1, we know that the number of A-invariant subspaces on which A acts by a trans-
formation conjugate to Jb1, . . . , b1︸ ︷︷ ︸

c1 times

is

(
t1
c1

)
q

· q
c1

[
(b1−1)(t1−c1)+

k∑
j=t1+1

aj

]
. (3)

Let W1 be any subspace of this form. We wish to count the number of way to extend W1 in an A-
invariant way so that A acts by a transformation conjugate to B. This is equivalent to finding a sub-
space of V/W1 that is A-invariant and on which A is conjugate to Jb2, . . . , b2︸ ︷︷ ︸

c2 times

,...,bn+1, bn+1, . . . , bn+1︸ ︷︷ ︸
cn+1 times

.

Since this latter matrix has n distinct Jordan block sizes, our inductive hypothesis applies, and the
number of such subspaces is known. However, note that the transformation induced by A on the
quotient, call it A′, is represented by a matrix obtained from A by removing c1 blocks of the maximal
size b1. This means that for A′ we have t′i = ti − c1 for all i ≥ 2.

Therefore, the number of ways to pick the subspace W ′ ≤ V/W1 isn+1∏
i=2

(
ti − c1 −

i−1∑
j=2

ci

ci

)
q

 · q n∑
i=2

ci

(
(bi−1)(ti−c1+ci−2

i∑
j=2

cj)−
n∑

j=i+1
cj+

k∑
j=ti+1

aj

)
. (4)

The preimage W such that W/W1 = W ′ is uniquely determined by W ′, and is an A-invariant
subspace satisfying A|W ∼ B.

We thus counted the number of pairs (W1,W ) such that W1 ≤ W are two A-invariant spaces
with respective restrictions of A conjugate to Jb1,...,b1 and B. However, we are interested in counting
only the set of subspaces W , so we must divide by the number of pairs (W1,W ) with a given W .

Fixing W , the number of choices for W1 ≤W that is A-invariant and on which A acts as Jb1,...,b1
is again counted in Lemma 4.1. Since A acts on W as the matrix B we have ti = ci for all i and
ati = bi, thus the lemma gives the number of such W1 ≤W to be(

c1
c1

)
q

· qc1(b1−1)(c1−c1)+
∑
i≥2 cibi = 1 · qc1

∑
i≥2 cibi .

Dividing the product of (3) and (4) by this overcounting factor, we get the number of desired spaces
W to be: n+1∏

i=1

(
ti −

i−1∑
j=1

ci

ci

)
q

 · qf(a,b,c,t)
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where the exponent is

f(a, b, c, t) = c1

(b1 − 1)(t1 − c1) +

k∑
j=t1+1

aj


+

n∑
i=2

ci

(bi − 1)(ti − c1 + ci − 2

i∑
j=2

cj)−
n+1∑
j=i+1

cj +

k∑
j=ti+1

aj

− n+1∑
i=2

c1cibi

=

n+1∑
i=1

ci

(bi − 1)(ti + ci − 2

i∑
j=1

cj) +

k∑
j=ti+1

aj


+

n+1∑
i=2

ci

(bi − 1)(c1)−
n+1∑
j=i+1

cj − c1bi


=

n+1∑
i=1

ci

(bi − 1)(ti + ci − 2

i∑
j=1

cj) +

k∑
j=ti+1

aj −
n+1∑
j=i+1

cj


thus completing the proof of the induction step.

We now have the tools to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Theorem 4.5 shows that for every two unipotent Jordan matrices A and B
there exists a polynomial PA,B(t) such that XB(A) = PA,B(q) when considered as matrices over any
finite field Fq. Furthermore the polynomial in Theorem 4.5 depends only on the block sizes of A
and B, i.e. by the partitions describing the block sizes. If λ and µ are the partitions enumerating
the block sizes of A and B respectively, we write Pλ,µ(t) for the resulting polynomial.

Proof of Theorem 1.3. To show that there exists a polynomial PA,B(t) for any evaluation XB(A)
for inveritble matrices A and B, we use the results in Section 3.

First, let fB(t) be the characteristic polynomial of B and factor fB over Fq[x] into distinct
irreducible polynomials f1, f2, . . . , fk with multiplicities m1, . . . ,mk. That is,

fB(t) = f1(t)m1f2(t)m2 · · · fk(t)mk .

Let Bi the restriction of B to the subspace ker(fi(B)mi). Observe that the characteristic polynomial

of Bi is fi(t)
mi and B ∼

⊕k
i=1Bi.

Since each pair of the Bi have coprime characteristic polynomials, they have disjoint sets of
eigenvalues. So by Proposition 3.2, we have XB(A) =

∏k
i=1XBi(A). The characteristic polynomial

of Bi can be expressed as fBi(t) = (t − λi)ni(t − F (λi))
ni · · · (t − F ri−1(λi))

ni for some ni and ri
where λi ∈ Fqri . Furthermore, Bi ∼

⊕ri−1
j=0 F j(Mλi) where Mλi is an ni × ni matrix in Jordan

normal form with eigenvalue λi. Therefore, by Theorem 3.1, XBi(A) = XMλi
(qri , A).

Let A = Nλi ⊕ N ′ where Nλi is in Jordan form over Fqri and has eigenvalue λi and N ′ has
eigenvalues distinct from λi. This decomposition is possible since λi ∈ Fqri . We claim that
XMλi

(qri , Nλi ⊕ N ′) = XMλi
(qri , Nλi). Indeed, consider a subspace W counted by XMλi

(qri , A),
i.e. A-invariant W such that A|W ∼ Mλi . The only generalized eigenspace of A|W has eigenvalue
λi and is thus contained in the domain of Nλi .

Let µi and λi be the partitions that represent the Jordan block sizes of Mλi and Nλi , respectively.
By Proposition 3.5, XMλi

(qri , Nλi) = Pλi,µi(q
ri). Thus,

XB(A) =

k∏
i=1

XBi(A) =

k∏
i=1

Pλi,µi(q
ri) (5)
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as claimed.

The evaluation formula has a surprising consequence that the size of the largest Jordan block
does not matter as long as its multiplicity is the same in A and B.

Corollary 4.6. Suppose that A and B are unipotent Jordan matrices such that the largest Jordan
block of B has size b. If there are c Jordan blocks in B of size b and c Jordan blocks in A of size at
least b, then XB(A) is independent of b.

Proof. This is immediate from Theorem 4.5 as t1 = c1, so the coefficient of b in the exponent is
0.

5 Product Expansions

Now that we have determined a precise formula for the evaluation of any given statistic at any
matrix, we can combine this with our aforementioned algorithm to compute some of our sought-
after expansion coefficients.

As with evaluations, it is sufficient to consider expansion coefficients for unipotent Jordan ma-
trices because the product XA · XB evaluated at each matrix C can be written as a product of
polynomials Pλ,µ for partitions λ and µ that represent the respective Jordan block sizes of unipotent
matrices.

We first discuss some general results for all product expansions for unipotent Jordan matrices
before discussing a few specific cases.

5.1 General Results

Since all the expansion coefficients for unipotent Jordan matrices are polynomials as per Theorem 4.5,
we can also show that the expansion coefficients of these statistics are polynomials.

Proof of Theorem 1.4. This corollary follows inductively by the algorithm described in Section 2.
Let A and B have dimensions n1 and n2, respectively. Let all of the conjugacy classes of matrices
with dimensions between max(n1, n2) and n1 + n2 be C1, C2, . . . , Ck such that dimC1 ≤ dimC2 ≤
· · · ≤ dimCk. We show by induction that the coefficient of XCi is a polynomial in q.

The base case is i = 1. By Equation (2), the coefficient of XC1
is

λC1

A,B = XA(C1) ·XB(C1)

which is a polynomial in q due to Theorem 1.3. Assume by induction that for i ≤ m, the coefficient
of XCi is a polynomial in q. Then, the coefficient of XCm+1

is

λ
Cm+1

A,B = XA(Cm+1) ·XB(Cm+1)−
m∑
i=1

λCiA,BXCi(Cm+1).

By our inductive hypothesis and Theorem 1.3, all terms on the right-hand side are polynomials in
q, so the coefficent of XCm+1

is likewise a polynomial in q.

Many of the coefficients in the aforementioned product expansion are, in fact, the zero polynomial.
The necessary condition for when the coefficient is a nonzero polynomial is given by Proposition 1.5,
which we prove with Algorithm 2 and Theorem 4.5.

Proof of Proposition 1.5. It suffices to show that λCA,B = 0 whenever the maximum Jordan block
of C is not equal to b. We prove this with induction. Let all of the conjugacy classes of matrices
with dimensions between 1 and n1 + n2, inclusive, be C1, C2, . . . , Ck such that dimC1 ≤ dimC2 ≤
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· · · ≤ dimCk. Let j be the smallest positive integer such that XCj has a nonzero coefficient in the
expansion of XA ·XB . By minimality of j and Equation (2),

λ
Cj
A,B = XA(Cj)XB(Cj)−

j∑
i=1

λCiA,BXCi(Cj) = XA(Cj)XB(Cj).

Now, if the maximum Jordan block size in Cj is less than b, then XB(Cj) = 0 from Theo-

rem 4.5. But this is a contradiction since it would yield λ
Cj
A,B = 0. On the other hand, if

Cj = Jb+t1,b+t2,...,b+ts,cj1 ,cj2 ,...,cjk for t1, . . . , ts > 0, let C ′j = Jb, b, . . . , b︸ ︷︷ ︸
s times

,cj1 ,cj2 ,...,cjk
. Then, The-

orem 4.5 yields

λ
Cj
A,B = XA(Cj)XB(Cj) = XA(C ′j)XB(C ′j)

= λ
C′j
A,B +

∑
dimM<dimCj−t

λMA,BXM (C ′j)

= λ
C′j
A,B .

This implies that the coefficient of XC′j
is nonzero, which contradicts the minimality of j since

dim(C ′j) < dim(Cj).
This is the base case for our induction. Assume by induction that for all i ≤ m, the coefficient

of XCi is 0 when the largest Jordan block of Ci is not equal to b, then we will prove the same holds
for m+ 1. From Equation (2),

λ
Cm+1

A,B = XA(Cm+1) ·XB(Cm+1)−
m∑
i=1

λCiA,BXCi(Cm+1).

If the largest Jordan block of Cm+1 is less than b, then XB(Cm+1) = 0 by Theorem 4.5. Similarly,
for every nonzero λCiA,B in the sum, Ci has largest Jordan block b by the induction hypothesis, so

XCi(Cm+1) = 0. Therefore, we have that λ
Cm+1

A,B = 0.
Now, instead suppose Cm+1 = Jb+t1,b+t2,...,b+ts,c1,c2,...,ck for some t1, . . . , ts > 0. Let C` =

Jb, b, . . . , b︸ ︷︷ ︸
s times

,c1,c2,...,ck
where ` < m+ 1. Thus,

λ
Cm+1

A,B = XA(Cm+1)XB(Cm+1)−
m∑
i=1

λCiA,BXCi(Cm+1)

= XA(Cm+1)XB(Cm+1)−
`−1∑
i=1

λCiA,BXCi(Cm+1)− λC`A,BXC`(Cm+1)

−
m∑

i=`+1

λCiA,BXCi(Cm+1).

By Theorem 4.5, XA(Cm+1) = XA(C`) and XB(Cm+1) = XB(C`). We also know XC`(Cm+1) = 1.
For 1 ≤ i ≤ ` − 1 where λCiA,B is nonzero, XCi(Cm+1) = XCi(C`) by the inductive hypothesis since
the largest Jordan block of Ci is b. Furthermore, for all i such that ` + 1 ≤ i ≤ m, whenever
λCiA,B is nonzero, the largest Jordan block of Ci is b by the inductive hypothesis. In this case, by
Proposition 2.1, XCi(Cm+1) = XCi(C`) = 0 since dim(C`) ≤ dim(Ci) and Ci 6= C`. Therefore, we
have,

λ
Cm+1

A,B = XA(C`)XB(C`)−
`−1∑
i=1

λCiA,BXCi(C`)− λ
C`
A,B = 0.
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by Equation (2) applied to λC`A,B . This completes the induction step and we conclude that the

coefficient λCA,B is only nonzero if the largest Jordan block of C is b.

The condition provided in Proposition 1.5 greatly reduces our calculations with the algorithm
described in Section 2 in the specific cases below.

5.2 Single Jordan Blocks

We find the following expansion for the product of statistics on single Jordan blocks.

Theorem 5.1. For b ≥ a, we have the following expansion:

XJa ·XJb =

XJb +
(∑a−1

m=1 q
2m−1(q − 1)XJb,m

)
+ q2aXJb,a b > a

XJb +
(∑a−1

m=1 q
2m−1(q − 1)XJb,m

)
+ q2a−1(q + 1)XJb,a b = a

(6)

Proof. We only prove the case when b > a as the other case is similar.
We can find the coefficients in Equation (6) recursively using the algorithm in Section 2. However,

since there exists an expansion

XJa ·XJb =
∑
C

λCJa,JbXC

from Theorem 1.1, we simply verify that Equation (6) holds for all the matrices C such that XC may
have nonzero coefficient. From Proposition 1.5, C must be of the form Jb,a1,a2,...,an . For 1 ≤ m ≤ a,
define tm to be the largest integer 1 ≤ i ≤ n such that ai ≥ m. If ai < m for all i, let tm = 0. Note
that t1 = n. Furthermore, let k =

∑n
i=1 ai.

First, for C = Jb,a1,a2,...,an , observe that
∑n
i=1 ai ≤ a < b, so each ai is less than b. There-

fore, note that XJb(C) = qk from Theorem 4.5. Now, consider the evaluation of XJb,m(C). By
Theorem 4.5,

XJb,m(C) =

(
tm
1

)
q

· q(m−1)(tm−2)+k−1+
∑n
j=tm+1 aj

Consider the sum in the exponent. We can evaluate it directly based on the sequence {ti}. Since
there are tj − tj+1 terms in the sequence {ai} that are equal to j, we have

n∑
j=tm+1

aj =

m−1∑
j=1

(tj − tj+1)j = −(m− 1)tm +

m−1∑
j=1

tj .

Therefore, the exponent is

(m− 1)tm − 2m+ 2 + k − 1− (m− 1)tm +

m−1∑
j=1

tj = −2m+ 1 + k +

m−1∑
j=1

tj .

Our evaluation becomes XJb,m(C) =
(
tm
1

)
q
· q−2m+1+k+

∑m−1
j=1 tj . Finally, note that XJa(C) =(

ta+1
1

)
q
q(a−1)ta+

∑n
j=ta+1 aj =

(
ta+1
1

)
q
q
∑a−1
j=1 tj .
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The RHS of Eq. (6) evaluates on C as

XJb(C) +

(
a−1∑
m=1

q2m−1(q − 1)XJb,m(C)

)
+ q2aXJb,a(C)

= qk +

a−1∑
m=1

q2m−1(q − 1)

(
tm
1

)
q

· q−2m+1+k+
∑m−1
j=1 tj + q2a

(
ta
1

)
q

· q−2a+1+k+
∑a−1
j=1 tj

= qk +

a−1∑
m=1

(qtm − 1)qk+
∑m−1
j=1 tj +

(
ta
1

)
q

qk−1+
∑a−1
j=1 tj

= qk +

a−1∑
m=1

(qk+
∑m
j=1 tj − qk+

∑m−1
j=1 tj ) +

qk+1+
∑a
j=1 tj − qk+1+

∑a−1
j=1 tj

q − 1

= qk − qk + qk+
∑a−1
j=1 tj +

qk+1+
∑a
j=1 tj − qk+1+

∑a−1
j=1 tj

q − 1
=

(
ta + 1

1

)
q

qk+
∑a−1
j=1 tj .

One can check that this is equal to XJa(C)XJb(C) from our calculations above, so there is no
remaining non-trivial linear contribution for XC , and Eq. (6) is satisfied by all conjugacy classes
C.

Remark 5.1.1. In the expansion XJb ·XJa , where b ≥ a, the only non-trivial contributions to the
expansion are from conjugacy classes with one or two Jordan blocks.

Corollary 5.2. All statistics XJb,a can be expressed as degree 2 polynomials in {XJn |n ∈ N} with
coefficients in rational functions Q(q).

Proof. We fix b and induct on a ≤ b. The base case a = 1 follows as XJb,1 =
XJb ·XJ1−XJb

q2 from
Theorem 5.1. Assume by induction that all XJb,m for 1 ≤ m ≤ k < b are given by degree 2
polynomials in the XJn ’s. When k + 1 < b, Theorem 5.1 yields

XJb,k+1
=
XJb ·XJk −XJb −

(∑k
m=1 q

2m−1(q − 1)XJb,m

)
q2k+2

As each term on the RHS can be is expressed as a degree 2 polynomial in the XJn ’s, we have that
Xb,k+1 is similarly expressed in terms of the XJn ’s. When k + 1 = b, Theorem 5.1 similarly yields

XJb,k+1
=
X2
Jb
−XJb −

(∑b−1
m=1 q

2m−1(q − 1)XJb,m

)
q2b−1(q + 1)

.

For the same reason as before, this can be expressed in terms of the XJn ’s, and we are done.

We note that the expansion coefficients in Theorem 5.1 are the same for every b once b ≥ a+ 1:
in other words, they depend solely on a. It seems reasonable to conjecture that such a phenomenon
extends to a more general case.

Conjecture 5.3. Given a1 ≥ b1, a1 ≥ a2 ≥ · · · ≥ ak, and b1 ≥ b2 ≥ · · · ≥ bj, the product
XJa1,...,ak

· XJb1,b2,...,bj
has the same expansion coefficients when ai is increased for any 1 ≤ i ≤ k

such that ai > b1.
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5.3 Larger Jordan Matrices

Using similar methods as before, we can try to determine the expansion coefficients for the product
of a statistic on a single Jordan block with a statistic on two Jordan blocks.

An interesting example can thus be proven:

Lemma 5.4. When b > a > 1,

XJb ·XJa,1 = qXJb,1 +

a−1∑
m=2

q2m−2(q − 1)XJb,m + q2a−1XJb,a

+ q2(q2 − 1)XJb,1,1 +

a−1∑
m=2

q2m+1(q − 1)XJb,m,1 + q2a+2XJb,a,1 .

(7)

Proof. By Proposition 1.5, the product expansion of XJb · XJa,1 contains only terms λCJb,Ja,1XC

where C is of the form Jb,a1,a2,...,an with a1 ≥ a2 ≥ · · · ≥ an. For 1 ≤ m ≤ a, define tm to be the
largest integer 1 ≤ i ≤ n such that ai ≥ m. If ai < m for all i, let tm = 0. Note that t1 = n. We
also denote si =

∑i
j=1 tj and k =

∑n
j=1 aj .

As before, the expansion coefficients can be determined recursively, but we simply verify that
Theorem 5.4 is satisfied for all matrices of the form Jb,a1,a2,...,an . First, observe that the only matrices
in which ta > 0 are Jb,a, Jb,a,1 and Jb,a+1. We can check these cases manually.

For all other matrices, we have ta = 0. To show that the equation above is true, we evaluate
every term at the matrix C. We find the evaluations on the left hand side first:

XJb(C) = qk,

XJa,1(C) =

(
ta + 1

1

)
q

(
t1
1

)
q

· q−1+(a−1)ta+
∑n
j=ta+1 aj

=
qn−1 − 1

q − 1
· q−1+

∑n
j=ta+1 aj

=
qn−1 − 1

q − 1
· qsa−1−1

where last equality can be seen by observing that

n∑
j=ta+1

aj =

a−1∑
j=1

(tj − tj+1)j = −(a− 1)ta +

a−1∑
j=1

tj = sa−1.

Therefore, when evaluated at C, the left hand side becomes qn−1−1
q−1 · qsa−1+k−1. We now show

that the right hand side has the same evaluation. Observe that our evaluation formula yields the
following:

XJb,1(C) =
qn − 1

q − 1
· qk−1,

XJb,m(C) =

(
tm
1

)
q

· q−2m+1+k+sm−1 for 2 ≤ m < a.
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Note that qXJb,1(C) = qk+n−qk
q−1 . Furthermore, we can simplify the following sum:

a−1∑
m=2

q2m−2(q − 1)XJb,m(C) =

a−1∑
m=2

q2m−2(q − 1)

(
tm
1

)
q

· q−2m+1+k+sm−1

=

a−1∑
m=2

(qtm − 1)qsm−1+k−1

=

a−1∑
m=2

(qsm+k−1 − qsm−1+k−1) = qsa−1+k−1 − qn+k−1.

Now, observe that XJb,a(C) = 0 since ta = 0. Now, let’s move on next second set of terms with 3
blocks. We have,

q2(q2 − 1)XJb,1,1(C) = q2(q2 − 1)

(
t1
2

)
q

· q−2+k =
(qn−1 − 1)

q − 1
(qk+n − qk).

We also observe that for 2 ≤ m < a

q2m+1(q − 1)XJb,m,1(C) = q2m+1(q − 1)

(
tm
1

)
q

(
t1 − 1

1

)
q

· q−3+k+(m−1)(tm−2)+
∑n
j=tm+1 aj

= q2m+1(q − 1)
qtm − 1

q − 1

qn−1 − 1

q − 1
· qk−2m−1+sm−1

=
qn−1 − 1

q − 1
(qk+sm − qk+sm−1).

This implies
∑a−1
m=2 q

2m+1(q − 1)XJb,m,1(C) = qn−1−1
q−1 (qk+sa−1 − qk+n) after simplification. Finally,

since ta = 0, XJb,a,1(C) = 0. We can now add up all of the terms on the RHS:

qn+k − qk

q − 1
+ qsa−1+k−1 − qn+k−1 +

qn−1 − 1

q − 1
(qn+k − qk + qsa−1+k − qn+k)

=
qn − 1

q − 1
· qk+sa−1−1

which is equal to the left hand side of (7), so we are done.

Remark 5.4.1. As observed above, the coefficients in the expansion of XJb ·XJa,1 where b > a > 1
are independent of b.

Remark 5.4.2. In the multiplication of the statistics for a matrix with one block and a matrix
with two blocks, all of the resulting terms were statistics of matrices with at most 3 blocks.

We compute and prove other similar preliminary results for multi-block statistic expansions using
the algorithm in Section 2. See a table in Appendix A. Given these patterns, we posit the following
conjectures:

Conjecture 5.5. Let m,n be fixed positive integers.

XJn ·XJm,m =



qmXJn,m +
m−1∑
k=1

q3k+m−1(q − 1)XJn,m,k + q4mXJn,m,m if n > m

qm−1
(
2
1

)
q
XJn,m +

m−1∑
k=1

q3k+m−2(q2 − 1)XJn,m,k + q4m−2
(
3
1

)
q
XJn,m,m if n = m

qn−1
(
2
1

)
q
XJm,m +

n−1∑
k=1

q3k+n−2(q2 − 1)XJm,m,k + q4nXJm,m,n if n < m.
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Conjecture 5.6. Let n > m > k be positive integers. Then,

XJn ·XJm,k = qkXJn,k +

m−k−1∑
i=1

(
qk+2i−1(q − 1)XJn,k+i

)
+ q2m−kXJn,m

+

k−1∑
l=1

qk+3l−1(q − 1)XJn,k,l +

m−k−1∑
j=1

(
qk+3k+2j−2(q − 1)2XJn,k+j,l

)
+ q2m+3l−k−1(q − 1)XJn,m,l


+ q4k−2(q2 − 1)XJn,k,k +

m−k−1∑
p=1

(
q4k+2p−1(q − 1)XJn,k+p,k

)
+ q2m+2kXJn,m,k .

Conjecture 5.7. Consider the expansion of XA · XB where A and B are two unipotent Jordan
matrices. If A and B have a and b blocks in their Jordan normal forms, respectively, then the only
non-trivial contributions in the expansion of XA ·XB are from matrices C with at most a+ b Jordan
blocks.

5.4 Identity Matrices

In this section, we consider our statistics under identity matrices and solve for the expansion coeffi-
cients for their products.

Notation. Let In denote an n× n identity matrix.

Lemma 5.8. XIm(In) =
(
n
m

)
q
.

Proof. Every m-dimensional subspace satisfies the conditions, and therefore, we are simply counting
the number of m-dimensional subspaces in a n-dimensional space. By definition, this is precisely(
n
m

)
q
.

As identity matrices result in q-binomial coefficients, solving for the product expansion seeks to
answer a very classical question: how do the product of two q-binomial coefficients expand in terms
of a linear combination of q-binomial coefficients.

Theorem 5.9. For n,m ≥ 1, we have the following expansions:

XIm ·XIn =

min (m,n)∑
k=0

(
m+ n− k

k

)
q

(
m+ n− 2k

m− k

)
q

· q(m−k)(n−k)XIm+n−k .

Proof. The equality is a consequence of the following counting argument. Observe that the left-
hand side is counting the number of ways to pick two subspaces V and W of dimension m and n
respectively.

The right-hand side counts the same thing, but by first fixing the spaces V ∩W and V + W
then iterating through all pairs of V and W that could result in those. In this count, we start by
grouping choices for subspaces V and W by the dimension k := dimV ∩W . Ranging over all pairs
of V and W , the dimension k takes integer values 0 ≤ k ≤ min(m,n). Consider all pairs (V,W )
with a given sum U and intersection U ′ ≤ U . The possible dimensions of these are m+n− k and k,
respectively, by the Dimension Sum Theorem. Therefore, there are Xm+n−k choices for U and for
each such choice there are

(
m+n−k

k

)
q

choices for U ′

Now for fixed U ′ ≤ U it remains to count the number of intermediate pairs U ′ ≤ V,W ≤ U
that together span U and intersect at U ′. First, m-dimensional spaces U ′ ≤ V ≤ U are in bijection
with m − k-dimensional subspaces V ′ ≤ U/U ′, so there are

(
n+m−2k
m−k

)
choices for such V ′. For

every one of these choices, spaces W such that V ∩W = U ′ and V + W = U are in bijection with
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direct complements W ′ s.t. V ′ ⊕W ′ = U/U ′. To count complements, fix W ′0, then the set of all
complements is in bijection with hom(W ′0, V

′), which has cardinality q(m−k)(n−k).
Putting all of this together, we get our right-hand side:

min (m,n)∑
k=0

(
m+ n− k

k

)
q

(
m+ n− 2k

m− k

)
q

· q(m−k)(n−k)XIm+n−k .

Remark 5.9.1. In the limit where q = 1 subspaces reduce to subsets. Our formula specializes to
the following well-known formula for expressing the product of binomials as a linear combination:(

r

n

)(
r

m

)
=

min(m,n)∑
k=0

(
r

m+ n− k

)(
m+ n− k

k, n− k,m− k

)
(8)

This formula can be proven by a counting argument analogous to the one in Theorem 5.9, though
this special case if far simpler.

Now, we show that Theorem 5.9 reduces to Eq. (8). Plugging in q = 1, the q-binomial coefficients
become classical binomial coefficients. Therefore, we have(

r

n

)(
r

m

)
=

min(m,n)∑
k=0

(
r

m+ n− k

)(
m+ n− k

k

)(
m+ n− 2k

m− k

)
(9)

=

min(m,n)∑
k=0

(
r

m+ n− k

)(
m+ n− k

k, n− k,m− k

)
. (10)

Thus recovering Eq. (8).

6 Application: Correlations

Our product expansion coefficients allow calculations of expectations of products of q-character
polynomials, which could be used in calculating joint moments such as correlation. We first discuss
a method for determining the expected value of each statistic XB .

Suppose B is an invertible m × m matrix. It is shown in [7] that the expected value of XB

over all n × n invertible matrices A is independent of n once n ≥ m. We may thus calculate this
expectation by considering the simple case when n = m. In this case, XB(A) = 1 whenever A ∼ B
and XB(A) = 0 otherwise. Consider Gln(Fq) and the group action of conjugation. The size of the
conjugacy class that contains B is the orbit of B or Orb(B).

Therefore, we have the following proposition.

Proposition 6.1. For every n ≥ dim(B), the random variable XB on the uniform probability space
Gln(Fq) has expectation

E[XB ] =
Orb(B)

|Gln(Fq)|
=

1

|Stab(B)|
.

The second equality is due to the Orbit-Stabilizer, so it remains to determine the stabilizer of B.
Here, we are considering the group Gln(Fq) and the group action of conjugation. The stabilizer of B
is then Stab(B) = {P ∈ Gln(Fq) | B = P−1BP}. For this group action, the stabilizer is equivalent
to the centralizer, defined to be CG(B) = {P ∈ Gln(Fq) | PB = BP}. Solutions to this equation
can be determined explicitly. For example, one can verify the following specific results.
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Proposition 6.2. For matrices with a single Jordan block, the order of the centralizer is |CG(Jb)| =
qb−1(q − 1). For matrices with 2 Jordan blocks, |Cg(Jb,a)| = q3a+b−2(q − 1)2 where b 6= a. Further-
more, |Cg(Jb,b)| = q4b−4(q2 − 1)(q2 − q).

Therefore, E[Jb] = 1
qb−1(q−1) , E[Jb,a] = 1

q3a+b−2(q−1)2 where b 6= a, and E[Jb,b] = 1
q4b−4(q2−1)(q2−q) .

As we have a method to determine expectations of statistics, it is natural to consider joint
moments of these statistics such as correlation.

The correlation coefficient ρXY of the random variables X and Y is the measure of association
of X and Y . It is between −1 and 1. When |ρ| is larger, X and Y have a stronger relationship.
Mathematically, we have the following equation.

Definition 3. The correlation coefficient is

ρXY =
E[XY ]− E[X]E[Y ]√

(E[X2]− E[X]2)(E[Y 2]− E[Y ]2)
.

To calculate expectations of products such as E[XY ] or E[X2], we can first apply our product
expansions to write the product as a linear combination. Then, we can determine the expected value
of each term individually and combine the results with linearity of expectation. Therefore, we can
fully describe the correlation between statistics of single Jordan blocks with this method.

Proof of Theorem 1.6. By definition

ρ =
E[XJaXJb ]− E[XJa ]E[XJb ]√

(E[X2
Ja

]− E[XJa ]2)(E[X2
Jb

]− E[XJb ]
2)
.

First, consider b > a. It suffices to determine E[XJaXJb ] and E[X2
Ja

]. For the former, note from
Theorem 5.1,

E[XJaXJb ] = E[XJb + q(q − 1)XJb,1 + · · ·+ q2a−3(q − 1)XJb,a−1
+ q2aXJb,a ]

= E[XJb ] +

a−1∑
i=1

q2i−1(q − 1)E[XJb,i ] + q2aE[XJb,a ]

=
1

qb−1(q − 1)
+

a−1∑
i=1

q2i−1(q − 1)

q3i+b−2(q − 1)2
+

q2a

q3a+b−2(q − 1)2

=

a−1∑
i=0

1

qb+i−1(q − 1)
+

1

qa+b−2(q − 1)2

=
qa − 1

qa+b−2(q − 1)2
+ E[XJa ]E[XJb ].

Therefore, E[XJaXJb ]− E[XJa ]E[XJb ] = qa−1
qa+b−2(q−1)2 . To find E[X2

Ja
], we use a similar method.

E[X2
Ja ] = E[XJa + q(q − 1)XJa,1 + · · ·+ q2a−3(q − 1)XJa,a−1 + q2a−1(q + 1)XJa,a ]

= E[XJa ] +

a−1∑
i=1

q2i−1(q − 1)E[XJa,i ] + q2a−1(q + 1)E[XJa,a ]

=
1

qa−1(q − 1)
+

a−1∑
i=1

q2i−1(q − 1)

q3i+a−2(q − 1)2
+

q2a−1(q + 1)

q4a−4(q2 − q)(q2 − 1)

=
qa − 1

q2a−2(q − 1)2
+ E[XJa ]2.
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Therefore, E[X2
Ja

]− E[XJa ]2 = qa−1
q2a−2(q−1)2 and similarly for b. Thus,

ρ =

qa−1
qa+b−2(q−1)2√

qa−1
q2a−2(q−1)2 ·

qb−1
q2b−2(q−1)2

=

√
qa − 1

qb − 1
.

The case when b = a is identical and reduces to a correlation of 1, as desired.
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Appendix A Calculations

Term 1 Term 2 Product Expansion

XJn XJ2,2 q2XJn,2 + (q − 1)q4XJn,2,1 + q8XJn,2,2

XJn XJ3,2

q2XJn,2 + q4XJn,3 + (q − 1)q4XJn,2,1 + (q2 − 1)q6XJn,2,2

+(q − 1)q6XJn,3,1 + q10XJn,3,2

XJn XJ4,2

q2XJn,2 + (q − 1)q3XJn,3 + q6XJn,4 + q4(q − 1)XJn,2,1

+(q − 1)2q5XJn,3,1 + (q2 − 1)q6XJn,2,2 + q9(q − 1)XJn,3,2

+q8(q − 1)XJn,4,1 + q12XJn,4,2

XJn XJ5,2

q2XJn,2 + 10q4XJn,2,1 + (q − 1)q3XJn,3 + (q2 − 1)q6XJn,2,2

+(q − 1)2q5XJn,3,1 + (q − 1)q5XJn,4 + (q − 1)q9XJn,3,2

+(q − 1)2q7XJn,4,1 + q8XJn,5 + (q − 1)q11XJn,4,2

+(q − 1)q10XJn,5,1 + q14XJn,5,2

XJn XJ6,2

q2XJn,2 + (q − 1)q4XJn,2,1 + (q − 1)q3XJn,3 + (q2 − 1)q6XJn,2,2

+(q − 1)2q5XJn,3,1 + (q − 1)q5XJn,4 + (q − 1)q9XJn,3,2

+(q − 1)2q7XJn,4,1 + (q − 1)q7XJn,5 + (q − 1)q11XJn,4,2

+(q − 1)2q9XJn,5,1 + q10XJn,6 + (q − 1)q13XJn,5,2

+(q − 1)q12XJn,6,1 + q16XJn,6,2

XJn XJ3,3 q3XJn,3 + (q − 1)q5XJn,3,1 + (q − 1)q8XJn,3,2 + q12XJn,3,3

XJn XJ4,3

q3XJn,3 + q5XJn,4 + (q − 1)q5XJn,3,1 + (q − 1)q8XJn,3,2

+(q − 1)q7XJn,4,1 + (q2 − 1)q10XJn,3,3 + (q − 1)q10XJn,4,2 + q14XJn,4,3

XJn XJ5,3

q3XJn,3 + (q − 1)q5XJn,3,1 + (q − 1)q4XJn,4 + (q − 1)q8XJn,3,2

+(q − 1)2q6XJn,4,1 + q7XJn,5 + (q2 − 1)q10XJn,3,3 + (q − 1)2q9XJn,4,2

+(q − 1)q9XJn,5,1 + (q − 1)q13XJn,4,3 + (q − 1)q12XJn,5,2 + q16XJn,5,3

XJn XJ4,4

q4XJn,4 + (q − 1)q6XJn,4,1 + (q − 1)q9XJn,4,2

+(q − 1)q12XJn,4,3 + q16XJn,4,4

XJn XJ2,2,2 q4XJn,2,2 + (q − 1)q7XJn,2,2,1 + q12XJn,2,2,2

XJn XJ3,3,2

q5XJn,3,2 + (q − 1)q8XJn,3,2,1 + q8XJn,3,3

+(q − 1)q11XJn,3,3,1 + (q2 − 1)q11XJn,3,2,2 + q16XJn,3,3,2

Table 1: Table of Product Expansions
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