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The Schur polynomials sλ are essential in understanding the representation theory of the general
linear group. They also describe the cohomology ring of the Grassmannians. For ρ = (n, n−1, . . . , 1)
a staircase shape and µ ⊆ ρ a subpartition, the Stembridge equality states that sρ/µ = sρ/µT . This
equality provides information about the symmetry of the cohomology ring. The stable Grothendieck
polynomials Gλ, and the dual stable Grothendieck polynomials gλ, developed by Buch, Lam, and
Pylyavskyy, are variants of the Schur polynomials and describe the K-theory of the Grassmannians.
Using the Hopf algebra structure of the ring of symmetric functions and a generalized Littlewood-
Richardson rule, we prove that Gρ/µ = Gρ/µT and gρ/µ = gρ/µT , the analogues of the Stembridge
equality for the skew stable and skew dual stable Grothendieck polynomials.

1 Introduction

In this paper, we prove a Stembridge-type equality for skew stable Grothendieck polynomials and
skew dual stable Grothendieck polynomials, namely

Gρ/µ = Gρ/µT , gρ/µ = gρ/µT ,

where ρ = (n, n− 1, . . . , 1) is the staircase partition.
The stable Grothendieck polynomials Gλ are K-theoretic analogues of the Schur polynomials sλ,

i.e., they provide information about the K-theory of the Grassmanian. These formal power series
were introduced by Fomin and Kirillov [3]. In [2], Buch gave a combinatorial definition of the skew
stable Grothendieck polynomials Gλ/µ using set-valued tableaux of shape λ/µ, which are certain
fillings of the skew Young diagram of the shape λ/µ with sets of positive integers. The dual stable
Grothendieck polynomials gλ, first introduced by Lam and Pylyavskyy in [6], are dual to the Gλ’s
under the Hall inner product. The formal power series gλ/µ is defined using reverse plane partitions,
which are certain fillings of the skew Young diagram of the shape λ/µ with positive integers.

The skew stable and skew dual stable Grothendieck polynomials can be viewed as deformations
of the Schur polynomials in that their lowest and highest degree parts, respectively, are the Schur
polynomials. Thus, it is natural to ask whether certain identities for the Schur polynomials can
be extended to this context. For instance, it was conjectured in [1, Conjecture 6.2] that there are
analogues for gρ/µ and Gρ/µ of the Stembridge equality [7, Corollary 7.32], which states that

sρ/µ = sρ/µT ,

for ρ = (n, n − 1, . . . , 1). In this paper, we verify that the conjectures hold. More precisely, we
prove that there is a Stembridge-type equality for the skew stable and skew dual stable Grothendieck
polynomials, thereby exhibiting additional symmetries on the K-theory of the Grassmanians.
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1.1 Outline of the paper

In Section 2, we begin by going over the basics of symmetric functions, Schur polynomials, and skew
stable and skew dual stable Grothendieck polynomials. Then, we state the problem and introduce
the Hopf algebraic structure of the ring of symmetric functions Λ.

In Section 3.1, we give a combinatorial proof of Theorem 1.1, the Stembridge equality for skew
dual stable Grothendieck polynomials gρ/µ in the special case where µ = (k), using a generalized
Littlewood-Richardson rule for the stable Grothendieck polynomials proven by Buch [2].

Theorem 1.1. Let ρ = (n, n−1, . . . , 1) be the staircase partition, and µ = (k) where k ≤ n. Then,

gρ/µ = gρ/µT .

In Section 3.2, we prove the Stembridge equality for skew dual stable Grothendieck polynomials
for general µ, as stated in the following theorem.

Theorem 1.2. Let ρ = (n, n − 1, . . . , 1) be the staircase partition, and µ ⊆ ρ any subpartition.
Then

gρ/µ = gρ/µT .

We extend Theorem 1.1, the case for µ = (k), to Theorem 1.2, the general case, by utilizing the
skewing operator ⊥ coming from the Hopf algebraic structure of Λ, along with an involution τ of
the completion Λ̂ constructed by Yelliusizov in [9, Theorem 1.1] sending Gµ to GµT .

In Section 4, we use a similar strategy to prove the Stembridge equality for skew stable
Grothendieck polynomials Gρ/µ.

Theorem 1.3. Let ρ = (n, n − 1, . . . , 1) be the staircase partition, and µ ⊆ ρ any subpartition.
Then

Gρ/µ = Gρ/µT .

First, we prove the identity combinatorially for the case µ = (k) in Section 4.1, and then
generalize it to arbitrary µ in Section 4.2 using the skewing operator and an involution τ of Λ, an
analogue of τ sending gµ to gµT , introduced by Yelliusizov [9].

Remark 1.4. In Section 2.8, we prove that the converses of Theorem 1.2 and Theorem 1.3 are
true. That is, if Gρ/µ = Gρ/µT (respectively, gρ/µ = gρ/µT ) for all µ ⊆ ρ, then ρ = (n, n− 1, . . . , 1)
for some positive integer n. This follows from Theorem 2.28, the converse statement in the case of
Schur polynomials, which we show in since sλ/µ is the bottom degree component of Gλ/µ and the
top degree component of gλ/µ.

2 Preliminaries

2.1 Partitions and Diagrams

A partition λ of a nonnegative integer n is a weakly decreasing sequence of positive integers
(λ1, λ2, . . . , λ`) whose sum is n We write λ ` n to indicate that λ is a partition of n. The in-
teger λi is the ith part of λ. The number of parts of λ is the length of λ, denoted `(λ). Denote the
set of all partitions of n by Par(n), and let Par :=

⋃
n≥0 Par(n).

Definition 2.1. The Young diagram of a partition λ, denoted Y (λ), is a left-aligned array with λi
cells in the ith row from the top.

2



For example,

is the Young diagram of λ = (5, 3, 3, 1).
If λ and µ are two partitions such that µi ≤ λi for all i, then we write µ ⊆ λ and say that µ is a

subpartition of λ. We may additionally consider the skew partition λ/µ whose skew Young diagram
consists of the cells belonging to Y (λ) but not to Y (µ). For example,

is the Young diagram of λ/µ = (5, 4, 2, 1)/(2, 1, 1).
The conjugate of a partition λ, denoted λT , is the partition whose ith part is the number of

entries of λ that are at least i. Equivalently, Y (λT ) is obtained from Y (λ) by a reflection over
the main diagonal. For example, (4, 2, 1) and (3, 2, 1, 1) are conjugates, as seen from their Young
diagrams below.

⇐⇒

2.2 Symmetric Functions

For a sequence of nonegative integers α = (α1, α2, . . . ) with
∑
αi = n, define xα := xα1

1 xα2
2 · · · . A

homogeneous symmetric function of degree n is a formal power series

f(x) =
∑
α

cαx
α

such that the cα are elements of some commutative ring R and for each permutation ω of the
positive integers, f(x1, x2, . . . ) = f(xω(1), xω(2), . . . ). For our purposes, we will take R = Q and
let Λn denote the set of all homogeneous symmetric functions of degree n over Q. Additionally,
Λ = Λ0 ⊕ Λ1 ⊕ · · · , the set of all symmetric functions, is a graded algebra over Q.

Definition 2.2. The elementary symmetric function en is given by

en :=
∑

i1<···<in

xi1 · · ·xin ,

where 1n represents the partition (1, 1, 1, . . .) with n components equal to 1. For a partition λ =
(λ1, λ2, . . . ), let

eλ := eλ1eλ2 · · · .
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The set {eλ} for all partitions λ forms a basis for Λ.

Definition 2.3. The complete homogeneous symmetric function hn is given by

hn :=
∑

i1≤···≤in

xi1 · · ·xin .

In particular, hn is the sum of all monomials with degree n. For a partition λ = (λ1, λ2, . . . ), let

hλ = hλ1hλ2 · · · .

The set {hλ} for all partitions λ forms a basis for Λ.

2.3 Schur Functions

Definition 2.4. A semistandard Young tableau (SSYT) of shape λ/µ is a filling of the cells of
Y (λ/µ) with positive integers such that the entries weakly increase within each row and strictly
increase within each column. A semistandard Young tableau T has type α = (α1, α2, . . . ) where αi
is the number of entries of T equal to i.

For example,

2 4

1 1 4

1 2 2

3 4

6

is a SSYT of shape (5, 4, 3, 2, 1)/(3, 1) and type (3, 3, 1, 3, 0, 1).
For a SSYT T of type α = (α1, α2, . . . ), let xT denote xα1

1 xα2
2 · · · .

Definition 2.5. For a skew shape λ/µ, the skew Schur function sλ/µ in the variables x =
(x1, x2, . . . ) is given by

sλ/µ =
∑
T

xT ,

where the sum is over all SSYT T of shape λ/µ. When µ = ∅, then sλ is the Schur function of λ.

Example 2.6. Every SSYT T of shape λ/µ = (2, 1, 1)/(1) is of one of the following forms for some
positive integers i < j < k.

i

i

j

j

i

j

i

j

k

j

i

k

k

i

j

Thus,

s(2,1,1)/(1) =
∑
i<j

x2ixj +
∑
i<j

xix
2
j + 3

∑
i<j<k

xixjxk.
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Next, we state two well-known properties of Schur functions (see [8, Chapter 7]).

Theorem 2.7. For all skew partitions λ/µ, the skew Schur function sλ/µ is a symmetric function.

Theorem 2.8. The set {sλ : λ ∈ Par(n)} forms a basis for Λn, and the set {sλ : λ ∈ Par} forms
a basis for Λ.

Definition 2.9. The Hall inner product 〈·, ·〉 on Λ is defined so that the Schur functions are
orthonormal; that is, 〈sλ, sµ〉 = δλµ, the Kronecker delta.

Additionally, under the Hall inner product, eλ and hλ are dual bases; that is, 〈eλ, hµ〉 = δλµ.

2.4 Dual Stable Grothendieck Polynomials

Definition 2.10. A reverse plane partition of shape λ/µ is a filling of the cells of Y (λ/µ) with
positive integers such that the entries weakly increase within each row and column. A reverse plane
partition P has weight w = (w1, w2, . . . ), where wi is the number of columns of P containing i.

For example,

1 2 2 4

1 2 5

1 2 2

is a reverse plane partition of shape (5, 4, 3)/(1, 1) and weight (2, 3, 0, 1, 1).
For a reverse plane partition P of weight w = (w1, w2, . . . ), let xP denote xw1

1 xw2
2 · · · .

Definition 2.11. For a skew shape λ/µ, define the skew dual stable Grothendieck polynomial gλ/µ
to be

gλ/µ =
∑
P

xP ,

where the sum is over all reverse plane partitions P of shape λ/µ.

Example 2.12. Every reverse plane partition P of shape λ/µ = (2, 2)/(1) takes on one of the
following forms, for some positive integers i < j < k.

i

i i

i

i j

j

i j

i

j j

i

j k

j

i k

Thus,

g(2,2)/(1) =
∑
i

x2i +
∑
i<j

x2ixj +
∑
i<j

xixj +
∑
i<j

xix
2
j + 2

∑
i<j<k

xixjxk.

As shown in [6], the dual stable Grothendieck polynomials gλ are symmetric functions and form
a basis for Λ.

Remark 2.13. The terms of highest degree in gλ/µ are achieved by reverse plane partitions in
which there are no numbers repeated in any column; that is, the columns are strictly increasing.
In other words, the reverse plane partition must also be a semi-standard Young tableau. Thus, the
terms of highest degree in gλ/µ form sλ/µ.
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2.5 Stable Grothendieck Polynomials

Definition 2.14. For two sets A and B of positive integers, we say that A ≤ B if maxA ≤ minB
and A < B if maxA < minB. A set-valued tableau of shape λ/µ is then a filling of the boxes of
Y (λ/µ) with nonempty sets of positive integers such that the sets weakly increase along rows and
strictly increase along columns.

Definition 2.15. Let |T | denote the sum of the sizes of the sets appearing in T .

Example 2.16. The following is a set-valued tableau of shape (5, 4, 3)/(2, 1) and size 15.

1, 2 2, 3, 4 7

3 3, 5 5

2 4, 5, 6 6

Definition 2.17. Let mi be the number of times that i appears in a the set-valued tableau T , and
let xT = xm1

1 xm2
2 · · · . Then the skew stable Grothendieck polynomial Gλ/µ is given by

Gλ/µ :=
∑
T

(−1)|T |−|λ|xT ,

where the sum is over all set-valued tableaux T of shape λ/µ.

Remark 2.18. A set-valued tableau of shape λ/µ filled with sets of size one is a semi-standard
Young tableau, corresponding to the monomials in Gλ/µ of lowest degree. Thus, the terms of lowest
degree in Gλ/µ form sλ/µ. The stable Grothendieck polynomial has terms of arbitrarily large degree.

Remark 2.19. Let Λ̂ be the completion of Λ, given by allowing infinite linear combinations of a
given basis (e.g. the Schur polynomials). The Hall inner product 〈·, ·〉 : Λ×Λ→ Z can be extended
to a pairing

〈·, ·〉 : Λ̂× Λ→ Z

by linearly extending 〈sλ, sµ〉 = δλ,µ as in [9]. The Gλ are symmetric functions and they form

a basis for Λ̂. The Gλ are also dual to the gλ under the (extended) Hall inner product; that is,
〈Gλ, gµ〉 = δλµ.

2.6 Hopf Algebras

The ring of symmetric functions Λ has a Hopf algebraic structure, as described in [5]. The comul-
tiplication ∆ sends

f(x1, x2, · · · ) 7→ f(x1, x2, · · · , y1, y2, · · · ).

Lemma 2.20. The comultiplication acts on gλ as follows:

∆(gλ) =
∑
µ⊆λ

gµ ⊗ gλ/µ.
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Proof. From the combinatorial definition,

gλ =
∑
P

xP ,

summed over all reverse plane partitions P of shape λ with entries in the alphabet x1 < x2 <
· · · < y1 < y2 < · · · . Since the rows and columns of P are weakly increasing, the restriction of the
reverse plane partition to the alphabet x gives a reverse plane partition Px of shape µ ⊆ λ, and the
restriction to the alphabet y gives a reverse plane partition Py of shape λ/µ.

Then,

gλ(x, y) =
∑
P

xPx · yPy =
∑
µ⊆λ

(∑
Px

xPx

)∑
Py

yPy

 =
∑
µ⊆λ

gµ(x)gλ/µ(y).

Thus, we indeed have that

∆(gλ) =
∑
µ⊆λ

gµ ⊗ gλ/µ.

We next define the skewing operator ⊥ (see for instance [5], Section 2.8) which we will use
throughout the paper.

Definition 2.21. Given ∆(a) =
∑

(a) a(1)⊗a(2), written in Sweedler notation, the skewing operator
⊥ is defined as

f⊥(a) :=
∑
(a)

〈f, a(1)〉a(2).

Theorem 2.22. For any partition µ ⊆ λ,

G⊥µ gλ = gλ/µ.

Proof. Recall from Lemma 2.20 that ∆(gλ) =
∑

µ⊆λ gµ⊗gλ/µ. Then by the definition of the skewing
operator,

G⊥µ gλ =
∑
ν

〈Gµ, gν〉gλ/ν

=
∑
ν

δµ,νgλ/ν

= gλ/µ.

The skewing operator also has the following useful property; see, for instance, Section 2.8 of [5].

Lemma 2.23. Let A• be a graded Hopf algebra. For any f, g ∈ A•,

〈g, f⊥(a)〉 = 〈fg, a〉.
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2.7 The Stembridge Equality

The Stembridge equality describes an important symmetry for the Schur polynomials and can be
proved in a number of different ways (e.g. Corollary 7.32 in [7] and Exercise 2.9.25 in [5]).

Theorem 2.24 (Stembridge Equality). Let ρ = (n, n − 1, . . . , 1) be the staircase partition, and
µ ⊆ ρ. Then

sρ/µ = sρ/µT .

In this paper, we extend the Stembridge equality to the skew stable and skew dual stable
Grothendieck polynomials.

In addition, the converse is true. That is, if sλ/µ = sλ/µT for all µ ⊆ λ, then λ = (n, n−1, . . . , 1)
for some positive integer n. To prove this, we use Pieri’s rule, a well-known fact described in [8,
Theorem 7.15.7], for example.

Definition 2.25. A skew shape λ/ν is a horizontal strip if it has no two squares in the same
column, or a vertical strip if no two squares are in the same row.

Theorem 2.26 (Pieri’s Rule). We have

sλ/(k) =
∑
ν

sν ,

where ν ranges over all partitions ν ⊆ λ for which λ/ν is a horizontal strip of size k. Similarly,

sλ/(1k) =
∑
ν

sν ,

where ν ranges over all partitions ν ⊆ λ for which λ/ν is a vertical strip of size k.

Theorem 2.27. If sλ/(k) = sλ/(1k) for all positive integers k, then λ = ρ = (n, n − 1, . . . , 1) for
some positive integer n.

Proof. Note that sρ/(k) is zero if and only if k is greater than the number of columns in the Young
diagram of ρ, and sρ/(1k) is zero if and only if k is greater than the number of rows in the Young
diagram of ρ. So we require that Y (ρ) has the same number of rows as columns; let this number
be n.

Since the sν form a basis of Λ, using Pieri’s rule, we require that ρ/ν is a horizontal strip of
size k if and only if it is a vertical strip of size k. For the sake of contradiction, suppose that ρ
contains two consecutive parts of the same size. Then there exists some ν such that ρ/ν consists
of the rightmost box of these two rows. However, then ρ/ν forms a vertical strip of length 2 but
not a horizontal strip, which is a contradiction.

Combining the fact that ρ has n rows and n columns and that no two rows have the same size,
we have that ρ must be (n, n− 1, . . . , 1) for some positive integer n, as desired.

Corollary 2.28. If sρ/µ = sρ/µT for all partitions µ, then ρ = (n, n − 1, . . . , 1) for some positive
integer n.

In Section 2.8, we will extend this converse to the skew stable and skew dual stable Grothendieck
polynomials.
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2.8 Statement of the Problem

Now, we are ready to introduce our first main result, Theorem 1.2, an analogue of the Stembridge
equality for the dual stable Grothendieck polynomials, which states that for ρ = (n, n− 1, . . . , 1),

gρ/µ = gρ/µT .

We first prove a special case of this theorem, Proposition 1.1, for when µ is the partition (k) or
(k)T = (1k), in Section 3.1 using a bijection between set-valued tableaux. Then we extend this to
general µ using the stable Grothendieck polynomials and Hopf algebraic structure of the symmetric
functions in Section 3.2.

Our second main result, Theorem 1.3, is an analogue of the Stembridge equality for the stable
Grothendieck polynomials, stating that

Gρ/µ = Gρ/µT .

Similar to the dual stable Grothendieck polynomial case, we will first prove this theorem for µ = (k)
or (1k) in Section 4.1 by finding a bijection between set-valued tableaux. Then, we use the Hopf
algebraic structure to extend to general µ in Section 4.2.

Example 2.29. When µ = µT , then ρ/µ = ρ/µT and gρ/µ = gρ/µT .

Example 2.30. Consider ρ = (3, 2, 1) and µ = (2). The diagrams for ρ/µ and ρ/µT are below.

⇐⇒

For ρ/µ, the top right section does not share any columns with the rest of the diagram, so the
number occupying the top right square is unconstrained by the remainder of the diagram. Then

gρ/µ = g21 · g1,

the product of the two symmetric functions. The same argument holds for ρ/µT , since the bottom
left section is independent of the top right section, and so

gρ/µT = g1 · g21,

and the two polynomials are equal.

We can also prove the converses of our main results (Theorems 1.3 and 1.2) by extending
Corollary 2.28.

Theorem 2.31. If gρ/µ = gρ/µT or Gρ/µ = Gρ/µT , for all µ, then ρ = (n, n − 1, . . . , 1) for some
positive integer n.

Proof. As stated in Remarks 2.13 and 2.18, the equalities gρ/µ = gρ/µT and Gρ/µ = Gρ/µT both
require the Stembridge equality sρ/µ = sρ/µT , which in turn requires ρ = (n, n− 1, . . . , 1) for some
positive integer n.
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3 Proof for Dual Stable Grothendieck Polynomials

In this section we prove Theorem 1.2, by first proving with the special case when µ = (k) or (1k)
combinatorially, and then generalizing to arbitrary µ using the Hopf algebraic structure of the
symmetric functions.

3.1 Proof for µ = (k) or (1k)

Our proof for Theorem 1.1 makes use of the skewing operator ⊥, described in Section 2.6, and
Theorem 3.4 by Buch [2].

Definition 3.1. Let w(T ) denote the reverse reading word of a set-valued tableau T , read top to
bottom along a column, starting with the rightmost column and moving left, and with the elements
within a box read largest to smallest.

For example, the following set-valued tableau has a reverse reading word of 743252153636542.

1, 2 2, 3, 4 7

3 3, 5 5

2 4, 5, 6 6

Definition 3.2. A reverse reading word is a lattice word if the ith instance of a + 1 comes after
the ith instance of a for all positive integers i and a.

For example, 1121322 is a lattice word, but 121221 is not.

Definition 3.3. Let ν ∗ µ denote the skew shape formed by joining the partitions ν and µ such
that the top right corner of µ touches the bottom left corner of ν.

For example, we have (2, 1) ∗ (4) = (6, 5, 4)/(4, 4).

∗ =

Next, we have the following theorem, a Littlewood-Richardson rule for stable Grothendieck
polynomials, as shown by Buch ([2], Theorem 5.4).

Theorem 3.4 (Buch). The Littlewood-Richardson rule for stable Grothendieck polynomials states
that

GνGµ =
∑
ρ

(−1)|ρ|−|ν|−|µ|cρνµGρ,

where cρνµ is the number of set valued tableaux T of shape ν ∗ µ such that w(T ) is a lattice word
with content ρ.

Let a valid tableau T be a tableau of shape ν ∗ µ such that w(T ) is a lattice word with content
ρ.
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Lemma 3.5. In a valid filling of ν ∗ µ, all boxes in the ith row of ν contain the set {i}.

Proof. The rightmost box in the first row of ν must contain the set {1}, because a lattice word
must begin with 1, so all boxes in the first row contain the set {1}, as rows are increasing left to
right. The rightmost box in the second row may only contain numbers greater than 1, and in order
for ν’s reading word to be a lattice word, this box must contain the set {2}. Thus, all boxes of the
second row contain the set {2}. Analogously, we may inductively show that all boxes in the ith
row of ν contain the set {i}.

Observe that there are n − j + 1 j’s in the partition ρ = (n, n − 1, . . . , 1). Since the columns
in a set-valued tableau are strictly increasing, there is at most one j in each column of ν ∗ µ. In
particular, in a valid filling of ν ∗ (1k), (1k) contains at most one of each of the numbers 1, 2, . . . , n.
In fact, the same holds for a valid filling of ν ∗ (k).

Lemma 3.6. In a valid filling of ν∗(k), (k) contains at most one of each of the numbers 1, 2, . . . , n.

Proof. For the sake of contradiction, suppose that the shape (k) contains at least two i’s. Note
that i ≤ n− 1 because ρ contains only one n. Then in the reverse reading word of ν ∗ k, all i+ 1’s
are listed before the second-to-last i. In other words, the (n− i)th i+1 is listed before the (n− i)th
i, contradicting the assumption that the reverse reading word of ν ∗ (k) is a lattice word.

Theorem 3.7. We have cρ(k)ν = cρ
(1k)ν

for all positive integers k ≤ n.

Proof. Considering Lemma 3.5 and Lemma 3.6, there is at most one i in (k) (resp. (1k)) in a valid
filling of ν ∗ (k) (resp. ν ∗ (1k)), so the ith row of ν contains exactly n− i+ 1 or n− i i’s. If i+ 1
is in (k) or (1k), it must be the (n − i)th j + 1 in ν ∗ (k) or ν ∗ (1k), respectively. Since there are
at least n− i i’s found in ν, any arrangement of the numbers in (k) concatenated after the reverse
reading word of ν will form a lattice word.

So given a valid filling of ν∗(k), there exists a corresponding valid filling of ν∗(1k) upon rotating
(k) by 90 degrees clockwise. Similarly, given a valid filling of ν ∗ (1k), there exists a corresponding
valid filling of ν ∗ (k) upon rotating (1k) by 90 degrees counterclockwise. Therefore, there is a
bijection between valid fillings of ν ∗ (k) and ν ∗ (1k), and cρ(k)ν = cρ

(1k)ν
.

For example, the following are corresponding set-valued tableau under this bijection, for ρ =
(5, 4, 3, 2, 1), ν = (4, 4, 2, 1), and (k) = (3).

1 1 1 1

2 2 2 2

3 3

4

1, 3 4 5

⇐⇒ 1 1 1 1

2 2 2 2

3 3

4

1, 3

4

5

Lemma 3.8. Fix ρ = (n, n − 1, . . . , 1) and some partition µ ⊆ ρ. If cρνµ = cρ
νµT

for all partitions
ν, then gρ/µ = gρ/µT .
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Proof. Assume that cρνµ = cρ
νµT

for all partitions ν. Recall from Theorem 3.4 that

GνGµ =
∑
ρ

(−1)|ρ|−|ν|−|µ|cρνµGρ,

so

〈GνGµ, gρ〉 = (−1)|ρ|−|ν|−|µ|cρνµ

= (−1)|ρ|−|ν|−|µ
t|cρ
νµT

= 〈GνGµT , gρ〉.

Additionally, recall that G⊥µ gρ = gρ/µ. Using the definition of the skewing operator ⊥ and
Theorem 2.23, we may also write

gρ/µ = G⊥µ gρ =
∑
ν

〈Gµ, gρ/ν〉gν

=
∑
ν

〈Gµ, G⊥ν gρ〉gν

=
∑
ν

〈GνGµ, gρ〉gν .

Analogously, we have that gρ/µT =
∑

ν〈GνGµT , gρ〉gν , so gρ/µ = gρ/µT , as desired.

Now, we give the proof of Theorem 1.1.

Proof. By Theorem 3.7, we have that cρν(k) = cρ
ν(1k)

. Then Lemma 3.8 gives gρ/k = gρ/1k .

3.2 Proof for All Partitions

Recall from Section 2.5 that Λ̂ is the completion of Λ, the ring of symmetric functions.
We take the linear map τ : Λ̂ → Λ̂, given by linearly extending Gλ 7→ GλT , as defined by

Yeliussizov in [9]. He also shows that it is a ring homomorphism and an involution of Λ̂.
We will begin by proving the following theorem.

Theorem 3.9. For ρ = (n, n− 1, . . . , 1) and all positive integers k, we have

e⊥k gρ = τ(ek)
⊥gρ.

In order to do so, we shall first prove the following lemmas and propositions.

Lemma 3.10. The stable Grothendieck polynomial of shape (1k) can be written as

G(1k) =
∑
n≥k

(−1)n−k
(
n− 1

k − 1

)
en.

Proof. The stable Grothendieck polynomial G(1k) is a sum over set-valued tableaux T of shape

(1k). All set-valued tableaux are strictly increasing along the columns, so all entries are distinct in
a set-valued tableau of shape (1k). Therefore, the monomial xT for each set-valued tableau T is of
the form xi1xi2 · · ·xin for positive integers i1 < · · · < in, where n = |T |. Given n distinct entries,
the number of ways to fill in T is equal to the number of compositions of n into k nonempty parts,
which is

(
n−1
k−1
)

by stars and bars.
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Therefore,

G(1k) =
∑
T

(−1)|T |−|1
k|xT

=
∑
n

∑
|T |=n

(−1)n−kxT

=
∑
n≥k

(−1)n−k
(
n− 1

k − 1

) ∑
i1<···<in

xi1 · · ·xin

=
∑
n≥k

(−1)n−k
(
n− 1

k − 1

)
en,

as desired.

Proposition 3.11. We can write the elementary symmetric function ek as an infinite sum of stable
Grothendieck polynomials:

ek =
∑
n≥k

(
n− 1

k − 1

)
G(1n).

Proof. By Theorem 3.10,∑
n≥k

(
n− 1

k − 1

)
G(1n) =

∑
j≥n

∑
n≥k

(−1)j−n
(
n− 1

k − 1

)(
j − 1

n− 1

)
ej . (1)

As a result, for a given j ≥ k, the coefficient of ej is∑
k≤n≤j

(−1)j−n
(
n− 1

k − 1

)(
j − 1

n− 1

)
=
∑
k≤n≤j

(−1)j−n
(
j − 1

k − 1

)(
j − k
n− k

)

=

(
j − 1

k − 1

)
δkj = δkj ,

where the first simplification comes from trinomial revision and the second comes from the fact
that the alternating sum of a row of binomial coefficients (besides the first row) is 0. This means
that the coefficient of ej in (1) is 0 for all j 6= k and 1 for j = k, so

ek =
∑
n≥k

(
n− 1

k − 1

)
G(1n).

Lemma 3.12. The skewing operator ⊥ distributes over infinite sums; that is, for any a ∈ Λ and
f1, f2, · · · ∈ Λ̂, (∑

i≥1
fi

)⊥
(a) =

∑
i≥1

f⊥i (a).

Proof. Let ∆(a) =
∑

(a) a(1) ⊗ a(2). Then(∑
i≥1

fi

)⊥
(a) =

∑
(a)

〈∑
i≥1

fi, a(1)

〉
a(2).

13



Since the Hall inner product is defined from Λ̂× Λ 7→ Z and is linear, we expand to get(∑
i≥1

fi

)⊥
(a) =

∑
(a)

∑
i≥1
〈fi, a(1)〉a(2)

=
∑
i≥1

∑
(a)

〈fi, a(1)〉a(2)

=
∑
i≥1

f⊥i (a).

Finally, we can give the proof of Theorem 3.9.

Proof. Observe that τ is a ring homomorphism of Λ̂ that distributes over infinite sums, as does
the skewing operator by Lemma 3.12. Applying Proposition 3.11 to decompose ek as a linear
combination of G(1n), and applying Theorem 1.1 to write G⊥(1n)(gρ) = G⊥(n)(gρ) gives:

τ(ek)
⊥(gρ) = τ

(∑
n≥k

(
n− 1

k − 1

)
G(1n)

)⊥
(gρ)

=
∑
n≥k

(
n− 1

k − 1

)
τ(G(1n))

⊥(gρ)

=
∑
n≥k

(
n− 1

k − 1

)
G⊥(n)(gρ)

=
∑
n≥k

(
n− 1

k − 1

)
G⊥(1n)(gρ)

=
(∑
n≥k

(
n− 1

k − 1

)
G(1n)

)⊥
(gρ)

= e⊥k gρ.

Now, in order to prove Theorem 1.2, we need the following lemmas, which are inspired by
Exercises 2.9.24 and 2.9.25 in [5].

Lemma 3.13. Let ψ be an arbitrary ring homomorphism of Λ̂. Then for any given a ∈ Λ, the
set A = {f ∈ Λ̂ : f⊥(a) = ψ(f)⊥(a)} is closed under finite multiplication and (possibly) infinite
addition of its elements.

Proof. First, we show that if f1, f2, · · · ∈ A, then
∑

i≥1 fi ∈ A. By considering Lemma 3.12 and

using the fact that ψ is a ring homomorphism of Λ̂, we have(
ψ
(∑
i≥1

fi

))⊥
(a) =

(∑
i≥1

ψ(fi)
)⊥

(a)

=
∑
i≥1

ψ(fi)
⊥(a)

=
∑
i≥1

f⊥i (a)

=
(∑
i≥1

fi

)⊥
(a),
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so indeed,
∑

i≥1 fi ∈ A.
Next, we show that if f1, f2 ∈ A, then f1f2 ∈ A. First, notice that if 〈k, f1〉 = 〈k, f2〉 for all k ∈ Λ,

then f1 = f2. This is because each f1 and f2 can be written uniquely as a (possibly infinite) linear
combination of Schur functions sλ, and taking k to be sλ for all λ in turn, gives us that f1 and f2 have
the same coefficient for all sλ. Thus, it suffices to show that 〈k, (f1f2)⊥(a)〉 = 〈k, (ψ(f1f2))

⊥(a)〉
for all k ∈ Λ.

Repeatedly applying the property from Lemma 2.23, and using the fact that f1, f2 ∈ A, we can
do the following manipulation:

〈k, (f1f2)⊥(a)〉 = 〈f1f2k, a〉
= 〈f2k, f⊥1 (a)〉
= 〈f2k, ψ(f1)

⊥(a)〉
= 〈ψ(f1)f2k, a〉
= 〈f2ψ(f1)k, a〉
= 〈ψ(f1)k, f

⊥
2 (a)〉

= 〈ψ(f1)k, ψ(f2)
⊥(a)〉

= 〈ψ(f2)ψ(f1)k, a〉
= 〈ψ(f1f2)k, a〉
= 〈k, ψ(f1f2)

⊥(a)〉.

This means that (f1f2)
⊥(a) = ψ(f1f2)

⊥(a), so indeed f1f2 ∈ A. Thus A is closed under finite
multiplication and (possibly) infinite addition.

Corollary 3.14. The set A = {f ∈ Λ̂ : f⊥(gρ) = τ(f)⊥(gρ)}, where τ is the ring homomorphism
defined earlier by linearly extending Gλ 7→ GλT , is closed under finite multiplication and infinite
addition.

Now we are ready to prove Theorem 1.2.

Proof. By Theorem 3.9, we have e⊥k gρ = τ(ek)
⊥gρ, so this means ek ∈ A = {f ∈ Λ̂ : f⊥(gρ) =

τ(f)⊥(gρ)}. By Corollary 3.14, A is closed under multiplication and possibly infinite sums, so for
all λ we have eλ = eλ1eλ2 · · · eλn ∈ A. Since the eλ form a basis for Λ̂ (if we allow infinite linear
combinations), any symmetric function f =

∑
λ aλeλ is in A. In particular, Gµ ∈ A, so

gρ/µ = G⊥µ gρ

= τ(Gµ)⊥gρ

= G⊥µT gρ

= gρ/µT .

4 Proof for Stable Grothendieck Polynomials

In this section we prove Theorem 1.3, by first proving with the special case when µ = (k) or (1k)
combinatorially, and then generalizing to arbitrary µ using the Hopf algebraic structure of the
symmetric functions.
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4.1 Proof for µ = (k) or (1k)

Throughout this section, we denote the partition (n, n− 1, . . . , 1) by ρn. The following theorem by
Buch ([2], Theorem 6.9), allows us to prove the special case when µ = (k) or (1k) combinatorially.

Theorem 4.1 (Buch). For a skew partition λ/µ,

Gλ/µ =
∑
ν

(−1)|ν|−|λ/µ|αλ/µ,νGν ,

where the coefficient αλ/µ,ν is the number of set-valued tableaux T of shape λ/µ such that w(T ) is
a lattice word with content ν.

Now, we have the following recurrence for the αλ/µ,ν coefficients when λ = ρn and µ = (k) for
some positive integer k.

Lemma 4.2. Fix a partition ν = (ν1, ν2, . . . , νm), and let ν− = (ν2, . . . , νm). For a given positive
integer n, we have

αρn/(k),ν = αρn−1/(k),ν− + 2αρn−1/(k−1),ν− .

Proof. Consider a set-valued tableau T of shape ρn/(k) such that w(T ) is a lattice word with
content ν. The rightmost box in the first row of T must contain the set {1}, so all boxes in the
first row contain the set {1}. The rightmost box in the second row must contain the set {2}, and
similarly the rightmost n− k − 1 boxes in the second row must all contain the set {2}.

1 1 1

B 2 2

Since rows are weakly increasing, there are three cases for the contents of the kth box B in the
second row: {1}, {2}, or {1, 2}.

Let the function f map the tableau T to the tableau T− by deleting all 1’s from the boxes of
T , deleting all now-empty boxes, and subtracting 1 from all remaining numbers. Assuming that
w(T ) is a lattice word, w(T−) is also a lattice word: the ith a + 1 coming before the ith a + 2 in
w(T ) corresponds to the ith a, which comes before the ith a+ 1 in w(T−).

Case 1: B contains {1}
Then, the leftmost k boxes in the second row must all contain the set {1}, since the rows are

weakly increasing.

1 1 1

1 1 1 2 2
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Applying f gives a tableau T− of shape ρn−1/(k) and content ν−, as illustrated below.

1 1 1

1 1 1 2 2

2 2 2, 3 3

3 4 4

4 5

6

⇐⇒ 1 1

1 1 1, 2 2

2 3 3

3 4

5

Notice that if a tableaux of shape T− of shape ρn−1/(k − 1) has lattice reverse reading word, then
it necessarily corresponds to exactly one tableaux T of shape ρn/(k) with lattice reverse reading
word where B contains {1}. Then these two sets are in bijection, so there are αρn−1/(k),ν− tableaux
T of shape ρn/(k) with lattice reverse reading word where B contains {1}.

Case 2: B contains {2}
Then the (k−1)th leftmost box in the second row must contain {1}, as otherwise the (n−k+1)th

2 would come before the (n− k + 1)th 1 in w(T ) and it would not be a lattice word.

1 1 1

1 1 2 2 2

Applying f gives a tableau T− of shape ρn−1/(k − 1) with content ν−, as shown below.

1 1 1

1 1 2 2 2

2 3 3 3

3 4 4

4 5

6

⇐⇒ 1 1 1

1 2 2 2

2 3 3

3 4

5

Notice that as in case 1, f is a bijection here, so there are αρn−1/(k−1),ν− tableaux T such that
B contains {2}.

Case 3: B contains {1, 2}
Then the leftmost k − 1 boxes in the second row must all contain the set {1}.

1 1 1

1 1 1, 2 2 2
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The map f gives a tableau of shape ρn−1/(k − 1) with content ν− which has reverse column
word a lattice word. Note that in this case, the inverse map will additionally insert an extra 1 in
the kth box of the second row, as illustrated below.

1 1 1

1 1 1, 2 2 2

2 2 3 3

3 4 4

4 5

6

⇐⇒ 1 1 1

1 1 2 2

2 3 3

3 4

5

As above, we have a bijection, and so there are αρn−1/(k−1),ν− tableaux T such that B contains
{1, 2}.

Combining all three cases, we have

αρn/(k),ν = αρn−1/(k),ν− + 2αρn−1/(k−1),ν− .

There exists a similar recurrence for the αλ/µ,ν coefficients when λ = ρn and µ = (1k) for some
positive integer k.

Lemma 4.3. Fix a partition ν = (ν1, ν2, . . . , νm), and let ν− = (ν2, . . . , νm). For a given positive
integer n, we have

αρn/(1k),ν = αρn−1/(1k),ν− + 2αρn−1/(1k−1),ν− .

Proof. Consider a set-valued tableau T of shape ρn/(1
k) such that w(T ) is a lattice word with

content ν. The rightmost box in the first row of T must contain the set {1}, so all boxes in the
first row contain the set {1}. The rightmost box in the second row must contain the set {2}, so
all boxes in the second row must contain the set {2}. Analogously, all boxes in the jth row for
1 ≤ j ≤ k must contain the set {j}.

There are three possibilities for the leftmost box B in the k + 1th row: B contains {1}, a set
without a 1, or a set containing 1 of size at least 2, as illustrated below. Define f as in the previous
lemma.

1 1 1 1 1

2 2 2 2

3 3 3

B

Case 1: B contains {1}
There is a single 1 in each column, so applying f gives a tableau T− of shape ρn−1/(k), as

illustrated below.
Notice that if a tableau of shape T− of shape ρn−1/(1

k) has lattice reverse reading word, then
it necessarily corresponds to exactly one tableau T of shape ρn/(1

k) with lattice reverse reading
word where B contains {1} (given by adding 1 to each number and adding a box containing 1 to
the top of each column). Then these two sets are in bijection, so there are αρn−1/(1k),ν− tableaux

T of shape ρn/(1
k) with lattice reverse reading word where B contains {1}.
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Then this case contributes αρn−1/(1k),ν− tableaux.

1 1 1 1 1

2 2 2 2

3 3 3

1 4 4

3, 4 5

6

⇐⇒ 1 1 1 1

2 2 2

3 3

2, 3 4

5

Case 2: B does not contain a 1
Then the only 1’s in the entire set-valued tableau are in the first row, so f takes T to a tableau of

shape ρn−1/(k− 1), as illustrated below. Notice that this is a bijection, so there are αρn−1/(1k−1),ν−

tableaux T where B does not contain a 1.

1 1 1 1 1

2 2 2 2

3 3 3

2, 3 4 4

5 5

6

⇐⇒ 1 1 1 1

2 2 2

1, 2 3 3

4 4

5

Case 3: B contains a set of size ≥ 2 with a 1
The 1’s in the tableau lie either in the top row or in B. Since the box containing B is not

deleted by f , T is mapped to a tableau of shape ρn−1/(k − 1), as illustrated below. So there are
αρn−1/(1k−1),ν− tableaux for this case, since f provides a bijection.

1 1 1 1 1

2 2 2 2

3 3 3

1, 3 4 4

5 5

6

⇐⇒ 1 1 1 1

2 2 2

2 3 3

3 4

5

Combining all three cases,

αρn/(1k),ν = αρn−1/(1k),ν− + 2αρn−1/(1k−1),ν− .

Using induction and combining the two previous lemmas, we have the following equality between
α coefficients.

Lemma 4.4. We have αρn/(k),ν = αρn/(1k),ν for all positive integers n and nonnegative integers k.
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Proof. We use induction on n and only consider k ≤ n, because otherwise αρn/(k),ν = αρn/(1k),ν = 0.

The base case of n = 1 is true because ρ1/(k) = ρ1/(1
k) for k = 0, 1. Now suppose that for a given

n, αρn/(k),ν = αρn/1k,ν for all k ≤ n. Note that ρn+1/(k) = ρn+1 = ρn+1/(1
k) for k = 0. For

1 ≤ k ≤ n,

αρn+1/(k),ν = αρn/(k),ν− + 2αρn/(k−1),ν−

= αρn/(1k),ν− + 2αρn/(1k−1),ν−

= αρn+1/(1k),ν .

In addition, for k = n + 1, we have ρn+1/(n + 1) = ρn = ρn+1/(1
n+1) by a translation. All

together, αρn+1/(k),ν = αρn+1/(1k),ν for all k ≤ n + 1. Thus, by induction, αρn/(k),ν = αρn/(1k),ν for
all positive integers n and nonnegative integers k.

As a result of this relation between the α coefficients, we can now prove a Stembridge-type
equality for Gρ/µ in the special case where µ = (k) for some positive integer k.

Theorem 4.5. There is a Stembridge-type equality for the skew stable Grothendieck polynomial in
the case µ = (k), i.e.

Gρ/(k) = Gρ/(1k).

Proof. Combining Lemma 4.4 with Theorem 4.1,

Gρ/(k) =
∑
ν

(−1)|ν|−|ρ/(k)|αρ/(k),νGν

=
∑
ν

(−1)|ν|−|ρ/(1
k)|αρ/(1k),νGν

= Gρ/(1k).

4.2 Proof for All Partitions

Now, we will use the Hopf algebraic structure to extend this result to all µ, proving Theorem 1.3,
an analogue of the Stembridge equality for Gρ/µ. First, we introduce two definitions and a useful
theorem from Buch [2].

Definition 4.6. A rook strip is a skew partition µ/σ that contains at most one box in each row
and column.

The following definition ([2], Equation 6.4), which will allow us to utilize the Hopf algebraic
structure of Λ.

Definition 4.7 (Buch). Define Gλ//µ as

Gλ//µ =
∑
σ

(−1)|µ/σ|Gλ/σ,

where the sum is over all σ such that µ/σ is a rook strip.

The polynomials Gλ/µ are related to the polynomials Gλ//µ by the following theorem, as char-
acterized by Buch ([2], Equation 7.4).
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Theorem 4.8 (Buch). We have

Gλ/µ =
∑
σ⊆µ

Gλ//σ.

From the above definitions and theorem, we may prove the following lemma.

Lemma 4.9. If ρ is a staircase shape ρ = (n, n− 1, . . . 1), then Gρ//(k) = Gρ//(1k).

Proof. In order for (k)/σ to be a rook strip, we need σ = (k) or (k − 1), so

Gρ//(k) = Gρ/(k) −Gρ/(k−1).

Similarly,
Gρ//(1k) = Gρ/(1k) −Gρ/(1k−1).

Combining with Theorem 4.5, we have Gρ//(k) = Gρ//1k .

Buch ([2], Example 6.8) states that ∆(Gρ) =
∑

ν⊆ρGν⊗Gρ//ν . Then, using the skewing operator
from Definition 2.21 and the identity 〈gλ, Gµ〉 = δλµ, we have

g⊥µ (Gρ) =
∑
ν

〈gµ, Gν〉Gρ//ν

= 〈gµ, Gµ〉Gρ//µ
= Gρ//µ.

In [9], Yeliussizov constructs τ by linearly extending gλ 7→ gλT , and he shows that τ is a ring
homomorphism and an involution. We use τ in order to extend Lemma 4.9 to all µ.

Lemma 4.10. Let ψ be an arbitrary ring homomorphism of Λ. Then the set A = {f ∈ Λ : f⊥(a) =
ψ(f)⊥(a)} is a subalgebra of Λ.

Proof. From a similar argument as Lemma 3.13, we can show that for f1, f2 ∈ A, we have f1+f2 ∈ A
and f1f2 ∈ A.

Corollary 4.11. The set A = {f ∈ Λ : f⊥(Gρ) = τ(f)⊥(Gρ)} is a subalgebra of Λ.

Lemma 4.12. We have Gρ//µ = Gρ//µT .

Proof. Let A = {f ∈ Λ : f⊥(Gρ) = τ(f)⊥(Gρ)}. The polynomials g(k) are elements of A, since

g⊥(k)(Gρ) = Gρ//(k) = Gρ//(1k) = g⊥(1k)(Gρ) = τ(g(k))
⊥(Gρ).

By definition,

g(k) =
∑
P

xP ,

summed over reverse plane partitions P of shape (k). For a given reverse plane partition P, the
horizontal strip of length k is filled with numbers i1 ≤ · · · ≤ ik.

i1 i2 · · · ik
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Then, since each number appears once in each column,

g(k) =
∑
P

xP =
∑

i1≤···≤ik

xi1 · · ·xik = hk.

Now, since g(k) = hk, we have that hk ∈ A. The set A is closed under addition and multiplication
by Lemma 4.11, so this means hλ = hλ1hλ2 · · ·hλi ∈ A. Since the hλ form a basis for Λ, any
symmetric function f =

∑
aλhλ is in A as well. In particular, gµ ∈ A for any partition µ.

Therefore,

Gρ//µ = g⊥µ (Gρ)

= τ(gµ)⊥(Gρ)

= g⊥µT (Gρ)

= Gρ//µT .

Lastly, we can use these results from the Hopf algebraic structure of Λ to prove Theorem 1.3.

Proof. Combining all the above results, we have

Gρ/µ =
∑
σ⊆µ

Gρ//σ

=
∑
σ⊆µ

Gρ//σT

=
∑

σT⊆µT
Gρ//σT

= Gρ/µT .
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