PRIMES Math Problem Set: Solutions

Evan Chen

PRIMES 2019

Solution to General Math Problems

Problem G1

We flip a fair coin ten times, recording a 0 for tails and 1 for heads. In this way we obtain a binary string of length 10 .
(a) Find the probability there is exactly one pair of consecutive equal digits.
(b) Find the probability there are exactly n pairs of consecutive equal digits, for every $n=0, \ldots, 9$.

Solution

The answer to (b) is $\frac{\binom{9}{n^{9}}}{\text {. To see this, by swapping the roles of heads and tails we }}$ may assume that the first flip is tails (without loss of generality). Thus there are 2^{9} sequences. On the other hand, a sequence of heads and tails which starts with tails is uniquely determined by the choice for each $i=1, \ldots, 9$ of whether the i th flip and the $(i+1)$ st flip are different or the same. Thus, if we would like n pairs to be the same, there are exactly $\binom{9}{n}$ such sequences.

Hence for (a) the answer is $\frac{9}{2^{9}}$.

Problem G2

For which positive integers p is there a nonzero real number t such that

$$
t+\sqrt{p} \quad \text { and } \quad \frac{1}{t}+\sqrt{p}
$$

are both rational?

Solution

The answer is that p must either be a square or one more than a perfect square.
If p is a perfect square, then $t=1$ works. If $p=k^{2}+1$ for some integer k, then $t=k-\sqrt{p}$ works, since $\frac{1}{t}=-(k+\sqrt{p})$.

Now assume p is not a square but such t exists. Let $t+\sqrt{p}=a$ and $1 / t+\sqrt{p}=b$ for rational a and b, so that

$$
1=(a-\sqrt{p})(b-\sqrt{p})=-(a+b) \sqrt{p}+(a b+p)
$$

Since \sqrt{p} is irrational, this can only happen if $a+b=0$. Then the above equation reads $1=p-a^{2}$, so $p=a^{2}+1$ (and clearly a has to be an integer).

Problem G3

Points A and B are two opposite vertices of a regular octahedron. An ant starts at point A and, every minute, walks randomly to a neighboring vertex.
(a) Find the expected (i.e. average) amount of time for the ant to reach vertex B.
(b) Compute the same expected value if the octahedron is replaced by a cube (where A and B are still opposite vertices).

Solution

For (a): we let x denote the expected value of the number of steps starting from A. Moreover, we let y denote the expected value of the number of steps starting from one of the four vertices other than A or B (these are equal by symmetry). Then we have

$$
\begin{aligned}
& x=y+1 \\
& y=\frac{x+y+y+0}{4}+1 .
\end{aligned}
$$

Solving we get $y=5$ and $x=6$. Hence the answer is 6 minutes.
For (b): let x denote the expected value starting from A, y the expected value starting from a neighbor of A, z the expected value starting from a neighbor of B. Then

$$
\begin{aligned}
& x=y+1 \\
& y=\frac{x+z+z}{3}+1 \\
& z=\frac{y+y+0}{3}+1 .
\end{aligned}
$$

Solving gives $(x, y, z)=(10,9,7)$, so the answer is 10 minutes.

Problem G4

For a positive integer n, let $f(n)$ denote the smallest positive integer which neither divides n nor $n+1$.
(a) Find the smallest n for which $f(n)=9$.
(b) Is there an n for which $f(n)=2018$?
(c) Which values can $f(n)$ take as n varies?

Solution

For part (a), note that such an n should satisfy

$$
\begin{array}{ll}
n \equiv-1 \text { or } 0 & (\bmod 7) \\
n \equiv-1 \text { or } 0 & (\bmod 8)
\end{array}
$$

By the Chinese remainder theorem, we conclude

$$
n \in\left\{-1,0,7,7^{2}-1\right\} \equiv\{0,7,48,55\} \quad(\bmod 56)
$$

Thus the first few candidates for n are $n \in\{0,7,48,55,56,63,104,111,112,119, \ldots\}$. We need an n such that $15 \mid n(n+1)$ and $9 \nmid n(n+1)$. A calculation then shows the value $n=119$ works and is the smallest possible.

The answer to (b) is yes as $2018=2 \cdot 1009$ is twice a prime. This will be a corollary of part (c) to follow, but we comment that it suffices to pick n such that $n+1 \equiv 0$ $(\bmod 1009)$ and $n \equiv 0(\bmod r)$ for any $1<r<2018$ with $r \neq 1009$.

As for (c), we claim $f(n)$ should be twice a prime or a prime power other than 2 . These will be repeated applications of Chinese remainder theorem. To prove that these work:

- To get n such that $f(n)=2 p$ for p an odd prime, pick n such that $n \equiv 0(\bmod r)$ for any number $1<r<2 p$ and $r \neq p$, but $n+1 \equiv 0(\bmod p)$.
- To get n such that $f(n)=p^{e}$ for p a prime and $p^{e} \neq 2$, pick n such that $n \equiv 0$ $(\bmod r)$ for any $1<r<p^{e}$ not divisible by p, but $n+1 \equiv p^{e-1}\left(\bmod p^{e}\right)$.

Next, we claim that we never have $f(n)=a b$ if $\operatorname{gcd}(a, b)=1$ and $\min (a, b)>2$. The proof is by contradiction. Indeed, note that $2 a$ and $2 b$ are strictly less than $f(n)$, so $2 a$ divides either n or $n+1$, similarly $2 b$ divides either n or $n+1$. If n is even, then we find $2 a$ and $2 b$ both divide n, and since $\operatorname{gcd}(a, b)=1$ we have $\operatorname{lcm}(2 a, 2 b)=2 a b$ divides n, contradiction. The case where $n+1$ is even is exactly the same.

We now show (again by contradiction) we cannot have $f(n)=2 p^{e}$ for any odd prime p and $e \geq 2$. The numbers $2 p$ and p^{e} are strictly less than $f(n)$, and so if p divides n (and hence not $n+1$) we have $\operatorname{lcm}\left(2 p, p^{e}\right)=2 p^{e}$ dividing n, contradiction. Again the case where p divides $n+1$ instead is similar. This completes the proof.

Finally, it's easy to see $f(n) \neq 2$ for any n.

Problem G5

A pile with $n \geq 3$ stones is given. Two players Alice and Bob alternate taking stones, with Alice moving first. On a turn, if there are m stones left, a player loses if m is prime; otherwise he/she may pick a divisor $d \mid m$ such that $1<d<m$ and remove d stones from the pile.
(a) Which player wins for $n=6, n=8, n=10$?
(b) Determine the winning player for all n.

Solution

We claim that Alice wins if and only if n is even and $n \neq 2^{2 k+1}$ for any $k \geq 0$. The proof is by (strong) induction on n.

We take the base case as those situations where n is prime, which clearly work (as $2=2^{2 \cdot 0+1}$ and the rest of the primes are odd). The inductive step requires several cases:

- Suppose a player is faced with an odd number n. Then they must subtract an odd divisor d, so $n-d$ is even. Moreover, $n-d$ is divisible by d, so it is not a power of 2 . Thus by induction hypothesis $n-d$ is winning for their opponent.
- Suppose a player is faced with $n=2^{2 k+1}$. Then they must subtract an even divisor d to get the even number $n-d$, which is not an odd power of 2 (it is a power of 2 only if $d=2^{2 k}$, but then $n-d=2^{2 k}$). Thus by induction hypothesis $n-d$ is winning for their opponent.
- Suppose on the other hand a player is faced with $n=2^{2 k}$. They may choose $d=2^{2 k-1}$ so $n-d=2^{2 k-1}$ is losing for their opponent by induction hypothesis.
- Finally, suppose a player is faced with an even n which is not a power of 2 . Then they may subtract some odd divisor d, to get an odd number $n-d$ which is losing for their opponent.

In particular, as for (a), Alice wins for $n=6$ and $n=10$ but loses when $n=8$.

Problem G6

A perfect power is an integer of the form b^{n}, where $b, n \geq 2$ are integers. Consider matrices 2×2 whose entries are perfect powers; we call such matrices good.
(a) Find an example of a good matrix with determinant 2019.
(b) Do there exist any such matrices with determinant 1? If so, comment on how many there could be. (Possible hint: use the theory of Pell equations.)

Solution

For (a), since $2019=3 \cdot 673=338^{2}-335^{2}$, we find that $\left[\begin{array}{cc}2^{2} & 67^{2} \\ 5^{2} & 169^{2}\end{array}\right]$ is one such example. For (b), the matrix $\left[\begin{array}{cc}4 & 27 \\ 25 & 169\end{array}\right]$ is one such example, found by using $25 \cdot 27=26^{2}-1$.
Another example is $\left[\begin{array}{ll}33^{2} & 8 \\ 35^{2} & 9\end{array}\right]$. More generally, if $m \geq 1$ is an integer and

$$
(3+2 \sqrt{2})^{2 m+1}=3 x_{m}+2 y_{m} \sqrt{2}
$$

for integers x_{m} and y_{m}, then $9 x_{m}^{2}-8 y_{m}^{2}=1$ by multiplying by the conjugate (or by Pell equations). Thus

$$
\operatorname{det}\left[\begin{array}{ll}
x_{m}^{2} & 8 \\
y_{m}^{2} & 9
\end{array}\right]=1
$$

and so there are infinitely many examples.

Problem G7

We consider a fixed triangle $A B C$ with side lengths $a=B C, b=C A, c=A B$, and a variable point X in the interior. The lines through X parallel to $\overline{A B}$ and $\overline{A C}$, together with line $\overline{B C}$, determine a triangle T_{a}. The triangles T_{b} and T_{c} are defined in a similarly way, as shown in the figure.

Let S and p denote the average area and perimeter, respectively, of the three triangles T_{a}, T_{b}, T_{c}.
(a) Determine all possible values of S as X varies, in terms of a, b, c.
(b) Determine all possible values of p as X varies, in terms of a, b, c.

Solution

For (a), we let X have barycentric coordinates (x, y, z) with respect to $\triangle A B C$, subject to $x+y+z=1$. Letting brackets denote area, note that

$$
\left[T_{a}\right]+\left[T_{b}\right]+\left[T_{c}\right]+[A B C]=\left((1-x)^{2}+(1-y)^{2}+(1-z)^{2}\right)[A B C]
$$

since $(1-x)^{2}[A B C]$ corresponds to the area of the triangle formed by lines $A B, A C$, and the line through X parallel to $\overline{B C}$. Thus, we have

$$
S=\frac{(1-x)^{2}+(1-y)^{2}+(1-z)^{2}-1}{3} \cdot[A B C]
$$

We claim that S achieves its minimum when $x=y=1 / 3$. To see this, write $(1-$ $x)^{2}+(1-y)^{2}+(x+y)^{2}=x^{2}-x+(x-1) y+y^{2}$; for any given x this is minimal when $y=\frac{1-x}{2}$, and so substituting and minimizing x we find $x=y=1 / 3$. Alternatively, one can simply apply Jensen's inequality on the function $t \mapsto(1-t)^{2}$,

Either way, we achieves a minimum value of

$$
\frac{3 \cdot(2 / 3)^{2}-1}{3} \cdot[A B C]=\frac{1}{9}[A B C]
$$

when X is the centroid of triangle $A B C$. Also, as $x \rightarrow 1^{-}$and $y, z \rightarrow 0^{+}$the value of S approaches $\frac{1}{3}[A B C]$ (and this is clearly best possible, since $\left[T_{a}\right]+\left[T_{b}\right]+\left[T_{c}\right]<[A B C]$ at all times). Thus for continuity reasons the answer to (a) is

$$
S \in\left[\frac{[A B C]}{9}, \frac{[A B C]}{3}\right)
$$

Here $[A B C]=\sqrt{\frac{1}{16}(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}$ by Heron's formula.

For (b), the value of p is always equal to one-third of the perimeter of $\triangle A B C$, i.e. $p=\frac{1}{3}(a+b+c)$. Note that the sides of T_{a}, T_{b}, T_{c} which are parallel to $\overline{B C}$ have length summing to the length of $B C$. Consequently, the total perimeter coincides with that of $\triangle A B C$.

Solution to Advanced Math Problems

Problem M1

Let $\alpha=\sqrt{2}+\sqrt{3}$ and let $V=\mathbb{Q}(\alpha)$ be the field generated by α over \mathbb{Q}, regarded as a \mathbb{Q}-vector space. Let $T: V \rightarrow V$ be given by multiplication by α.
(a) Find $\operatorname{dim} V$.
(b) Let $W=\sqrt{2} \mathbb{Q} \oplus \sqrt{3} \mathbb{Q}$. Show that $V=W \oplus T(W)$. Give a basis of $T(W)$.
(c) Compute the determinant of T.

Solution

For (a), we have $\operatorname{dim} V=4$. Here are two ways to see this:

- Since α has minimal polynomial $P(X)=\left(X^{2}-5\right)^{2}-24$ (irreducible over \mathbb{Z}), we have a basis $\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\}$.
- Alternatively, we note that $V \ni \frac{1}{2}\left(\alpha^{2}-5\right)=\sqrt{6}$. Then $\sqrt{6} \alpha=2 \sqrt{3}+3 \sqrt{2}$, and accordingly $(\sqrt{6}-2) \alpha=\sqrt{2}$ and $(3-\sqrt{6}) \alpha=\sqrt{3}$ are also in V. As the numbers $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ are linearly independent over \mathbb{Q} (and clearly span V), they form another basis of V.

Using the latter basis, it's easy to see that $V=W \oplus T(W)$, since $W=\sqrt{2} \mathbb{Q} \oplus \sqrt{3} \mathbb{Q}$, then

$$
T(W)=(\sqrt{2} \alpha) \mathbb{Q} \oplus(\sqrt{3} \alpha) \mathbb{Q}=(2+\sqrt{6}) \mathbb{Q} \oplus(3+\sqrt{6}) \mathbb{Q}=\mathbb{Q} \oplus \sqrt{6} \mathbb{Q}
$$

and in particular a basis of $T(W)$ is simply $\{1, \sqrt{6}\}$.
Those familiar with algebraic number theory may recognize $\operatorname{det} T=1$ immediately as the product of the roots of $P(X)$. One can also do this computation in the basis $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ in which T takes the matrix form

$$
T=\left[\begin{array}{llll}
0 & 2 & 3 & 0 \\
1 & 0 & 0 & 3 \\
1 & 0 & 0 & 2 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

and $\operatorname{det} T=1$.

Problem M2

Let n be a positive integer. We denote by I_{n} the $n \times n$ identity matrix. Let G be a group of $n \times n$ matrices with real entries and determinant 1 (under matrix multiplication).

Suppose that any sequence of matrices in G which converges to I_{n} is eventually constant. Show that for any $A>0$, the subset of G with entries in $[-A, A]$ is finite.

Solution

The condition states that I_{n} is an isolated point of G.
Assume for contradiction that for some $A>0$, there are infinitely many matrices in G with all entries bounded by A. Then, by Bolzano-Weierstrass theorem (applied on the n^{2} entries), there should exist an infinite sequence $\gamma_{1}, \gamma_{2}, \ldots$ of distinct matrices in G which converges to some matrix ρ. Since $\operatorname{det}\left(\gamma_{i}\right)=1$ for each i, it follows $\operatorname{det} \rho=1$ as well.

Then the sequence $\gamma_{n} \gamma_{n+1}^{-1}$ (in G) converges to the identity matrix I_{n}. However, since I_{n} is an isolated point, it follows that $\gamma_{n}=\gamma_{n+1}$ for all large enough n, contradicting the assumption the γ_{i} were distinct.

Remark M2.1. The converse is also obviously true, and both conditions are equivalent to G being a discrete subgroup of $\mathrm{SL}_{n}(\mathbb{R})$. For $n=2$, such a group is called a Fuchsian group, which arises in the study of modular forms.

Problem M3

(a) If $d \geq 0$ is an integer, evaluate

$$
\lim _{n \rightarrow \infty} \int_{[0,1]^{n}}\left[\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{n}\right]^{d} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}
$$

(b) Evaluate

$$
\lim _{n \rightarrow \infty} \int_{[0,1]^{n}} \cos \left[\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{n} \cdot \pi\right] \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}
$$

Solution

We first show the answer to (a) is $(1 / 3)^{d}$, and state this explicitly as the following lemma.
Lemma M3.1. For any integer $d \geq 0$,

$$
\lim _{n \rightarrow \infty} \int_{[0,1]^{n}}\left[\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{n}\right]^{d} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}=\left(\frac{1}{3}\right)^{d}
$$

Proof. To see this, fix d and consider expanding the multinomial coefficient. There will be some terms of the form

$$
d!\int_{[0,1]^{n}} x_{i_{1}}^{2} x_{i_{2}}^{2} \ldots x_{i_{d}}^{2}=\left(\frac{1}{3}\right)^{d}
$$

where $i_{1}<i_{2}<\cdots<i_{d}$. The number of such terms is $\binom{n}{d}=\frac{n^{d}}{d!}+O\left(n^{d-1}\right)$. There are other terms where x_{i} 's are repeated, but the contribution of each such term is clearly bounded by 1 and there are $O\left(n^{d-1}\right)$ such terms as well. This proves the claim.

The answer to (b) is $1 / 2$. We contend that:
Lemma M3.2. For any continuous function $f:[0,1] \rightarrow \mathbb{R}$,

$$
\lim _{n} \int_{[0,1]^{n}} f\left(\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{n}\right)=f(1 / 3)
$$

Proof. The Stone-Weierstrass theorem implies we can approximate the function f by a series $f(x)=\sum_{d} a_{d} x^{d}$, and the above lemma implies that

$$
\int_{[0,1]} \sum_{d} a_{d}\left(\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{n}\right)^{d}=\sum_{d} a_{d}(1 / 3)^{d}=f(1 / 3)
$$

Picking $f(t)=\cos (t \pi)$, we get the answer $f(1 / 3)=\cos (\pi / 3)=\frac{1}{2}$.
Remark M3.3. This is related to the law of large numbers: consider the random variable X distributed as $t^{2} d t$ for $t \in[0,1]$. Then $\int_{[0,1]^{n}} \frac{x_{1}^{2}+\cdots+x_{n}^{2}}{n}$ corresponds to the mean when X is sampled n times, and thus "converges rapidly" to $1 / 3$ as $n \rightarrow \infty$.

Problem M4

Let n be a fixed positive integer. We choose positive integers t_{1}, \ldots, t_{n} (not necessarily distinct) and for each integer r, we let a_{r} denote the number of subsets $I \subseteq\{1, \ldots, n\}$ for which $\sum_{i \in I} t_{i}=r$ (this includes $I=\varnothing$ when $r=0$). Consider the sum

$$
\sum_{r \in \mathbb{Z}} a_{r}^{2}
$$

(a) Find the minimum possible value of this sum over all choices of $\left(t_{1}, \ldots, t_{n}\right)$, as a function of n.
(b) Find the maximum possible value of this sum over all choices of $\left(t_{1}, \ldots, t_{n}\right)$, as a function of n. (Possible hint: Sperner's theorem.)

Solution

We claim that the best bounds are

$$
2^{n} \leq \sum_{r} a_{r}^{2} \leq\binom{ 2 n}{n}
$$

The quantity $\sum_{r} a_{r}^{2}$ counts the number of pairs of subsets (I, J) such that $\sum_{i \in I} t_{i}=$ $\sum_{j \in J} t_{j}$. We call such pairs good.

The lower bound is clear, since pairs with $I=J$ are always good Equality can be achieved by letting $t_{k}=2^{k}$ for every k so that these are the only such good pairs.

The upper bound is achieved by letting $t_{k}=1$ for all k, so we now prove that this is the largest possible. There is a correspondence between pairs (I, J) and

$$
K(I, J)=I \cup(\bar{J}+n) \subseteq\{1, \ldots, 2 n\}
$$

where \bar{J} is the complement of J in $\{1, \ldots, n\}$. Under this correspondence, (I, J) if and only if

$$
\sum_{k \in K(I, J)} t_{k}=t_{1}+\cdots+t_{n}
$$

where we define $t_{n+1}=t_{1}, t_{n+2}=t_{2}, \ldots, t_{2 n}=t_{n}$.
Because the t_{i} were given to be positive, no $K(I, J)$ from $\operatorname{good}(I, J)$ can be a subset of another. By Sperner's theorem, there are at most $\binom{2 n}{n}$ of them.

Remark M4.1. This question was suggested by Ankan Bhattacharya.

Problem M5

Exhibit a function $s: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}$ with the following property: if a and b are positive integers such that $p=a^{2}+b^{2}$ is an odd prime, then

$$
s(a) \equiv a^{\frac{p-1}{2}} \quad(\bmod p)
$$

The right-hand side is known as the Jacobi symbol $\left(\frac{a}{p}\right)$.

Solution

Note $\operatorname{gcd}(a, p)=1$. We recognize $a^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right)(\bmod p)$ as the Legendre symbol, and in fact we claim that

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{lll}
+1 & a \equiv 1 & (\bmod 2) \\
+1 & a \equiv 0 & (\bmod 4) \\
-1 & a \equiv 2 & (\bmod 4)
\end{array}\right.
$$

Thus we may take $s: \mathbb{Z}_{>0} \rightarrow\{-1,1\}$ as above.
To prove this identity, we henceforth assume $p \equiv 1(\bmod 4)$. Our proof will use extensively the Jacobi symbol and quadratic reciprocity.

First, assume a is odd. Then

$$
\left(\frac{a}{p}\right)=\left(\frac{p}{a}\right)=\left(\frac{a^{2}+b^{2}}{a}\right)=\left(\frac{b^{2}}{a}\right)=+1 .
$$

Next, assume $a=2 x$ for x odd. Then $p \equiv 5(\bmod 8)$, so $\left(\frac{2}{p}\right)=-1$. Then

$$
\left(\frac{a}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{x}{p}\right)=-1 \cdot\left(\frac{p}{x}\right)=-1 .
$$

Finally, assume $a=2^{e} y$ for $e \geq 2$, and y odd. Then $p \equiv 1(\bmod 8)$, so $\left(\frac{2}{p}\right)=1$. Then

$$
\left(\frac{a}{p}\right)=\left(\frac{2}{p}\right)^{e}\left(\frac{y}{p}\right)=\left(\frac{p}{y}\right)=+1 .
$$

Remark M5.1. Assuming there are infinitely many primes of the form $a^{2}+b^{2}$ for any fixed $a>0$ (which seems almost certainly true, although it is open), then the function s we gave above is the only one.

Problem M6

Let G be a nontrivial finite group. We consider automorphisms of G which do not preserve any nontrivial subgroup of G. (An automorphism preserves a subgroup of G if the image of that subgroup is itself.)
(a) Determine for which abelian groups G such an automorphism exists.
(b) Find the number of such automorphisms for each such G.
(c) Show that no such automorphisms exist if G is solvable but not abelian.
(d) Generalizing (c), prove that no such automorphisms exist if G is not abelian.

Solution

We begin by addressing (a), (c), (d) simultaneously.
Lemma M6.1 (Miklós Schweitzer 1985). Let G be any finite group (not necessarily abelian). No such automorphisms exist at all unless (and only unless) G is an elementary abelian group, that is, $G=(\mathbb{Z} / p)^{\oplus n}$.

Proof. Let f be such an automorphism. Note that if f has a nontrivial fixed point, then f fixes the cyclic group generated by that fixed point, consequently G must be a cyclic group, at which point it is easy to see that G should be have prime order.

Thus, we may assume henceforth that f has no nontrivial fixed points. In that case, the map

$$
G \rightarrow G \quad \text { by } \quad x \mapsto x^{-1} f(x)
$$

is a bijection, since if $x^{-1} f(x)=y^{-1} f(y)$ then $f\left(y x^{-1}\right)=y x^{-1}$.
Now let p be any prime dividing G and let K be a Sylow p-group for G. As $f(K)$ must be a Sylow p-group as well, it is conjugate to K and consequently we have

$$
f(K)=x K x^{-1}
$$

for some $x \in G$. Now, pick y such that $f(y) x=y$ (possible by the previous claim); then

$$
f\left(y K y^{-1}\right)=(f(y) x) K(f(y) x)^{-1}=y K y^{-1}
$$

So $y K y^{-1}$ is a preserved subgroup of G. Consequently, $y K y^{-1}=G$, so G is a p-group (i.e. a group whose order is a prime power).

We remark that the p-group G has to be abelian, since the center of a p-group is characteristic and nontrivial. Finally, since the elements of order p form a nontrivial characteristic subgroup of G as well, so we conclude that G is an elementary abelian group.

As for $G=(\mathbb{Z} / p)^{\oplus n}$, viewing it as a n-dimensional vector space over \mathbb{Z} / p, an automorphism of G is equivalent to a invertible linear transformation T of G which has no proper nontrivial T-invariant subspaces. We relate this to the characteristic polynomial in the following way.

Lemma M6.2. Let $T: V \rightarrow V$ be a map of finite-dimensional vector spaces. Then T has no proper nontrivial T-invariant subspaces if and only if the characteristic polynomial χ_{T} is irreducible.

Proof. If χ_{T} is irreducible, there can be no T-invariant subspace since otherwise the restriction of T to that subspace gives a factor of the characteristic polynomial.

We now proceed conversely. Assume there are no T-invariant subspaces. Then the minimal polynomial μ_{T} of T should coincide with χ_{T}, since if not there exists a vector v such that the cyclic subspace spanned by $\{v, T(v), T(T(v)), \ldots\}$ has dimension $\operatorname{dim} \mu_{T}$, and hence is a nontrivial proper T-invariant subspace.

In that case, we can pick a basis of V so that it coincides with the companion matrix for χ_{T}. Then $V \cong \mathbb{F}_{p}[X] /\left(\chi_{T}(X)\right)$ as $\mathbb{F}_{p}[T]$-modules, and so the invariant subspaces of V are in bijection with the nontrivial factors of χ_{T}.

For the count, we quote two results.
Lemma M6.3 (Gauss formula). There are $\frac{1}{n} \sum_{d \mid n} \mu(n / d) p^{d}$ monic irreducible polynomials of degree n over \mathbb{F}_{p}.

Lemma M6.4 (Reiner, Gerstenhaber, 1960). For a given irreducible polynomial f, the number of $n \times n$ matrices over \mathbb{F}_{p} with characteristic polynomial f is $\prod_{i=1}^{n-1}\left(p^{n}-p^{i}\right)$.

For references on these two results, see:

- https://arxiv.org/pdf/1001.0409.pdf,
- http://math.sun.ac.za/wp-content/uploads/2012/09/tovo.pdf,
respectively.
Return to the situation $G=(\mathbb{Z} / p)^{\oplus n}$. When $n=1$ the answer is just the number of automorphisms, which is $p-1$ (the matrix [0] has no proper invariant subspace but is not invertible). For $n \geq 2$, any T with no invariant subspace is necessarily invertible as well, giving the final answer

$$
\frac{1}{n}\left(\sum_{d \mid n} \mu(n / d) p^{d}\right)\left(\prod_{i=1}^{n-1}\left(p^{n}-p^{i}\right)\right)
$$

