PRIMES Math Problem Set: Solutions

Evan Chen

PRIMES 2019

Solution to General Math Problems

Problem G1

We flip a fair coin ten times, recording a 0 for tails and 1 for heads. In this way we obtain a binary string of length 10.

- (a) Find the probability there is exactly one pair of consecutive equal digits.
- (b) Find the probability there are exactly n pairs of consecutive equal digits, for every $n = 0, \ldots, 9$.

Solution

The answer to (b) is $\frac{\binom{9}{2}}{2^9}$. To see this, by swapping the roles of heads and tails we may assume that the first flip is tails (without loss of generality). Thus there are 2^9 sequences. On the other hand, a sequence of heads and tails which starts with tails is uniquely determined by the choice for each $i = 1, \ldots, 9$ of whether the *i*th flip and the (i + 1)st flip are different or the same. Thus, if we would like *n* pairs to be the same, there are exactly $\binom{9}{n}$ such sequences.

Hence for (a) the answer is $\frac{9}{2^9}$.

For which positive integers p is there a nonzero real number t such that

$$t + \sqrt{p}$$
 and $\frac{1}{t} + \sqrt{p}$

are both rational?

Solution

The answer is that p must either be a square or one more than a perfect square.

If p is a perfect square, then t = 1 works. If $p = k^2 + 1$ for some integer k, then $t = k - \sqrt{p}$ works, since $\frac{1}{t} = -(k + \sqrt{p})$.

Now assume p is not a square but such t exists. Let $t + \sqrt{p} = a$ and $1/t + \sqrt{p} = b$ for rational a and b, so that

$$1 = (a - \sqrt{p})(b - \sqrt{p}) = -(a + b)\sqrt{p} + (ab + p).$$

Since \sqrt{p} is irrational, this can only happen if a + b = 0. Then the above equation reads $1 = p - a^2$, so $p = a^2 + 1$ (and clearly *a* has to be an integer).

Points A and B are two opposite vertices of a regular octahedron. An ant starts at point A and, every minute, walks randomly to a neighboring vertex.

- (a) Find the expected (i.e. average) amount of time for the ant to reach vertex B.
- (b) Compute the same expected value if the octahedron is replaced by a cube (where A and B are still opposite vertices).

Solution

For (a): we let x denote the expected value of the number of steps starting from A. Moreover, we let y denote the expected value of the number of steps starting from one of the four vertices other than A or B (these are equal by symmetry). Then we have

$$\begin{aligned} x &= y+1\\ y &= \frac{x+y+y+0}{4}+1. \end{aligned}$$

Solving we get y = 5 and x = 6. Hence the answer is 6 minutes.

For (b): let x denote the expected value starting from A, y the expected value starting from a neighbor of A, z the expected value starting from a neighbor of B. Then

$$x = y + 1$$
$$y = \frac{x + z + z}{3} + 1$$
$$z = \frac{y + y + 0}{3} + 1.$$

Solving gives (x, y, z) = (10, 9, 7), so the answer is 10 minutes.

For a positive integer n, let f(n) denote the smallest positive integer which neither divides n nor n + 1.

- (a) Find the smallest n for which f(n) = 9.
- (b) Is there an n for which f(n) = 2018?
- (c) Which values can f(n) take as n varies?

<u>Solution</u>

For part (a), note that such an n should satisfy

$$n \equiv -1 \text{ or } 0 \pmod{7}$$
$$n \equiv -1 \text{ or } 0 \pmod{8}.$$

By the Chinese remainder theorem, we conclude

$$n \in \{-1, 0, 7, 7^2 - 1\} \equiv \{0, 7, 48, 55\} \pmod{56}.$$

Thus the first few candidates for n are $n \in \{0, 7, 48, 55, 56, 63, 104, 111, 112, 119, \ldots\}$. We need an n such that $15 \mid n(n+1)$ and $9 \nmid n(n+1)$. A calculation then shows the value n = 119 works and is the smallest possible.

The answer to (b) is yes as $2018 = 2 \cdot 1009$ is twice a prime. This will be a corollary of part (c) to follow, but we comment that it suffices to pick n such that $n + 1 \equiv 0 \pmod{1009}$ and $n \equiv 0 \pmod{r}$ for any 1 < r < 2018 with $r \neq 1009$.

As for (c), we claim f(n) should be twice a prime or a prime power other than 2. These will be repeated applications of Chinese remainder theorem. To prove that these work:

- To get n such that f(n) = 2p for p an odd prime, pick n such that $n \equiv 0 \pmod{r}$ for any number 1 < r < 2p and $r \neq p$, but $n + 1 \equiv 0 \pmod{p}$.
- To get n such that $f(n) = p^e$ for p a prime and $p^e \neq 2$, pick n such that $n \equiv 0 \pmod{r}$ for any $1 < r < p^e$ not divisible by p, but $n + 1 \equiv p^{e-1} \pmod{p^e}$.

Next, we claim that we never have f(n) = ab if gcd(a, b) = 1 and min(a, b) > 2. The proof is by contradiction. Indeed, note that 2a and 2b are strictly less than f(n), so 2a divides either n or n + 1, similarly 2b divides either n or n + 1. If n is even, then we find 2a and 2b both divide n, and since gcd(a, b) = 1 we have lcm(2a, 2b) = 2ab divides n, contradiction. The case where n + 1 is even is exactly the same.

We now show (again by contradiction) we cannot have $f(n) = 2p^e$ for any odd prime p and $e \ge 2$. The numbers 2p and p^e are strictly less than f(n), and so if p divides n (and hence not n + 1) we have $lcm(2p, p^e) = 2p^e$ dividing n, contradiction. Again the case where p divides n + 1 instead is similar. This completes the proof.

Finally, it's easy to see $f(n) \neq 2$ for any n.

A pile with $n \geq 3$ stones is given. Two players Alice and Bob alternate taking stones, with Alice moving first. On a turn, if there are m stones left, a player loses if m is prime; otherwise he/she may pick a divisor $d \mid m$ such that 1 < d < m and remove d stones from the pile.

- (a) Which player wins for n = 6, n = 8, n = 10?
- (b) Determine the winning player for all n.

Solution

We claim that Alice wins if and only if n is even and $n \neq 2^{2k+1}$ for any $k \geq 0$. The proof is by (strong) induction on n.

We take the base case as those situations where n is prime, which clearly work (as $2 = 2^{2 \cdot 0+1}$ and the rest of the primes are odd). The inductive step requires several cases:

- Suppose a player is faced with an odd number n. Then they must subtract an odd divisor d, so n d is even. Moreover, n d is divisible by d, so it is not a power of 2. Thus by induction hypothesis n d is winning for their opponent.
- Suppose a player is faced with $n = 2^{2k+1}$. Then they must subtract an even divisor d to get the even number n d, which is not an odd power of 2 (it is a power of 2 only if $d = 2^{2k}$, but then $n d = 2^{2k}$). Thus by induction hypothesis n d is winning for their opponent.
- Suppose on the other hand a player is faced with $n = 2^{2k}$. They may choose $d = 2^{2k-1}$ so $n d = 2^{2k-1}$ is losing for their opponent by induction hypothesis.
- Finally, suppose a player is faced with an even n which is not a power of 2. Then they may subtract some odd divisor d, to get an odd number n d which is losing for their opponent.

In particular, as for (a), Alice wins for n = 6 and n = 10 but loses when n = 8.

A perfect power is an integer of the form b^n , where $b, n \ge 2$ are integers. Consider matrices 2×2 whose entries are perfect powers; we call such matrices *good*.

- (a) Find an example of a good matrix with determinant 2019.
- (b) Do there exist any such matrices with determinant 1? If so, comment on how many there could be. (Possible hint: use the theory of Pell equations.)

Solution

For (a), since $2019 = 3 \cdot 673 = 338^2 - 335^2$, we find that $\begin{bmatrix} 2^2 & 67^2 \\ 5^2 & 169^2 \end{bmatrix}$ is one such example. For (b), the matrix $\begin{bmatrix} 4 & 27 \\ 25 & 169 \end{bmatrix}$ is one such example, found by using $25 \cdot 27 = 26^2 - 1$. Another example is $\begin{bmatrix} 33^2 & 8 \\ 35^2 & 9 \end{bmatrix}$. More generally, if $m \ge 1$ is an integer and

$$\left(3+2\sqrt{2}\right)^{2m+1} = 3x_m + 2y_m\sqrt{2}$$

for integers x_m and y_m , then $9x_m^2 - 8y_m^2 = 1$ by multiplying by the conjugate (or by Pell equations). Thus

$$\det \begin{bmatrix} x_m^2 & 8\\ y_m^2 & 9 \end{bmatrix} = 1$$

and so there are infinitely many examples.

We consider a fixed triangle ABC with side lengths a = BC, b = CA, c = AB, and a variable point X in the interior. The lines through X parallel to \overline{AB} and \overline{AC} , together with line \overline{BC} , determine a triangle T_a . The triangles T_b and T_c are defined in a similarly way, as shown in the figure.

Let S and p denote the average area and perimeter, respectively, of the three triangles T_a , T_b , T_c .

- (a) Determine all possible values of S as X varies, in terms of a, b, c.
- (b) Determine all possible values of p as X varies, in terms of a, b, c.

Solution

For (a), we let X have barycentric coordinates (x, y, z) with respect to $\triangle ABC$, subject to x + y + z = 1. Letting brackets denote area, note that

$$[T_a] + [T_b] + [T_c] + [ABC] = ((1-x)^2 + (1-y)^2 + (1-z)^2) [ABC]$$

since $(1-x)^2[ABC]$ corresponds to the area of the triangle formed by lines AB, AC, and the line through X parallel to \overline{BC} . Thus, we have

$$S = \frac{(1-x)^2 + (1-y)^2 + (1-z)^2 - 1}{3} \cdot [ABC].$$

We claim that S achieves its minimum when x = y = 1/3. To see this, write $(1 - x)^2 + (1 - y)^2 + (x + y)^2 = x^2 - x + (x - 1)y + y^2$; for any given x this is minimal when $y = \frac{1-x}{2}$, and so substituting and minimizing x we find x = y = 1/3. Alternatively, one can simply apply Jensen's inequality on the function $t \mapsto (1 - t)^2$,

Either way, we achieves a minimum value of

$$\frac{3 \cdot (2/3)^2 - 1}{3} \cdot [ABC] = \frac{1}{9}[ABC]$$

when X is the centroid of triangle ABC. Also, as $x \to 1^-$ and $y, z \to 0^+$ the value of S approaches $\frac{1}{3}[ABC]$ (and this is clearly best possible, since $[T_a] + [T_b] + [T_c] < [ABC]$ at all times). Thus for continuity reasons the answer to (a) is

$$S \in \left[\frac{[ABC]}{9}, \frac{[ABC]}{3}\right).$$

Here $[ABC] = \sqrt{\frac{1}{16}(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}$ by Heron's formula.

For (b), the value of p is always equal to one-third of the perimeter of $\triangle ABC$, i.e. $p = \frac{1}{3}(a+b+c)$. Note that the sides of T_a , T_b , T_c which are parallel to \overline{BC} have length summing to the length of BC. Consequently, the total perimeter coincides with that of $\triangle ABC$.

Solution to Advanced Math Problems

Problem M1

Let $\alpha = \sqrt{2} + \sqrt{3}$ and let $V = \mathbb{Q}(\alpha)$ be the field generated by α over \mathbb{Q} , regarded as a \mathbb{Q} -vector space. Let $T: V \to V$ be given by multiplication by α .

- (a) Find $\dim V$.
- (b) Let $W = \sqrt{2}\mathbb{Q} \oplus \sqrt{3}\mathbb{Q}$. Show that $V = W \oplus T(W)$. Give a basis of T(W).
- (c) Compute the determinant of T.

Solution

For (a), we have dim V = 4. Here are two ways to see this:

- Since α has minimal polynomial $P(X) = (X^2 5)^2 24$ (irreducible over \mathbb{Z}), we have a basis $\{1, \alpha, \alpha^2, \alpha^3\}$.
- Alternatively, we note that $V \ni \frac{1}{2}(\alpha^2 5) = \sqrt{6}$. Then $\sqrt{6\alpha} = 2\sqrt{3} + 3\sqrt{2}$, and accordingly $(\sqrt{6} 2)\alpha = \sqrt{2}$ and $(3 \sqrt{6})\alpha = \sqrt{3}$ are also in V. As the numbers $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ are linearly independent over \mathbb{Q} (and clearly span V), they form another basis of V.

Using the latter basis, it's easy to see that $V = W \oplus T(W)$, since $W = \sqrt{2}\mathbb{Q} \oplus \sqrt{3}\mathbb{Q}$, then

$$T(W) = (\sqrt{2\alpha})\mathbb{Q} \oplus (\sqrt{3\alpha})\mathbb{Q} = (2+\sqrt{6})\mathbb{Q} \oplus (3+\sqrt{6})\mathbb{Q} = \mathbb{Q} \oplus \sqrt{6}\mathbb{Q}$$

and in particular a basis of T(W) is simply $\{1, \sqrt{6}\}$.

Those familiar with algebraic number theory may recognize det T = 1 immediately as the product of the roots of P(X). One can also do this computation in the basis $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ in which T takes the matrix form

$$T = \begin{bmatrix} 0 & 2 & 3 & 0 \\ 1 & 0 & 0 & 3 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

and $\det T = 1$.

Let n be a positive integer. We denote by I_n the $n \times n$ identity matrix. Let G be a group of $n \times n$ matrices with real entries and determinant 1 (under matrix multiplication).

Suppose that any sequence of matrices in G which converges to I_n is eventually constant. Show that for any A > 0, the subset of G with entries in [-A, A] is finite.

Solution

The condition states that I_n is an isolated point of G.

Assume for contradiction that for some A > 0, there are infinitely many matrices in G with all entries bounded by A. Then, by Bolzano-Weierstrass theorem (applied on the n^2 entries), there should exist an infinite sequence $\gamma_1, \gamma_2, \ldots$ of distinct matrices in G which converges to some matrix ρ . Since $\det(\gamma_i) = 1$ for each i, it follows $\det \rho = 1$ as well.

Then the sequence $\gamma_n \gamma_{n+1}^{-1}$ (in G) converges to the identity matrix I_n . However, since I_n is an isolated point, it follows that $\gamma_n = \gamma_{n+1}$ for all large enough n, contradicting the assumption the γ_i were distinct.

Remark M2.1. The converse is also obviously true, and both conditions are equivalent to G being a discrete subgroup of $SL_n(\mathbb{R})$. For n = 2, such a group is called a *Fuchsian group*, which arises in the study of modular forms.

(a) If $d \ge 0$ is an integer, evaluate

$$\lim_{n \to \infty} \int_{[0,1]^n} \left[\frac{x_1^2 + \dots + x_n^2}{n} \right]^d \, \mathrm{d}x_1 \dots \mathrm{d}x_n$$

(b) Evaluate

$$\lim_{n \to \infty} \int_{[0,1]^n} \cos\left[\frac{x_1^2 + \dots + x_n^2}{n} \cdot \pi\right] \, \mathrm{d}x_1 \dots \mathrm{d}x_n.$$

Solution

We first show the answer to (a) is $(1/3)^d$, and state this explicitly as the following lemma.

Lemma M3.1. For any integer $d \ge 0$,

$$\lim_{n \to \infty} \int_{[0,1]^n} \left[\frac{x_1^2 + \dots + x_n^2}{n} \right]^d \, \mathrm{d}x_1 \dots \mathrm{d}x_n = \left(\frac{1}{3}\right)^d$$

Proof. To see this, fix d and consider expanding the multinomial coefficient. There will be some terms of the form

$$d! \int_{[0,1]^n} x_{i_1}^2 x_{i_2}^2 \dots x_{i_d}^2 = \left(\frac{1}{3}\right)^d$$

where $i_1 < i_2 < \cdots < i_d$. The number of such terms is $\binom{n}{d} = \frac{n^d}{d!} + O(n^{d-1})$. There are other terms where x_i 's are repeated, but the contribution of each such term is clearly bounded by 1 and there are $O(n^{d-1})$ such terms as well. This proves the claim.

The answer to (b) is 1/2. We contend that:

Lemma M3.2. For any continuous function $f: [0,1] \to \mathbb{R}$,

$$\lim_{n} \int_{[0,1]^n} f\left(\frac{x_1^2 + \dots + x_n^2}{n}\right) = f(1/3).$$

Proof. The Stone-Weierstrass theorem implies we can approximate the function f by a series $f(x) = \sum_{d} a_{d} x^{d}$, and the above lemma implies that

$$\int_{[0,1]} \sum_{d} a_d \left(\frac{x_1^2 + \dots + x_n^2}{n}\right)^d = \sum_{d} a_d (1/3)^d = f(1/3).$$

Picking $f(t) = \cos(t\pi)$, we get the answer $f(1/3) = \cos(\pi/3) = \frac{1}{2}$.

Remark M3.3. This is related to the law of large numbers: consider the random variable X distributed as $t^2 dt$ for $t \in [0, 1]$. Then $\int_{[0,1]^n} \frac{x_1^2 + \dots + x_n^2}{n}$ corresponds to the mean when X is sampled n times, and thus "converges rapidly" to 1/3 as $n \to \infty$.

Let n be a fixed positive integer. We choose positive integers t_1, \ldots, t_n (not necessarily distinct) and for each integer r, we let a_r denote the number of subsets $I \subseteq \{1, \ldots, n\}$ for which $\sum_{i \in I} t_i = r$ (this includes $I = \emptyset$ when r = 0). Consider the sum

$$\sum_{r\in\mathbb{Z}}a_r^2.$$

- (a) Find the minimum possible value of this sum over all choices of (t_1, \ldots, t_n) , as a function of n.
- (b) Find the maximum possible value of this sum over all choices of (t_1, \ldots, t_n) , as a function of n. (Possible hint: Sperner's theorem.)

<u>Solution</u>

We claim that the best bounds are

$$2^n \le \sum_r a_r^2 \le \binom{2n}{n}.$$

The quantity $\sum_{r} a_r^2$ counts the number of pairs of subsets (I, J) such that $\sum_{i \in I} t_i = \sum_{j \in J} t_j$. We call such pairs *good*.

The lower bound is clear, since pairs with I = J are always good Equality can be achieved by letting $t_k = 2^k$ for every k so that these are the only such good pairs.

The upper bound is achieved by letting $t_k = 1$ for all k, so we now prove that this is the largest possible. There is a correspondence between pairs (I, J) and

$$K(I,J) = I \cup (\overline{J}+n) \subseteq \{1,\ldots,2n\}$$

where \overline{J} is the complement of J in $\{1, \ldots, n\}$. Under this correspondence, (I, J) if and only if

$$\sum_{k \in K(I,J)} t_k = t_1 + \dots + t_n.$$

where we define $t_{n+1} = t_1, t_{n+2} = t_2, \ldots, t_{2n} = t_n$.

Because the t_i were given to be positive, no K(I, J) from good (I, J) can be a subset of another. By Sperner's theorem, there are at most $\binom{2n}{n}$ of them.

Remark M4.1. This question was suggested by Ankan Bhattacharya.

Exhibit a function $s \colon \mathbb{Z}_{>0} \to \mathbb{Z}$ with the following property: if a and b are positive integers such that $p = a^2 + b^2$ is an odd prime, then

$$s(a) \equiv a^{\frac{p-1}{2}} \pmod{p}.$$

The right-hand side is known as the *Jacobi symbol* $\left(\frac{a}{p}\right)$.

Solution

Note gcd(a, p) = 1. We recognize $a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right) \pmod{p}$ as the Legendre symbol, and in fact we claim that

$$\left(\frac{a}{p}\right) = \begin{cases} +1 & a \equiv 1 \pmod{2} \\ +1 & a \equiv 0 \pmod{4} \\ -1 & a \equiv 2 \pmod{4}. \end{cases}$$

Thus we may take $s: \mathbb{Z}_{>0} \to \{-1, 1\}$ as above.

To prove this identity, we henceforth assume $p \equiv 1 \pmod{4}$. Our proof will use extensively the Jacobi symbol and quadratic reciprocity.

First, assume a is odd. Then

$$\left(\frac{a}{p}\right) = \left(\frac{p}{a}\right) = \left(\frac{a^2 + b^2}{a}\right) = \left(\frac{b^2}{a}\right) = +1$$

Next, assume a = 2x for x odd. Then $p \equiv 5 \pmod{8}$, so $\left(\frac{2}{p}\right) = -1$. Then

$$\left(\frac{a}{p}\right) = \left(\frac{2}{p}\right)\left(\frac{x}{p}\right) = -1 \cdot \left(\frac{p}{x}\right) = -1.$$

Finally, assume $a = 2^e y$ for $e \ge 2$, and y odd. Then $p \equiv 1 \pmod{8}$, so $\left(\frac{2}{p}\right) = 1$. Then

$$\left(\frac{a}{p}\right) = \left(\frac{2}{p}\right)^e \left(\frac{y}{p}\right) = \left(\frac{p}{y}\right) = +1.$$

Remark M5.1. Assuming there are infinitely many primes of the form $a^2 + b^2$ for any fixed a > 0 (which seems almost certainly true, although it is open), then the function s we gave above is the only one.

Let G be a nontrivial finite group. We consider automorphisms of G which do not preserve any nontrivial subgroup of G. (An automorphism *preserves* a subgroup of G if the image of that subgroup is itself.)

- (a) Determine for which abelian groups G such an automorphism exists.
- (b) Find the number of such automorphisms for each such G.
- (c) Show that no such automorphisms exist if G is solvable but not abelian.
- (d) Generalizing (c), prove that no such automorphisms exist if G is not abelian.

<u>Solution</u>

We begin by addressing (a), (c), (d) simultaneously.

Lemma M6.1 (Miklós Schweitzer 1985). Let G be any finite group (not necessarily abelian). No such automorphisms exist at all unless (and only unless) G is an elementary abelian group, that is, $G = (\mathbb{Z}/p)^{\oplus n}$.

Proof. Let f be such an automorphism. Note that if f has a nontrivial fixed point, then f fixes the cyclic group generated by that fixed point, consequently G must be a cyclic group, at which point it is easy to see that G should be have prime order.

Thus, we may assume henceforth that f has no nontrivial fixed points. In that case, the map

$$G \to G$$
 by $x \mapsto x^{-1} f(x)$

is a bijection, since if $x^{-1}f(x) = y^{-1}f(y)$ then $f(yx^{-1}) = yx^{-1}$.

Now let p be any prime dividing G and let K be a Sylow p-group for G. As f(K) must be a Sylow p-group as well, it is conjugate to K and consequently we have

$$f(K) = xKx^{-1}$$

for some $x \in G$. Now, pick y such that f(y)x = y (possible by the previous claim); then

$$f(yKy^{-1}) = (f(y)x)K(f(y)x)^{-1} = yKy^{-1}.$$

So yKy^{-1} is a preserved subgroup of G. Consequently, $yKy^{-1} = G$, so G is a p-group (i.e. a group whose order is a prime power).

We remark that the *p*-group G has to be abelian, since the center of a *p*-group is characteristic and nontrivial. Finally, since the elements of order p form a nontrivial characteristic subgroup of G as well, so we conclude that G is an elementary abelian group.

As for $G = (\mathbb{Z}/p)^{\oplus n}$, viewing it as a *n*-dimensional vector space over \mathbb{Z}/p , an automorphism of G is equivalent to a invertible linear transformation T of G which has no proper nontrivial T-invariant subspaces. We relate this to the characteristic polynomial in the following way.

Lemma M6.2. Let $T: V \to V$ be a map of finite-dimensional vector spaces. Then T has no proper nontrivial T-invariant subspaces if and only if the characteristic polynomial χ_T is irreducible. *Proof.* If χ_T is irreducible, there can be no *T*-invariant subspace since otherwise the restriction of *T* to that subspace gives a factor of the characteristic polynomial.

We now proceed conversely. Assume there are no *T*-invariant subspaces. Then the minimal polynomial μ_T of *T* should coincide with χ_T , since if not there exists a vector *v* such that the cyclic subspace spanned by $\{v, T(v), T(T(v)), \ldots\}$ has dimension dim μ_T , and hence is a nontrivial proper *T*-invariant subspace.

In that case, we can pick a basis of V so that it coincides with the companion matrix for χ_T . Then $V \cong \mathbb{F}_p[X]/(\chi_T(X))$ as $\mathbb{F}_p[T]$ -modules, and so the invariant subspaces of V are in bijection with the nontrivial factors of χ_T .

For the count, we quote two results.

Lemma M6.3 (Gauss formula). There are $\frac{1}{n} \sum_{d|n} \mu(n/d) p^d$ monic irreducible polynomials of degree n over \mathbb{F}_p .

Lemma M6.4 (Reiner, Gerstenhaber, 1960). For a given irreducible polynomial f, the number of $n \times n$ matrices over \mathbb{F}_p with characteristic polynomial f is $\prod_{i=1}^{n-1} (p^n - p^i)$.

For references on these two results, see:

- https://arxiv.org/pdf/1001.0409.pdf,
- http://math.sun.ac.za/wp-content/uploads/2012/09/tovo.pdf,

respectively.

Return to the situation $G = (\mathbb{Z}/p)^{\oplus n}$. When n = 1 the answer is just the number of automorphisms, which is p - 1 (the matrix [0] has no proper invariant subspace but is not invertible). For $n \ge 2$, any T with no invariant subspace is necessarily invertible as well, giving the final answer

$$\frac{1}{n} \left(\sum_{d|n} \mu(n/d) p^d \right) \left(\prod_{i=1}^{n-1} \left(p^n - p^i \right) \right).$$