Bases for Quotients of Symmetric Polynomials

Andrew Weinfeld
Mentor: Guangyi Yue
Newton South High School

May 19, 2019
MIT PRIMES Conference

Basic Ideas

Definition

R is a commutative ring with unity.

Definition

Ring of polynomials:

$$
R[x]=\left\{r_{0}+r_{1} x+\cdots+r_{d} x^{d} \mid r_{j} \in R, r_{d} \neq 0\right\}
$$

d is the degree of the polynomial.

Example

- $2-x+x^{2} \in \mathbb{Z}[x]$, degree 2
- $\pi+2 x^{2}-i x^{5} \in \mathbb{C}[x]$, degree 5

More Indeterminates

Definition

k indeterminates x_{1}, \ldots, x_{k} :

$$
\begin{aligned}
R\left[x_{1}, \ldots, x_{k}\right] & =R\left[x_{1}\right] \cdots\left[x_{k}\right] \\
& =\left\{\sum_{\substack{\text { Finitely many terms } \\
j_{1}, \ldots, j_{k} \geq 0}}\right.
\end{aligned}
$$

$\max \left(j_{1}+\cdots+j_{k} \mid r_{j_{1}, \ldots, j_{k}} \neq 0\right)$ is the degree of the polynomial.

Example

- $x_{1} x_{2}+x_{1} x_{2} x_{3}+2 x_{1}^{5} x_{3}^{2} \in \mathbb{Z}\left[x_{1}, x_{2}, x_{3}\right]$, degree 7
- $\pi+2 x_{1}^{2}-i x_{1} x_{2}+x_{4}^{3} \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$, degree 3

Symmetric Polynomials

Definition

\boldsymbol{S} is the subset of $R\left[x_{1}, \ldots, x_{k}\right]$ of polynomials that remain unchanged when indeterminates are permuted.

Example

If $k=2$, then

$$
x_{1}+x_{2} \in \boldsymbol{S}
$$

since $x_{2}+x_{1}=x_{1}+x_{2}$.

Example

If $k=3$, then

$$
x_{1}+x_{2} \notin \boldsymbol{S}
$$

since $x_{2}+x_{3} \neq x_{1}+x_{2}$, but

$$
x_{1}+x_{2}+x_{3} \in \boldsymbol{S}
$$

Partitions

Definition

A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell(\lambda)}\right)$ is a decreasing sequence of positive integers, that is, $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell(\lambda)}>0$. The Young diagram of λ is the left-aligned grid of boxes with λ_{i} boxes in the ith row.
$\mathbf{P a r}_{\boldsymbol{k}}$ is the set of partitions with $\ell(\lambda) \leq k . \mathbf{P a r}_{\boldsymbol{k}, \boldsymbol{n}-\boldsymbol{k}}$ is the set of partitions whose Young diagram fits inside of box of height k and length $n-k$. The conjugate of $\lambda, \lambda^{\prime}$, is the partition whose Young diagram is the reflection of the Young diagram of λ across the main diagonal.

Example

Let $\lambda=(3,2)$. Then $\lambda \in \operatorname{Par}_{2}, \lambda \in \operatorname{Par}_{2,3}, \lambda \notin \operatorname{Par}_{2,2}, \lambda^{\prime}=(2,2,1)$.
λ :

$$
\lambda^{\prime}:
$$

Note that $\lambda^{\prime} \in \operatorname{Par}_{k} \Longleftrightarrow \lambda_{1} \leq k$.

Homogeneous Symmetric Polynomials

Definition

$$
\begin{gathered}
h_{i}=\sum_{\substack{j_{1}+\cdots+j_{k}=i \\
j_{1}, \ldots, j_{k} \geq 0}} x_{1}^{j_{1}} \cdots x_{k}^{j_{k}} \\
h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \cdots h_{\lambda_{\ell(\lambda)}}
\end{gathered}
$$

Example

If $k=2$:

$$
\begin{aligned}
h_{0} & =1 \\
h_{3} & =x_{1}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{3} \\
h_{(2,1)} & =h_{2} h_{1}=\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)\left(x_{1}+x_{2}\right)=x_{1}^{3}+2 x_{1}^{2} x_{2}+2 x_{1} x_{2}^{2}+x_{2}^{3}
\end{aligned}
$$

Theorem (Enumerative Combinatorics Vol. 2)
$\left\{h_{\lambda} \mid \lambda^{\prime} \in\right.$ Par $\left._{k}\right\}$ is a basis for \boldsymbol{S} over R

Schur Polynomials

Definition

Let $\ell(\lambda) \leq k$. Then

$$
s_{\lambda}=\operatorname{det}\left(h_{\lambda_{i}+j-i}\right)_{i, j=1}^{\ell(\lambda)}
$$

Example

If $k=2$:

$$
\begin{aligned}
s_{(2,1)} & =\left|\begin{array}{ll}
h_{2} & h_{0} \\
h_{3} & h_{1}
\end{array}\right| \\
& =h_{2} h_{1}-h_{3} h_{0} \\
& =\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)\left(x_{1}+x_{2}\right)-\left(x_{1}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{3}\right) \\
& =x_{1}^{2} x_{2}+x_{1} x_{2}^{2}
\end{aligned}
$$

Theorem (Enumerative Combinatorics Vol. 2)
$\left\{s_{\lambda} \mid \lambda \in \operatorname{Par}_{k}\right\}$ is a basis for \boldsymbol{S} over R.

Motivation

- $R=\mathbb{Z}$

Cohomology ring of the Grassmannian,

$$
H^{*}(\operatorname{Gr}(k, n)) \cong \mathbf{S} /\left\langle h_{n-k+1}, \ldots, h_{n}\right\rangle
$$

- $R=\mathbb{Z}[q]$

Quantum cohomology ring of the Grassmannian,

$$
Q H^{*}(\operatorname{Gr}(k, n)) \cong \mathbf{S} /\left\langle h_{n-k+1}, \ldots, h_{n-1}, h_{n}+(-1)^{k} q\right\rangle
$$

Theorem (Postnikov)

$$
\left\{s_{\lambda} \mid \lambda \in \operatorname{Par}_{k, n-k}\right\}
$$

is a basis (over R) for both quotients; that is, every member of S can written uniquely as some member of the ideal $+\sum c_{\lambda} s_{\lambda}, \quad c_{\lambda} \in R, \lambda \in \operatorname{Par}_{k, n-k}$

Quotients with h_{i} 's

Theorem (Grinberg)

Let $a_{i} \in R$. Then

$$
\left\{s_{\lambda} \mid \lambda \in \operatorname{Par}_{k, n-k}\right\}
$$

is a basis for

$$
\boldsymbol{S} /\left\langle h_{n-k+1}-a_{1}, \ldots, h_{n}-a_{k}\right\rangle
$$

Quotients with h_{i} 's

Example

If $k=2, n=4$:

$$
\begin{aligned}
& \left\{s_{\emptyset}, s_{(1)}, s_{(1,1)}, s_{(2)}, s_{(2,1)}, s_{(2,2)}\right\} \\
& =\left\{1, x_{1}+x_{2}, x_{1} x_{2}, x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}, x_{1}^{2} x_{2}+x_{1} x_{2}^{2}, x_{1}^{2} x_{2}^{2}\right\}
\end{aligned}
$$

is a basis for

$$
\begin{aligned}
& \boldsymbol{S} /\left\langle h_{3}-a_{1}, h_{4}-a_{2}\right\rangle \\
& =\boldsymbol{S} /\left\langle x_{1}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{3}-a_{1}, x_{1}^{4}+x_{1}^{3} x_{2}+x_{1}^{2} x_{2}^{2}+x_{1} x_{2}^{3}+x_{2}^{4}-a_{2}\right\rangle
\end{aligned}
$$

For instance:

$$
x_{1}^{4}+x_{2}^{4}=-\left(x_{1}+x_{2}\right)\left(h_{3}-a_{1}\right)+2\left(h_{4}-a_{2}\right)+2 a_{2} s_{\emptyset}-a_{1} s_{(1)}
$$

Power Sums

Definition

$$
\begin{gathered}
p_{i}=x_{1}^{i}+\cdots+x_{k}^{i} \\
p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots p_{\lambda_{\ell(\lambda)}}
\end{gathered}
$$

Example
If $k=2$:

$$
\begin{aligned}
p_{3} & =x_{1}^{3}+x_{2}^{3} \\
p_{(2,1)} & =p_{2} p_{1}=\left(x_{1}^{2}+x_{2}^{2}\right)\left(x_{1}+x_{2}\right)=x_{1}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{3}
\end{aligned}
$$

Theorem (Enumerative Combinatorics Vol. 2)

If $\mathbb{Q} \subseteq R$, then $\left\{p_{\lambda} \mid \lambda^{\prime} \in P a r_{k}\right\}$ is a basis for \boldsymbol{S} over R

Quotients with p_{i} 's

Theorem (W)

Let $\mathbb{Q} \subseteq R$. Then

$$
\left\{s_{\lambda} \mid \lambda \in \operatorname{Par}_{k, n-k}\right\}
$$

is a basis for

$$
\boldsymbol{S} /\left\langle p_{n-k+1}, \ldots, p_{n}\right\rangle
$$

Example

If $k=2, n=4$:

$$
\begin{gathered}
\left\{s_{\emptyset}, s_{(1)}, s_{(1,1)}, s_{(2)}, s_{(2,1)}, s_{(2,2)}\right\} \\
=\left\{1, x_{1}+x_{2}, x_{1} x_{2}, x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}, x_{1}^{2} x_{2}+x_{1} x_{2}^{2}, x_{1}^{2} x_{2}^{2}\right\}
\end{gathered}
$$

is a basis for

$$
\boldsymbol{S} /\left\langle p_{3}, p_{4}\right\rangle=\boldsymbol{S} /\left\langle x_{1}^{3}+x_{2}^{3}, x_{1}^{4}+x_{1}^{4}\right\rangle
$$

For instance:

$$
x_{1}^{4}+x_{1}^{3} x_{2}+x_{1}^{2} x_{2}^{2}+x_{1} x_{2}^{3}+x_{2}^{4}=\left(x_{1}+x_{2}\right) p_{3}+s_{(2,2)}
$$

Future Directions

- $a_{i} \notin R$ for both h_{i} 's and p_{i} 's.
- Writing Pieri's rule in the basis of the quotients:

$$
h_{i} s_{\lambda}=\sum_{\substack{\mu / \lambda \text { has } i \text { squares } \\ \text { across } i \text { columns }}} s_{\mu}=\sum_{\mu \in \operatorname{Par}_{k, n-k}} c_{\lambda, \mu} s_{\mu}
$$

- What is \boldsymbol{S} mod other ideals of symmetric polynomials?
- Which other ideals of \boldsymbol{S} give the same basis when modded out?
- s_{λ} and p_{λ} are related by representation theory; is this usable?

Thank You

I would like to thank

- My mentor, Guangyi Yue
- Dr. Darij Grinberg, for suggesting the project
- Prof. Pavel Etingof, Dr. Tanya Khovanova, Dr. Slava Gerovitch
- The PRIMES program
- My parents

References

(1) Grinberg, Darij, A basis for a quotient of symmetric polynomials (draft), www.cip.ifi.lmu.de/~grinberg/algebra/basisquot.pdf
(2) Postnikov, Alexander, Affine approach to quantum Schubert calculus, Duke Mathematical Journal, Volume 128, No. 3, pp. 473-509.
(3) Stanley, Richard, Enumerative Combinatorics Volume 2, Cambridge University Press, 1999.

