On Subsets Sums and Thin Additive Bases

Justin Yu
Mentor: Dr. Asaf Ferber
Plano East Senior High
May 18-19, 2019
MIT PRIMES Conference

Additive Bases

Let's start with an example: Suppose that B is the set of all odd integers. Clearly, every integer can be represented as a sum of at most 2 elements of B.
In this case we say that B is an additive basis of order 2 of \mathbb{N}.

Additive Bases

Let's start with an example: Suppose that B is the set of all odd integers. Clearly, every integer can be represented as a sum of at most 2 elements of B.
In this case we say that B is an additive basis of order 2 of \mathbb{N}. Formally:

Definition

A subset $B \subseteq \mathbb{N}$ is said to be an additive basis of order k of \mathbb{N} if every integer can be written as a sum of at most k elements of B (repetitions are allowed).

Additive Bases

Let's start with an example: Suppose that B is the set of all odd integers. Clearly, every integer can be represented as a sum of at most 2 elements of B.
In this case we say that B is an additive basis of order 2 of \mathbb{N}. Formally:

Definition

A subset $B \subseteq \mathbb{N}$ is said to be an additive basis of order k of \mathbb{N} if every integer can be written as a sum of at most k elements of B (repetitions are allowed).

Example

The set $\{1,2, \ldots, m-1\} \cup\{m, 2 m, 3 m, \ldots\}$ is an additive basis of order 2 , because every number can be written as $p m+r$.

Additive Bases (cont'd)

Definition

A subset $B \subseteq \mathbb{N}$ is said to be an additive basis of order k of \mathbb{N} if every integer can be written as a sum of at most k elements of B (repetitions are allowed).

Example (Lagrange)

The set of square numbers is an additive basis of order 4.

Additive Bases (cont'd)

Definition

A subset $B \subseteq \mathbb{N}$ is said to be an additive basis of order k of \mathbb{N} if every integer can be written as a sum of at most k elements of B (repetitions are allowed).

Example (Lagrange)

The set of square numbers is an additive basis of order 4.

Example (Goldbach)

If true, then the set of prime numbers is an additive basis of order 3 .

Efficiency

Note that if B is an order k additive basis of \mathbb{N}, then $B \cap[n]$ is an order k additive basis of $[n]$. A simple calculation gives that $|B| \geq c n^{1 / k}$.

Question

Given n, does an order k additive basis B of $[n]$ of size $\Theta\left(n^{1 / k}\right)$ exists?

Efficiency

Note that if B is an order k additive basis of \mathbb{N}, then $B \cap[n]$ is an order k additive basis of $[n]$. A simple calculation gives that $|B| \geq c n^{1 / k}$.

Question

Given n, does an order k additive basis B of $[n]$ of size $\Theta\left(n^{1 / k}\right)$ exists?
Yes! We take $B=\{1, \ldots, \sqrt{n}, 2 \sqrt{n}, \ldots, \sqrt{n} \cdot \sqrt{n}\}$ and $k=2$.

Efficiency

Note that if B is an order k additive basis of \mathbb{N}, then $B \cap[n]$ is an order k additive basis of $[n]$. A simple calculation gives that $|B| \geq c n^{1 / k}$.

Question

Given n, does an order k additive basis B of $[n]$ of size $\Theta\left(n^{1 / k}\right)$ exists?
Yes! We take $B=\{1, \ldots, \sqrt{n}, 2 \sqrt{n}, \ldots, \sqrt{n} \cdot \sqrt{n}\}$ and $k=2$.

Main problem

This construction doesn't cover all elements uniformly. For example, $\sqrt{n}+1$ is represented $\sqrt{n} / 2$ times while $\sqrt{n} \cdot \sqrt{n}-1$ or $\sqrt{n} \cdot \sqrt{n}-2$ are both counted once.

Thin Bases

Definition

Given a set $B \subset \mathbb{N}$, let $r_{B, k}(N)$ denote the number of ways to write N as the sum of k terms of B.

Thin Bases

Definition

Given a set $B \subset \mathbb{N}$, let $r_{B, k}(N)$ denote the number of ways to write N as the sum of k terms of B.

Example

If $B=\{1,3,5,7, \ldots\}$, then $r_{B, 2}(10)=3$ and $r_{B, 2}(11)=1$.

Thin Bases

Definition

Given a set $B \subset \mathbb{N}$, let $r_{B, k}(N)$ denote the number of ways to write N as the sum of k terms of B.

Example

If $B=\{1,3,5,7, \ldots\}$, then $r_{B, 2}(10)=3$ and $r_{B, 2}(11)=1$.

Definition

An additive basis B is thin if $r_{B, k}(N)=\Theta(\log N)$ for all sufficiently large N.

Thin Bases

Definition

Given a set $B \subset \mathbb{N}$, let $r_{B, k}(N)$ denote the number of ways to write N as the sum of k terms of B.

Example

If $B=\{1,3,5,7, \ldots\}$, then $r_{B, 2}(10)=3$ and $r_{B, 2}(11)=1$.

Definition

An additive basis B is thin if $r_{B, k}(N)=\Theta(\log N)$ for all sufficiently large N.

Theorem (Erdős and Tetali (1990))

Fix k, and let n be large. Then there exists a thin additive basis B of $\{1,2, \ldots, n\}$ with order k.

Large Order

Motivation

Instead of a fixed order for all n, we allow k to grow slowly with n. For example, allow n to be represented as the sum of at most $\log \log n$ elements of an additive basis B.

Large Order

Motivation

Instead of a fixed order for all n, we allow k to grow slowly with n. For example, allow n to be represented as the sum of at most $\log \log n$ elements of an additive basis B.

Example

The set $\left\{2^{0}, 2^{1}, 2^{2}, \ldots\right\}$ is an additive basis of order $\left\lceil\log _{2} n\right\rceil$.

Large Order

Motivation

Instead of a fixed order for all n, we allow k to grow slowly with n. For example, allow n to be represented as the sum of at most $\log \log n$ elements of an additive basis B.

Example

The set $\left\{2^{0}, 2^{1}, 2^{2}, \ldots\right\}$ is an additive basis of order $\left\lceil\log _{2} n\right\rceil$.

Conjecture

There exists a thin additive basis B of n of order $k:=k(n)$ for all $k=o(\log n / \log \log n)$.

Our approach

Our proof scheme goes more or less as follows:
(1) Fix [n] and choose a random subset $B_{n} \subseteq[n]$ by including each element of $[n]$ into B_{n} with fixed probability.

Our approach

Our proof scheme goes more or less as follows:
(1) Fix [n] and choose a random subset $B_{n} \subseteq[n]$ by including each element of $[n]$ into B_{n} with fixed probability.
(2) Show that B_{n} is with very high probability a thin, order k additive basis of the numbers from $n / 100$ to n.

Our approach

Our proof scheme goes more or less as follows:
(1) Fix [n] and choose a random subset $B_{n} \subseteq[n]$ by including each element of $[n]$ into B_{n} with fixed probability.
(2) Show that B_{n} is with very high probability a thin, order k additive basis of the numbers from $n / 100$ to n.
(3) Extend it to \mathbb{N} using the Borel-Cantelli lemma.

Our approach

Our proof scheme goes more or less as follows:
(1) Fix [n] and choose a random subset $B_{n} \subseteq[n]$ by including each element of $[n]$ into B_{n} with fixed probability.
(2) Show that B_{n} is with very high probability a thin, order k additive basis of the numbers from $n / 100$ to n.
(3) Extend it to \mathbb{N} using the Borel-Cantelli lemma.

In order to overcome the limitations of step 2 we assign each number x a distinct probability p_{x}. This complicates our calculations so we will omit it from our talk.

Concentration

Let $Y\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ be a polynomial of indicator random variables.

Main Idea

If the partial derivatives of a multivariate function of random variables are all small, then the quantity is strongly concentrated.

Theorem (Vu (2000))

For any positive constants $k, \alpha, \beta, \epsilon$, if a boolean polynomial Y is normal and homogeneous of degree $k, n / Q \geq E(Y) \geq Q \log n$ and $E\left(\partial_{A}(Y)\right) \leq n^{-\alpha}$ for all nonempty sets A of cardinality at most $k-1$, then

$$
\operatorname{Pr}(|Y-E(Y)| \geq \epsilon E(Y)) \leq n^{-\beta}
$$

Computational Support

Let $Y_{n, k}$ be the polynomial whose terms correspond to representations of n of order k. Observe that all partial derivatives take the form $Y_{n^{\prime}, k^{\prime}}\left(n^{\prime}<n\right.$ and $k^{\prime}<k$).

- Pick each number with probability $q=e^{-2+c / k} n^{-1+1 / k} k^{2}(\log n)^{1 / k}$

Computational Support

Let $Y_{n, k}$ be the polynomial whose terms correspond to representations of n of order k. Observe that all partial derivatives take the form $Y_{n^{\prime}, k^{\prime}}\left(n^{\prime}<n\right.$ and $k^{\prime}<k$).

- Pick each number with probability $q=e^{-2+c / k} n^{-1+1 / k} k^{2}(\log n)^{1 / k}$
- The number of representations of n with k parts is $\Theta\left(n^{k-1}\left(\frac{e}{k}\right)^{2 k}\right)$

Computational Support

Let $Y_{n, k}$ be the polynomial whose terms correspond to representations of n of order k. Observe that all partial derivatives take the form $Y_{n^{\prime}, k^{\prime}}\left(n^{\prime}<n\right.$ and $k^{\prime}<k$).

- Pick each number with probability $q=e^{-2+c / k} n^{-1+1 / k} k^{2}(\log n)^{1 / k}$
- The number of representations of n with k parts is $\Theta\left(n^{k-1}\left(\frac{e}{k}\right)^{2 k}\right)$
- Thus, the expected value of $r_{B, k}(n)$ is $\Theta\left(q^{k} n^{k-1}\left(\frac{e}{k}\right)^{2 k}\right)=\Theta(\log n)$, as desired.

Computational Support

Let $Y_{n, k}$ be the polynomial whose terms correspond to representations of n of order k. Observe that all partial derivatives take the form $Y_{n^{\prime}, k^{\prime}}\left(n^{\prime}<n\right.$ and $k^{\prime}<k$).

- Pick each number with probability $q=e^{-2+c / k} n^{-1+1 / k} k^{2}(\log n)^{1 / k}$
- The number of representations of n with k parts is $\Theta\left(n^{k-1}\left(\frac{e}{k}\right)^{2 k}\right)$
- Thus, the expected value of $r_{B, k}(n)$ is $\Theta\left(q^{k} n^{k-1}\left(\frac{e}{k}\right)^{2 k}\right)=\Theta(\log n)$, as desired.
- Similar computation also shows that all partial derivatives have expectation $O\left(n^{-1 / 4 k}\right)$.

Computational Support

Let $Y_{n, k}$ be the polynomial whose terms correspond to representations of n of order k. Observe that all partial derivatives take the form $Y_{n^{\prime}, k^{\prime}}\left(n^{\prime}<n\right.$ and $k^{\prime}<k$).

- Pick each number with probability $q=e^{-2+c / k} n^{-1+1 / k} k^{2}(\log n)^{1 / k}$
- The number of representations of n with k parts is $\Theta\left(n^{k-1}\left(\frac{e}{k}\right)^{2 k}\right)$
- Thus, the expected value of $r_{B, k}(n)$ is $\Theta\left(q^{k} n^{k-1}\left(\frac{e}{k}\right)^{2 k}\right)=\Theta(\log n)$, as desired.
- Similar computation also shows that all partial derivatives have expectation $O\left(n^{-1 / 4 k}\right)$.
- Thus, the Vu Inequality says our construction works with high probability.

Project Goals

- Characterize the thinness of additive bases with large order.

Project Goals

- Characterize the thinness of additive bases with large order.
- Prove Erdős Turán conjecture.

Acknowledgements

I would like to thank:

- MIT PRIMES-USA
- Dr. Asaf Ferber
- Dr. Tanya Khovanova
- My parents

