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Additive Bases

Let’s start with an example: Suppose that B is the set of all odd integers.
Clearly, every integer can be represented as a sum of at most 2 elements of
B.
In this case we say that B is an additive basis of order 2 of N.

Formally:

Definition

A subset B ⊆ N is said to be an additive basis of order k of N if every
integer can be written as a sum of at most k elements of B (repetitions
are allowed).

Example

The set {1, 2, . . . ,m − 1} ∪ {m, 2m, 3m, . . . } is an additive basis of order
2, because every number can be written as pm + r .
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Additive Bases (cont’d)

Definition

A subset B ⊆ N is said to be an additive basis of order k of N if every
integer can be written as a sum of at most k elements of B (repetitions
are allowed).

Example (Lagrange)

The set of square numbers is an additive basis of order 4.

Example (Goldbach)

If true, then the set of prime numbers is an additive basis of order 3.
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Efficiency

Note that if B is an order k additive basis of N, then B ∩ [n] is an order k
additive basis of [n]. A simple calculation gives that |B| ≥ cn1/k .

Question

Given n, does an order k additive basis B of [n] of size Θ(n1/k) exists?

Yes! We take B = {1, . . . ,
√
n, 2
√
n, . . . ,

√
n ·
√
n} and k = 2.

Main problem

This construction doesn’t cover all elements uniformly. For example,√
n + 1 is represented

√
n/2 times while

√
n ·
√
n − 1 or

√
n ·
√
n − 2 are

both counted once.
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Thin Bases

Definition

Given a set B ⊂ N, let rB,k(N) denote the number of ways to write N as
the sum of k terms of B.

Example

If B = {1, 3, 5, 7, . . . }, then rB,2(10) = 3 and rB,2(11) = 1.

Definition

An additive basis B is thin if rB,k(N) = Θ(logN) for all sufficiently large
N.

Theorem (Erdős and Tetali (1990))

Fix k , and let n be large. Then there exists a thin additive basis B of
{1, 2, . . . , n} with order k.
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Theorem (Erdős and Tetali (1990))

Fix k , and let n be large. Then there exists a thin additive basis B of
{1, 2, . . . , n} with order k.

Justin Yu On Subsets Sums and Thin Additive Bases May 2019 5 / 11



Thin Bases

Definition

Given a set B ⊂ N, let rB,k(N) denote the number of ways to write N as
the sum of k terms of B.

Example

If B = {1, 3, 5, 7, . . . }, then rB,2(10) = 3 and rB,2(11) = 1.

Definition

An additive basis B is thin if rB,k(N) = Θ(logN) for all sufficiently large
N.
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Large Order

Motivation

Instead of a fixed order for all n, we allow k to grow slowly with n. For
example, allow n to be represented as the sum of at most log log n
elements of an additive basis B.

Example

The set {20, 21, 22, . . . } is an additive basis of order dlog2 ne.

Conjecture

There exists a thin additive basis B of n of order k := k(n) for all
k = o(log n/ log log n).
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Our approach

Our proof scheme goes more or less as follows:

1 Fix [n] and choose a random subset Bn ⊆ [n] by including each
element of [n] into Bn with fixed probability.

2 Show that Bn is with very high probability a thin, order k additive
basis of the numbers from n/100 to n.

3 Extend it to N using the Borel-Cantelli lemma.

In order to overcome the limitations of step 2 we assign each number x a
distinct probability px . This complicates our calculations so we will omit it
from our talk.
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Concentration

Let Y (t1, t2, . . . , tn) be a polynomial of indicator random variables.

Main Idea

If the partial derivatives of a multivariate function of random variables are
all small, then the quantity is strongly concentrated.

Theorem (Vu (2000))

For any positive constants k , α, β, ε, if a boolean polynomial Y is normal
and homogeneous of degree k , n/Q ≥ E (Y ) ≥ Q log n and
E (∂A(Y )) ≤ n−α for all nonempty sets A of cardinality at most k − 1, then

Pr(|Y − E (Y )| ≥ εE (Y )) ≤ n−β.
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Computational Support

Let Yn,k be the polynomial whose terms correspond to representations of n
of order k. Observe that all partial derivatives take the form Yn′,k ′ (n′ < n
and k ′ < k).

Pick each number with probability q = e−2+c/kn−1+1/kk2(log n)1/k

The number of representations of n with k parts is Θ
(
nk−1

(
e
k

)2k)
Thus, the expected value of rB,k(n) is Θ

(
qknk−1

(
e
k

)2k)
= Θ(log n),

as desired.

Similar computation also shows that all partial derivatives have
expectation O(n−1/4k).

Thus, the Vu Inequality says our construction works with high
probability.
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Project Goals

Characterize the thinness of additive bases with large order.

Prove Erdős Turán conjecture.
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