On Subsets Sums and Thin Additive Bases

Justin Yu Mentor: Dr. Asaf Ferber

Plano East Senior High

May 18-19, 2019 MIT PRIMES Conference

Let's start with an example: Suppose that B is the set of all odd integers. Clearly, every integer can be represented as a sum of at most 2 elements of B.

In this case we say that B is an additive basis of order 2 of \mathbb{N} .

Let's start with an example: Suppose that B is the set of all odd integers. Clearly, every integer can be represented as a sum of at most 2 elements of B.

In this case we say that B is an additive basis of order 2 of \mathbb{N} . Formally:

Definition

A subset $B \subseteq \mathbb{N}$ is said to be an additive basis of order k of \mathbb{N} if every integer can be written as a sum of at most k elements of B (repetitions are allowed).

Let's start with an example: Suppose that B is the set of all odd integers. Clearly, every integer can be represented as a sum of at most 2 elements of B.

In this case we say that B is an additive basis of order 2 of \mathbb{N} . Formally:

Definition

A subset $B \subseteq \mathbb{N}$ is said to be an additive basis of order k of \mathbb{N} if every integer can be written as a sum of at most k elements of B (repetitions are allowed).

Example

The set $\{1, 2, ..., m-1\} \cup \{m, 2m, 3m, ...\}$ is an additive basis of order 2, because every number can be written as pm + r.

A subset $B \subseteq \mathbb{N}$ is said to be an additive basis of order k of \mathbb{N} if every integer can be written as a sum of at most k elements of B (repetitions are allowed).

Example (Lagrange)

The set of square numbers is an additive basis of order 4.

A subset $B \subseteq \mathbb{N}$ is said to be an additive basis of order k of \mathbb{N} if every integer can be written as a sum of at most k elements of B (repetitions are allowed).

Example (Lagrange)

The set of square numbers is an additive basis of order 4.

Example (Goldbach)

If true, then the set of prime numbers is an additive basis of order 3.

Note that if B is an order k additive basis of \mathbb{N} , then $B \cap [n]$ is an order k additive basis of [n]. A simple calculation gives that $|B| \ge cn^{1/k}$.

Question

Given *n*, does an order *k* additive basis *B* of [*n*] of size $\Theta(n^{1/k})$ exists?

Note that if B is an order k additive basis of \mathbb{N} , then $B \cap [n]$ is an order k additive basis of [n]. A simple calculation gives that $|B| \ge cn^{1/k}$.

Question

Given *n*, does an order *k* additive basis *B* of [*n*] of size $\Theta(n^{1/k})$ exists?

Yes! We take $B = \{1, \dots, \sqrt{n}, 2\sqrt{n}, \dots, \sqrt{n} \cdot \sqrt{n}\}$ and k = 2.

Note that if B is an order k additive basis of \mathbb{N} , then $B \cap [n]$ is an order k additive basis of [n]. A simple calculation gives that $|B| \ge cn^{1/k}$.

Question

Given *n*, does an order *k* additive basis *B* of [*n*] of size $\Theta(n^{1/k})$ exists?

Yes! We take
$$B = \{1, \dots, \sqrt{n}, 2\sqrt{n}, \dots, \sqrt{n} \cdot \sqrt{n}\}$$
 and $k = 2$.

Main problem

This construction doesn't cover all elements uniformly. For example, $\sqrt{n} + 1$ is represented $\sqrt{n}/2$ times while $\sqrt{n} \cdot \sqrt{n} - 1$ or $\sqrt{n} \cdot \sqrt{n} - 2$ are both counted once.

Given a set $B \subset \mathbb{N}$, let $r_{B,k}(N)$ denote the number of ways to write N as the sum of k terms of B.

Given a set $B \subset \mathbb{N}$, let $r_{B,k}(N)$ denote the number of ways to write N as the sum of k terms of B.

Example

If
$$B = \{1, 3, 5, 7, \dots\}$$
, then $r_{B,2}(10) = 3$ and $r_{B,2}(11) = 1$.

Given a set $B \subset \mathbb{N}$, let $r_{B,k}(N)$ denote the number of ways to write N as the sum of k terms of B.

Example

If
$$B = \{1, 3, 5, 7, \dots\}$$
, then $r_{B,2}(10) = 3$ and $r_{B,2}(11) = 1$.

Definition

An additive basis *B* is *thin* if $r_{B,k}(N) = \Theta(\log N)$ for all sufficiently large *N*.

Given a set $B \subset \mathbb{N}$, let $r_{B,k}(N)$ denote the number of ways to write N as the sum of k terms of B.

Example

If
$$B = \{1, 3, 5, 7, \dots\}$$
, then $r_{B,2}(10) = 3$ and $r_{B,2}(11) = 1$.

Definition

An additive basis *B* is *thin* if $r_{B,k}(N) = \Theta(\log N)$ for all sufficiently large *N*.

Theorem (Erdős and Tetali (1990))

Fix k, and let n be large. Then there exists a thin additive basis B of $\{1, 2, ..., n\}$ with order k.

Justin Yu

On Subsets Sums and Thin Additive Bases

May 2019 5 / 11

Motivation

Instead of a fixed order for all n, we allow k to grow slowly with n. For example, allow n to be represented as the sum of at most log log n elements of an additive basis B.

Motivation

Instead of a fixed order for all n, we allow k to grow slowly with n. For example, allow n to be represented as the sum of at most log log n elements of an additive basis B.

Example

The set $\{2^0, 2^1, 2^2, \dots\}$ is an additive basis of order $\lceil \log_2 n \rceil$.

Motivation

Instead of a fixed order for all n, we allow k to grow slowly with n. For example, allow n to be represented as the sum of at most log log n elements of an additive basis B.

Example

The set $\{2^0, 2^1, 2^2, \dots\}$ is an additive basis of order $\lceil \log_2 n \rceil$.

Conjecture

There exists a thin additive basis *B* of *n* of order k := k(n) for all $k = o(\log n / \log \log n)$.

• Fix [n] and choose a random subset $B_n \subseteq [n]$ by including each element of [n] into B_n with fixed probability.

- Fix [n] and choose a random subset $B_n \subseteq [n]$ by including each element of [n] into B_n with fixed probability.
- Show that B_n is with very high probability a thin, order k additive basis of the numbers from n/100 to n.

- Fix [n] and choose a random subset $B_n \subseteq [n]$ by including each element of [n] into B_n with fixed probability.
- Show that B_n is with very high probability a thin, order k additive basis of the numbers from n/100 to n.
- \bullet Extend it to \mathbb{N} using the Borel-Cantelli lemma.

- Fix [n] and choose a random subset $B_n \subseteq [n]$ by including each element of [n] into B_n with fixed probability.
- Show that B_n is with very high probability a thin, order k additive basis of the numbers from n/100 to n.
- $\textcircled{O} \ \ \mathsf{Extend} \ \ \mathsf{it to} \ \ \mathbb{N} \ \mathsf{using the Borel-Cantelli lemma}.$

In order to overcome the limitations of step 2 we assign each number x a distinct probability p_x . This complicates our calculations so we will omit it from our talk.

Let $Y(t_1, t_2, ..., t_n)$ be a polynomial of indicator random variables.

Main Idea

If the partial derivatives of a multivariate function of random variables are all small, then the quantity is strongly concentrated.

Theorem (Vu (2000))

For any positive constants $k, \alpha, \beta, \epsilon$, if a boolean polynomial Y is normal and homogeneous of degree k, $n/Q \ge E(Y) \ge Q \log n$ and $E(\partial_A(Y)) \le n^{-\alpha}$ for all nonempty sets A of cardinality at most k-1, then

$$Pr(|Y - E(Y)| \ge \epsilon E(Y)) \le n^{-\beta}.$$

• Pick each number with probability $q = e^{-2+c/k} n^{-1+1/k} k^2 (\log n)^{1/k}$

- Pick each number with probability $q = e^{-2+c/k} n^{-1+1/k} k^2 (\log n)^{1/k}$
- The number of representations of *n* with *k* parts is $\Theta\left(n^{k-1}\left(\frac{e}{k}\right)^{2k}\right)$

- Pick each number with probability $q = e^{-2+c/k} n^{-1+1/k} k^2 (\log n)^{1/k}$
- The number of representations of *n* with *k* parts is $\Theta\left(n^{k-1}\left(\frac{e}{k}\right)^{2k}\right)$
- Thus, the expected value of $r_{B,k}(n)$ is $\Theta\left(q^k n^{k-1} \left(\frac{e}{k}\right)^{2k}\right) = \Theta(\log n)$, as desired.

- Pick each number with probability $q = e^{-2+c/k} n^{-1+1/k} k^2 (\log n)^{1/k}$
- The number of representations of *n* with *k* parts is $\Theta\left(n^{k-1}\left(\frac{e}{k}\right)^{2k}\right)$
- Thus, the expected value of $r_{B,k}(n)$ is $\Theta\left(q^k n^{k-1} \left(\frac{e}{k}\right)^{2k}\right) = \Theta(\log n)$, as desired.
- Similar computation also shows that all partial derivatives have expectation $O(n^{-1/4k})$.

- Pick each number with probability $q = e^{-2+c/k} n^{-1+1/k} k^2 (\log n)^{1/k}$
- The number of representations of *n* with *k* parts is $\Theta\left(n^{k-1}\left(\frac{e}{k}\right)^{2k}\right)$
- Thus, the expected value of $r_{B,k}(n)$ is $\Theta\left(q^k n^{k-1} \left(\frac{e}{k}\right)^{2k}\right) = \Theta(\log n)$, as desired.
- Similar computation also shows that all partial derivatives have expectation $O(n^{-1/4k})$.
- Thus, the Vu Inequality says our construction works with high probability.

• Characterize the thinness of additive bases with large order.

- Characterize the thinness of additive bases with large order.
- Prove Erdős Turán conjecture.

I would like to thank:

- MIT PRIMES-USA
- Dr. Asaf Ferber
- Dr. Tanya Khovanova
- My parents