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Definitions and Terminology

Permutation in Sn: rearrangement of 1, 2, ..., n; for example, a
permutation in S4 can map 1 7→ 3, 2 7→ 1, 3 7→ 4, 4 7→ 2

Permutation written as a word : denote w ∈ Sn as w1w2...wn, where
w maps i → wi (above permutation is 3142)

A permutation w has a descent at index i if wi > wi+1.

Descent set of w : set of all indices i where w has a descent:
Des(3142) = {1, 3}.
d(I ; n) = number of permutations in Sn with descent set I

Example.

Permutations in S5 with descents (bolded) at indices 1, 3, and 4:
21543, 41532, 51432, 31542, 53421, 43521, 52431, 42531, 32541
⇒ d({1, 3, 4}; 5) = 9.
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History and previous results

MacMahon - in 1915 proved with inclusion/exclusion that d(I ; n) is
a polynomial in n

Billey et al. - 2013 paper on peak polynomials

peak of a permutation w at index i : wi−1 < wi > wi+1

p(I ; n) is of the form p(n)2n−#I−1

recursion for p(I ; n)
conjecture about coefficients for p(I ; n) in certain polynomial bases

Diaz-Lopez et al. - 2017 paper on descent polynomials

recursion for d(I ; n)
formula for coefficients of d(I ; n) in certain polynomial bases
bounds on roots of d(I ; n) for certain sets I
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The double descent problem

Generalization? → Double descents (suggested by Dr. Khovanova)

Definition.

A permutation w ∈ Sn has a double descent at index i if
wi−1 > wi > wi+1. The double descent set of w is the set of all i
corresponding to double descents.

We write dd(I ; n) to denote the number of permutations in Sn with
double descent set I .

What can we say about the function dd(I ; n)?

Recursion?
Is it a polynomial? If not, can we study asymptotics?
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Singleton double descent sets

Define f (n) using dd(I ; n) and examine the sequence {f (i)}∞i=1

f (n) = dd(∅; n): already exists on OEIS

f (n) =
∑
#I=1

dd(I ; n): already exists on OEIS

f (n) =
∑
#I=2

dd(I ; n): already exists on OEIS

f (n) =
∑
#I=3

dd(I ; n): already exists on OEIS... (etc.)

Fix a specific set I , such as I = {k} for k = 2, 3, ..., and set
f (n) = dd(I ; n): not found on OEIS!

New goal: study permutations with singleton double descent sets
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Singleton double descent sets (cont’d)

Theorem.

Let I = {m} be a singleton set. Then we have

dd(I ; n + 1) =
n∑

k=m+1

(
n

k

)
· dd(I ; k) · bn−k

+

(
n

m − 2

)
· dd(∅;m − 2) ·

(
dd(∅; n −m + 2)− bn−m+2

)
+

m−4∑
k=0

(
n

k

)
· dd(∅; k) · c({m − 1− k}; n − k)

where c(I ; n) denotes the number of permutations in Sn with an initial
ascent and double descent set I , and bn denotes c(∅; n).
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Patterns in data

Proved the symmetry in each row

Conjecture: approaches uniform distribution as n grows large

Conjecture.

{dd({i}; n)}ni=1 is asymptotically equidistributed. Namely, for fixed

0 < α < β < 1,
∑

αn<i<βn

dd({i}; n) ∼ (β − α)
n−1∑
i=2

dd({i}; n).
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Patterns in data (cont’d)

Conjecture: “down up down up” pattern

Example (n = 10): 171729 > 152289 < 182610 > 176049

Conjecture.

Given a fixed n ∈ N, the numbers dd({i}; n) for 2 ≤ i <
⌈n

2

⌉
follow a

“down up down up” pattern. Namely, dd({i}; n) > dd({i + 1}; n) if i is
even, and dd({i}; n) < dd({i + 1}; n) if i is odd.
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Rim hooks: an approach for asymptotics of dd(I ; n)

Rim hooks:

Definition.

A rim hook tableau is a filling of a rim hook with the numbers 1 through
n, where n is the length of the rim hook, satisfying the following rule:
numbers must be arranged in the squares decreasing from bottom to top
and increasing from left to right.

Example.

Invalid tableau: 3 1 2

4 5
Valid tableau: 1 2 4

3 5
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Connecting rim hooks with permutations

Permutation can be written as a rim hook tableau:

632415 ∈ S6 corresponds to 1 5

2 4

3

6

, a tableau of

Descent information of permutation is encoded by the rim hook

Example.

Double descent set {2}:
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Connecting rim hooks to dd(I ; n)

Definition.

RI (n): set of rim hooks of length n which encode double descent set I .

Example.

Elements in R{2}(6):

This provides us with another way to express dd(I ; n):

dd(I ; n) =
∑

r∈RI (n)

f r

where f r denotes the number of valid tableaux for a rim hook r.
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Using rim hooks to estimate asymptotic growth

Theorem.

#R{m}(n) = Fn−mFm−1, where Fn is the nth Fibonacci number.

This gives us a Fibonacci “mutliplication table”
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Current goals

Prove asymptotic uniformity for singleton double descent sets

Prove the down-up conjecture for singleton double descent sets

Study double descent sets of other sizes
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