Enumerating permutations with singleton double descent sets

Christopher Zhu
Mentor: Pakawut Jiradilok
The Roxbury Latin School
May 18-19, 2019
MIT PRIMES Conference

Definitions and Terminology

■ Permutation in \mathfrak{S}_{n} : rearrangement of $1,2, \ldots, n$; for example, a permutation in \mathfrak{S}_{4} can map $1 \mapsto 3,2 \mapsto 1,3 \mapsto 4,4 \mapsto 2$

Definitions and Terminology

■ Permutation in \mathfrak{S}_{n} : rearrangement of $1,2, \ldots, n$; for example, a permutation in \mathfrak{S}_{4} can map $1 \mapsto 3,2 \mapsto 1,3 \mapsto 4,4 \mapsto 2$

- Permutation written as a word: denote $w \in \mathfrak{S}_{n}$ as $w_{1} w_{2} \ldots w_{n}$, where w maps $i \rightarrow w_{i}$ (above permutation is 3142)

Definitions and Terminology

■ Permutation in \mathfrak{S}_{n} : rearrangement of $1,2, \ldots, n$; for example, a permutation in \mathfrak{S}_{4} can map $1 \mapsto 3,2 \mapsto 1,3 \mapsto 4,4 \mapsto 2$
■ Permutation written as a word: denote $w \in \mathfrak{S}_{n}$ as $w_{1} w_{2} \ldots w_{n}$, where w maps $i \rightarrow w_{i}$ (above permutation is 3142)

- A permutation w has a descent at index i if $w_{i}>w_{i+1}$.

Definitions and Terminology

■ Permutation in \mathfrak{S}_{n} : rearrangement of $1,2, \ldots, n$; for example, a permutation in \mathfrak{S}_{4} can map $1 \mapsto 3,2 \mapsto 1,3 \mapsto 4,4 \mapsto 2$

- Permutation written as a word: denote $w \in \mathfrak{S}_{n}$ as $w_{1} w_{2} \ldots w_{n}$, where w maps $i \rightarrow w_{i}$ (above permutation is 3142)
- A permutation w has a descent at index i if $w_{i}>w_{i+1}$.
- Descent set of w : set of all indices i where w has a descent: $\operatorname{Des}(3142)=\{1,3\}$.

Definitions and Terminology

■ Permutation in \mathfrak{S}_{n} : rearrangement of $1,2, \ldots, n$; for example, a permutation in \mathfrak{S}_{4} can map $1 \mapsto 3,2 \mapsto 1,3 \mapsto 4,4 \mapsto 2$

- Permutation written as a word: denote $w \in \mathfrak{S}_{n}$ as $w_{1} w_{2} \ldots w_{n}$, where w maps $i \rightarrow w_{i}$ (above permutation is 3142)
- A permutation w has a descent at index i if $w_{i}>w_{i+1}$.
- Descent set of w : set of all indices i where w has a descent: $\operatorname{Des}(3142)=\{1,3\}$.
- $d(I ; n)=$ number of permutations in \mathfrak{S}_{n} with descent set I

Definitions and Terminology

■ Permutation in \mathfrak{S}_{n} : rearrangement of $1,2, \ldots, n$; for example, a permutation in \mathfrak{S}_{4} can map $1 \mapsto 3,2 \mapsto 1,3 \mapsto 4,4 \mapsto 2$

- Permutation written as a word: denote $w \in \mathfrak{S}_{n}$ as $w_{1} w_{2} \ldots w_{n}$, where w maps $i \rightarrow w_{i}$ (above permutation is 3142)
- A permutation w has a descent at index i if $w_{i}>w_{i+1}$.
- Descent set of w : set of all indices i where w has a descent: $\operatorname{Des}(3142)=\{1,3\}$.
- $d(I ; n)=$ number of permutations in \mathfrak{S}_{n} with descent set I

Example.

Permutations in \mathfrak{S}_{5} with descents (bolded) at indices 1,3 , and 4: 21543, 41532, 51432, 31542, 53421, 43521, 52431, 42531, 32541 $\Rightarrow d(\{1,3,4\} ; 5)=9$.

History and previous results

- MacMahon - in 1915 proved with inclusion/exclusion that $d(I ; n)$ is a polynomial in n

History and previous results

- MacMahon - in 1915 proved with inclusion/exclusion that $d(I ; n)$ is a polynomial in n
■ Billey et al. - 2013 paper on peak polynomials

History and previous results

- MacMahon - in 1915 proved with inclusion/exclusion that $d(I ; n)$ is a polynomial in n
■ Billey et al. - 2013 paper on peak polynomials
- peak of a permutation w at index $i: w_{i-1}<w_{i}>w_{i+1}$
- $p(I ; n)$ is of the form $p(n) 2^{n-\# I-1}$

History and previous results

- MacMahon - in 1915 proved with inclusion/exclusion that $d(I ; n)$ is a polynomial in n
■ Billey et al. - 2013 paper on peak polynomials
- peak of a permutation w at index $i: w_{i-1}<w_{i}>w_{i+1}$
- $p(I ; n)$ is of the form $p(n) 2^{n-\# I-1}$
- recursion for $p(I ; n)$

History and previous results

- MacMahon - in 1915 proved with inclusion/exclusion that $d(I ; n)$ is a polynomial in n
■ Billey et al. - 2013 paper on peak polynomials
- peak of a permutation w at index $i: w_{i-1}<w_{i}>w_{i+1}$
- $p(I ; n)$ is of the form $p(n) 2^{n-\# I-1}$
- recursion for $p(I ; n)$
- conjecture about coefficients for $p(I ; n)$ in certain polynomial bases

History and previous results

- MacMahon - in 1915 proved with inclusion/exclusion that $d(I ; n)$ is a polynomial in n
■ Billey et al. - 2013 paper on peak polynomials
- peak of a permutation w at index $i: w_{i-1}<w_{i}>w_{i+1}$
- $p(I ; n)$ is of the form $p(n) 2^{n-\# I-1}$
- recursion for $p(I ; n)$
- conjecture about coefficients for $p(I ; n)$ in certain polynomial bases

■ Diaz-Lopez et al. - 2017 paper on descent polynomials

History and previous results

- MacMahon - in 1915 proved with inclusion/exclusion that $d(I ; n)$ is a polynomial in n
■ Billey et al. - 2013 paper on peak polynomials
- peak of a permutation w at index $i: w_{i-1}<w_{i}>w_{i+1}$
- $p(I ; n)$ is of the form $p(n) 2^{n-\# I-1}$
- recursion for $p(I ; n)$
- conjecture about coefficients for $p(I ; n)$ in certain polynomial bases

■ Diaz-Lopez et al. - 2017 paper on descent polynomials

- recursion for $d(I ; n)$

History and previous results

- MacMahon - in 1915 proved with inclusion/exclusion that $d(I ; n)$ is a polynomial in n
■ Billey et al. - 2013 paper on peak polynomials
- peak of a permutation w at index $i: w_{i-1}<w_{i}>w_{i+1}$
- $p(I ; n)$ is of the form $p(n) 2^{n-\# I-1}$
- recursion for $p(I ; n)$
- conjecture about coefficients for $p(I ; n)$ in certain polynomial bases

■ Diaz-Lopez et al. - 2017 paper on descent polynomials

- recursion for $d(I ; n)$
- formula for coefficients of $d(I ; n)$ in certain polynomial bases

History and previous results

- MacMahon - in 1915 proved with inclusion/exclusion that $d(I ; n)$ is a polynomial in n
■ Billey et al. - 2013 paper on peak polynomials
- peak of a permutation w at index $i: w_{i-1}<w_{i}>w_{i+1}$
- $p(I ; n)$ is of the form $p(n) 2^{n-\# I-1}$
- recursion for $p(I ; n)$
- conjecture about coefficients for $p(I ; n)$ in certain polynomial bases

■ Diaz-Lopez et al. - 2017 paper on descent polynomials

- recursion for $d(I ; n)$
- formula for coefficients of $d(I ; n)$ in certain polynomial bases
- bounds on roots of $d(I ; n)$ for certain sets I

The double descent problem

■ Generalization? \rightarrow Double descents (suggested by Dr. Khovanova)

The double descent problem

■ Generalization? \rightarrow Double descents (suggested by Dr. Khovanova)

Definition.

A permutation $w \in \mathfrak{S}_{n}$ has a double descent at index i if $w_{i-1}>w_{i}>w_{i+1}$. The double descent set of w is the set of all i corresponding to double descents.

The double descent problem

■ Generalization? \rightarrow Double descents (suggested by Dr. Khovanova)

Definition.

A permutation $w \in \mathfrak{S}_{n}$ has a double descent at index i if $w_{i-1}>w_{i}>w_{i+1}$. The double descent set of w is the set of all i corresponding to double descents.

- We write $d d(I ; n)$ to denote the number of permutations in \mathfrak{S}_{n} with double descent set l.

The double descent problem

■ Generalization? \rightarrow Double descents (suggested by Dr. Khovanova)

Definition.

A permutation $w \in \mathfrak{S}_{n}$ has a double descent at index i if $w_{i-1}>w_{i}>w_{i+1}$. The double descent set of w is the set of all i corresponding to double descents.

- We write $d d(I ; n)$ to denote the number of permutations in \mathfrak{S}_{n} with double descent set l.
■ What can we say about the function $d d(I ; n)$?

The double descent problem

- Generalization? \rightarrow Double descents (suggested by Dr. Khovanova)

Definition.

A permutation $w \in \mathfrak{S}_{n}$ has a double descent at index i if $w_{i-1}>w_{i}>w_{i+1}$. The double descent set of w is the set of all i corresponding to double descents.

■ We write $d d(I ; n)$ to denote the number of permutations in \mathfrak{S}_{n} with double descent set l.

- What can we say about the function $d d(I ; n)$?
- Recursion?

The double descent problem

- Generalization? \rightarrow Double descents (suggested by Dr. Khovanova)

Definition.

A permutation $w \in \mathfrak{S}_{n}$ has a double descent at index i if $w_{i-1}>w_{i}>w_{i+1}$. The double descent set of w is the set of all i corresponding to double descents.

- We write $d d(I ; n)$ to denote the number of permutations in \mathfrak{S}_{n} with double descent set l.
■ What can we say about the function $d d(I ; n)$?
- Recursion?
- Is it a polynomial? If not, can we study asymptotics?

Singleton double descent sets

■ Define $f(n)$ using $d d(I ; n)$ and examine the sequence $\{f(i)\}_{i=1}^{\infty}$

Singleton double descent sets

■ Define $f(n)$ using $d d(I ; n)$ and examine the sequence $\{f(i)\}_{i=1}^{\infty}$
■ $f(n)=d d(\emptyset ; n)$: already exists on OEIS

Singleton double descent sets

■ Define $f(n)$ using $d d(I ; n)$ and examine the sequence $\{f(i)\}_{i=1}^{\infty}$

- $f(n)=d d(\emptyset ; n)$: already exists on OEIS
- $f(n)=\sum_{\# I=1} d d(I ; n)$: already exists on OEIS

Singleton double descent sets

■ Define $f(n)$ using $d d(I ; n)$ and examine the sequence $\{f(i)\}_{i=1}^{\infty}$

- $f(n)=d d(\emptyset ; n)$: already exists on OEIS
- $f(n)=\sum_{\# I=1} d d(I ; n):$ already exists on OEIS
- $f(n)=\sum_{\# I=2} d d(I ; n):$ already exists on OEIS

Singleton double descent sets

■ Define $f(n)$ using $d d(I ; n)$ and examine the sequence $\{f(i)\}_{i=1}^{\infty}$

- $f(n)=d d(\emptyset ; n)$: already exists on OEIS
- $f(n)=\sum_{\# I=1} d d(I ; n):$ already exists on OEIS
- $f(n)=\sum_{\# I=2} d d(I ; n):$ already exists on OEIS

■ $f(n)=\sum_{\# I=3} d d(I ; n):$ already exists on OEIS... (etc.)

Singleton double descent sets

■ Define $f(n)$ using $d d(I ; n)$ and examine the sequence $\{f(i)\}_{i=1}^{\infty}$

- $f(n)=d d(\emptyset ; n)$: already exists on OEIS
- $f(n)=\sum_{\# I=1} d d(I ; n):$ already exists on OEIS
- $f(n)=\sum_{\# I=2} d d(I ; n):$ already exists on OEIS
- $f(n)=\sum_{\# I=3} d d(I ; n):$ already exists on OEIS... (etc.)

■ Fix a specific set I, such as $I=\{k\}$ for $k=2,3, \ldots$, and set $f(n)=d d(I ; n)$: not found on OEIS!

Singleton double descent sets

■ Define $f(n)$ using $d d(I ; n)$ and examine the sequence $\{f(i)\}_{i=1}^{\infty}$

- $f(n)=d d(\emptyset ; n)$: already exists on OEIS
- $f(n)=\sum_{\# I=1} d d(I ; n):$ already exists on OEIS
- $f(n)=\sum_{\# I=2} d d(I ; n):$ already exists on OEIS
- $f(n)=\sum_{\# I=3} d d(I ; n):$ already exists on OEIS... (etc.)

■ Fix a specific set I, such as $I=\{k\}$ for $k=2,3, \ldots$, and set $f(n)=d d(I ; n)$: not found on OEIS!
■ New goal: study permutations with singleton double descent sets

Singleton double descent sets (cont'd)

Theorem.

Let $I=\{m\}$ be a singleton set. Then we have

$$
\begin{aligned}
d d(I ; n+1)= & \sum_{k=m+1}^{n}\binom{n}{k} \cdot d d(I ; k) \cdot b_{n-k} \\
& +\binom{n}{m-2} \cdot d d(\emptyset ; m-2) \cdot\left(d d(\emptyset ; n-m+2)-b_{n-m+2}\right) \\
& +\sum_{k=0}^{m-4}\binom{n}{k} \cdot d d(\emptyset ; k) \cdot c(\{m-1-k\} ; n-k)
\end{aligned}
$$

where $c(I ; n)$ denotes the number of permutations in \mathfrak{S}_{n} with an initial ascent and double descent set I, and b_{n} denotes $c(\emptyset ; n)$.

Patterns in data

Size of \mathfrak{S}_{n}	\{2\}	\{3\}	\{4\}	\{5\}	\{6\}	\{7\}	\{8\}	\{9\}	\{10\}	\{11\}	\{12\}	\{13\}
3	1	0	0	0	0	0	0	0	0	0	0	0
4	3	3	0	0	0	0	0	0	0	0	0	0
5	15	11	15	0	0	0	0	0	0	0	0	0
6	71	66	66	71	0	0	0	0	0	0	0	0
7	426	363	462	363	426	0	0	0	0	0	0	0
8	2778	2491	2904	2904	2491	2778	0	0	0	0	0	0
9	20845	18261	22419	20521	22419	18261	20845	0	0	0	0	0
10	171729	152289	182610	176049	176049	182610	152289	171729	0	0	0	0
11	1565289	1379852	1675179	1577169	1661309	1577169	1675179	1379852	1565289	0	0	0
12	15518735	13721577	16558224	15784253	16236573	16236573	15784253	16558224	13721577	15518735	0	0
13	166922196	147370677	178380501	169015443	176034741	171905604	176034741	169015443	178380501	147370677	166922196	0

Patterns in data

Size of \mathfrak{S}_{n}	\{2\}	\{3\}	\{4\}	\{5\}	\{6\}	\{7\}	\{8\}	\{9\}	\{10\}	\{11\}	\{12\}	\{13\}
3	1	0	0	0	0	0	0	0	0	0	0	0
4	3	3	0	0	0	0	0	0	0	0	0	0
5	15	11	15	0	0	0	0	0	0	0	0	0
6	71	66	66	71	0	0	0	0	0	0	0	0
7	426	363	462	363	426	0	0	0	0	0	0	0
8	2778	2491	2904	2904	2491	2778	0	0	0	0	0	0
9	20845	18261	22419	20521	22419	18261	20845	0	0	0	0	0
10	171729	152289	182610	176049	176049	182610	152289	171729	0	0	0	0
11	1565289	1379852	1675179	1577169	1661309	1577169	1675179	1379852	1565289	0	0	0
12	15518735	13721577	16558224	15784253	16236573	16236573	15784253	16558224	13721577	15518735	0	0
13	166922196	147370677	178380501	169015443	176034741	171905604	176034741	169015443	178380501	147370677	166922196	0

- Proved the symmetry in each row

Patterns in data

Size of \mathfrak{S}_{n}	\{2\}	\{3\}	\{4\}	\{5\}	\{6\}	\{7\}	\{8\}	\{9\}	\{10\}	\{11\}	\{12 \}	\{13\}
3	1	0	0	0	0	0	0	0	0	0	0	0
4	3	3	0	0	0	0	0	0	0	0	0	0
5	15	11	15	0	0	0	0	0	0	0	0	0
6	71	66	66	71	0	0	0	0	0	0	0	0
7	426	363	462	363	426	0	0	0	0	0	0	0
8	2778	2491	2904	2904	2491	2778	0	0	0	0	0	0
9	20845	18261	22419	20521	22419	18261	20845	0	0	0	0	0
10	171729	152289	182610	176049	176049	182610	152289	171729	0	0	0	0
11	1565289	1379852	1675179	1577169	1661309	1577169	1675179	1379852	1565289	0	0	0
12	15518735	13721577	16558224	15784253	16236573	16236573	15784253	16558224	13721577	15518735	0	0
13	166922196	147370677	178380501	169015443	176034741	171905604	176034741	169015443	178380501	147370677	166922196	0

- Proved the symmetry in each row

■ Conjecture: approaches uniform distribution as n grows large

Patterns in data

Size of \mathfrak{S}_{n}	\{2\}	\{3\}	\{4\}	\{5\}	\{6\}	\{7\}	\{8\}	\{9\}	\{10\}	\{11\}	\{12\}	\{13)
3	1	0	0	0	0	0	0	0	0	0	0	0
4	3	3	0	0	0	0	0	0	0	0	0	0
5	15	11	15	0	0	0	0	0	0	0	0	0
6	71	66	66	71	0	0	0	0	0	0	0	0
7	426	363	462	363	426	0	0	0	0	0	0	0
8	2778	2491	2904	2904	2491	2778	0	0	0	0	0	0
9	20845	18261	22419	20521	22419	18261	20845	0	0	0	0	0
10	171729	152289	182610	176049	176049	182610	152289	171729	0	0	0	0
11	1565289	1379852	1675179	1577169	1661309	1577169	1675179	1379852	1565289	0	0	0
12	15518735	13721577	16558224	15784253	16236573	16236573	15784253	16558224	13721577	15518735	0	0
13	166922196	147370677	178380501	169015443	176034741	171905604	176034741	169015443	178380501	147370677	166922196	0

- Proved the symmetry in each row
- Conjecture: approaches uniform distribution as n grows large

Conjecture.

$\{d d(\{i\} ; n)\}_{i=1}^{n}$ is asymptotically equidistributed. Namely, for fixed
$0<\alpha<\beta<1, \sum_{\alpha n<i<\beta n} d d(\{i\} ; n) \sim(\beta-\alpha) \sum_{i=2}^{n-1} d d(\{i\} ; n)$.

Patterns in data (cont'd)

Size of \mathfrak{S}_{n}	\{2\}	\{3\}	\{4\}	\{5\}	\{6\}	\{7\}	\{8\}	\{9\}	\{10\}	\{11\}	\{12\}	\{13\}
3	1	0	0	0	0	0	0	0	0	0	0	0
4	3	3	0	0	0	0	0	0	0	0	0	0
5	15	11	15	0	0	0	0	0	0	0	0	0
6	71	66	66	71	0	0	0	0	0	0	0	0
7	426	363	462	363	426	0	0	0	0	0	0	0
8	2778	2491	2904	2904	2491	2778	0	0	0	0	0	0
9	20845	18261	22419	20521	22419	18261	20845	0	0	0	0	0
10	171729	152289	182610	176049	176049	182610	152289	171729	0	0	0	0
11	1565289	1379852	1675179	1577169	1661309	1577169	1675179	1379852	1565289	0	0	0
12	15518735	13721577	16558224	15784253	16236573	16236573	15784253	16558224	13721577	15518735	0	0
13	166922196	147370677	178380501	169015443	176034741	171905604	176034741	169015443	178380501	147370677	166922196	0

Patterns in data (cont'd)

Size of \mathfrak{S}_{n}	\{2\}	\{3\}	\{4\}	\{5\}	\{6\}	\{7\}	\{8\}	\{9\}	\{10\}	\{11\}	\{12\}	\{13\}
3	1	0	0	0	0	0	0	0	0	0	0	0
4	3	3	0	0	0	0	0	0	0	0	0	0
5	15	11	15	0	0	0	0	0	0	0	0	0
6	71	66	66	71	0	0	0	0	0	0	0	0
7	426	363	462	363	426	0	0	0	0	0	0	0
8	2778	2491	2904	2904	2491	2778	0	0	0	0	0	0
9	20845	18261	22419	20521	22419	18261	20845	0	0	0	0	0
10	171729	152289	182610	176049	176049	182610	152289	171729	0	0	0	0
11	1565289	1379852	1675179	1577169	1661309	1577169	1675179	1379852	1565289	0	0	0
12	15518735	13721577	16558224	15784253	16236573	16236573	15784253	16558224	13721577	15518735	0	0
13	166922196	147370677	178380501	169015443	176034741	171905604	176034741	169015443	178380501	147370677	166922196	0

■ Conjecture: "down up down up" pattern

Patterns in data (cont'd)

Size of \mathfrak{S}_{n}	\{2\}	\{3\}	\{4\}	\{5\}	\{6\}	\{7\}	\{8\}	\{9\}	\{10\}	\{11\}	\{12\}	\{13\}
3	1	0	0	0	0	0	0	0	0	0	0	0
4	3	3	0	0	0	0	0	0	0	0	0	0
5	15	11	15	0	0	0	0	0	0	0	0	0
6	71	66	66	71	0	0	0	0	0	0	0	0
7	426	363	462	363	426	0	0	0	0	0	0	0
8	2778	2491	2904	2904	2491	2778	0	0	0	0	0	0
9	20845	18261	22419	20521	22419	18261	20845	0	0	0	0	0
10	171729	152289	182610	176049	176049	182610	152289	171729	0	0	0	0
11	1565289	1379852	1675179	1577169	1661309	1577169	1675179	1379852	1565289	0	0	0
12	15518735	13721577	16558224	15784253	16236573	16236573	15784253	16558224	13721577	15518735	0	0
13	166922196	147370677	178380501	169015443	176034741	171905604	176034741	169015443	178380501	147370677	166922196	0

- Conjecture: "down up down up" pattern

■ Example $(n=10)$: $171729>152289<182610>176049$

Patterns in data (cont'd)

Size of \mathfrak{S}_{n}	\{2\}	\{3\}	\{4\}	\{5\}	\{6\}	\{7\}	\{8\}	\{9\}	\{10\}	\{11\}	\{12 \}	\{13\}
3	1	0	0	0	0	0	0	0	0	0	0	0
4	3	3	0	0	0	0	0	0	0	0	0	0
5	15	11	15	0	0	0	0	0	0	0	0	0
6	71	66	66	71	0	0	0	0	0	0	0	0
7	426	363	462	363	426	0	0	0	0	0	0	0
8	2778	2491	2904	2904	2491	2778	0	0	0	0	0	0
9	20845	18261	22419	20521	22419	18261	20845	0	0	0	0	0
10	171729	152289	182610	176049	176049	182610	152289	171729	0	0	0	0
11	1565289	1379852	1675179	1577169	1661309	1577169	1675179	1379852	1565289	0	0	0
12	15518735	13721577	16558224	15784253	16236573	16236573	15784253	16558224	13721577	15518735	0	0
13	166922196	147370677	178380501	169015443	176034741	171905604	176034741	169015443	178380501	147370677	166922196	0

- Conjecture: "down up down up" pattern

■ Example $(n=10)$: $171729>152289<182610>176049$

Conjecture.

Given a fixed $n \in \mathbb{N}$, the numbers $d d(\{i\} ; n)$ for $2 \leq i<\left\lceil\frac{n}{2}\right\rceil$ follow a "down up down up" pattern. Namely, $d d(\{i\} ; n)>d d(\{i+1\} ; n)$ if i is even, and $d d(\{i\} ; n)<d d(\{i+1\} ; n)$ if i is odd.

Rim hooks: an approach for asymptotics of $d d(I ; n)$

■ Rim hooks:
\square

Rim hooks: an approach for asymptotics of $d d(1 ; n)$

- Rim hooks:
\square

Definition.

A rim hook tableau is a filling of a rim hook with the numbers 1 through n, where n is the length of the rim hook, satisfying the following rule: numbers must be arranged in the squares decreasing from bottom to top and increasing from left to right.

Rim hooks: an approach for asymptotics of $d d(I ; n)$

- Rim hooks:
\square

Definition.

A rim hook tableau is a filling of a rim hook with the numbers 1 through n, where n is the length of the rim hook, satisfying the following rule: numbers must be arranged in the squares decreasing from bottom to top and increasing from left to right.

Example.

Connecting rim hooks with permutations

- Permutation can be written as a rim hook tableau:

Connecting rim hooks with permutations

- Permutation can be written as a rim hook tableau:

- Descent information of permutation is encoded by the rim hook

Connecting rim hooks with permutations

- Permutation can be written as a rim hook tableau:

- Descent information of permutation is encoded by the rim hook

Example.

Double descent set $\{2\}$:

Connecting rim hooks to $d d(I ; n)$

Definition.

$\mathcal{R}_{l}(n)$: set of rim hooks of length n which encode double descent set I.

Connecting rim hooks to $d d(I ; n)$

Definition.

$\mathcal{R}_{l}(n)$: set of rim hooks of length n which encode double descent set I.

Example.

Elements in $\mathcal{R}_{\{2\}}(6)$:

Connecting rim hooks to $d d(1 ; n)$

Definition.

$\mathcal{R}_{l}(n)$: set of rim hooks of length n which encode double descent set I.

Example.

Elements in $\mathcal{R}_{\{2\}}(6)$:

- This provides us with another way to express $d d(I ; n)$:

$$
d d(I ; n)=\sum_{\mathfrak{r} \in \mathcal{R}_{l}(n)} f^{\mathfrak{r}}
$$

where $f^{\mathfrak{r}}$ denotes the number of valid tableaux for a rim hook \mathfrak{r}.

Using rim hooks to estimate asymptotic growth

Theorem.

$\# \mathcal{R}_{\{m\}}(n)=F_{n-m} F_{m-1}$, where F_{n} is the nth Fibonacci number.

Using rim hooks to estimate asymptotic growth

Theorem.

$\# \mathcal{R}_{\{m\}}(n)=F_{n-m} F_{m-1}$, where F_{n} is the nth Fibonacci number.

- This gives us a Fibonacci "mutliplication table"

m	n	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{1 1}$									
$\mathbf{2}$	1	1	2	3	5	8	13	21	34
$\mathbf{3}$	0	1	1	2	3	5	8	13	21
$\mathbf{4}$	0	0	2	2	4	6	10	16	26
$\mathbf{5}$	0	0	0	3	3	6	9	15	24
$\mathbf{6}$	0	0	0	0	5	5	10	15	25
$\mathbf{7}$	0	0	0	0	0	8	8	16	24
$\mathbf{8}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0	0	0	13	13	26

Current goals

■ Prove asymptotic uniformity for singleton double descent sets

Current goals

- Prove asymptotic uniformity for singleton double descent sets

■ Prove the down-up conjecture for singleton double descent sets

Current goals

- Prove asymptotic uniformity for singleton double descent sets

■ Prove the down-up conjecture for singleton double descent sets
■ Study double descent sets of other sizes

Acknowledgements

I would like to thank the following:
■ My mentor Pakawut Jiradilok
■ Dr. Khovanova, Dr. Gerovitch, and the PRIMES program

- My parents

References

■ Diaz-Lopez, A., Harris, P.E., Insko, E., Omar, M. and Sagan, B.E., 2019. Descent polynomials. Discrete Mathematics, 342(6), pp.1674-1686.

- Percy A. MacMahon. Combinatory analysis. Vol. I, II (bound in one volume). Dover Phoenix Editions. Dover Publications, Inc., Mineola, NY, 2004. Reprint of An introduction to combinatory analysis (1920) and Combinatory analysis. Vol. I, II (1915, 1916).
- Billey, S., Burdzy, K. and Sagan, B.E., 2013. Permutations with given peak set. J. Integer Seq, 16(6).
- OEIS Foundation Inc. (2019), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A080635
- OEIS Foundation Inc. (2019), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A049774

