Maximal Extensions of Differential Posets

Benjamin Wright
Mentored by Christian Gaetz

Phillips Exeter Academy

MIT PRIMES Conference 5/19/19

Posets

Definition

A partially ordered set, or poset, is a set P following the properties:

1 Certain elements $x, y \in P$ are relatable under the binary relation \leq.
2 If $x \leq y$ and $y \leq x$ then $x=y$.
3 If $x \leq y$, and $y \leq z$, then $x \leq z$.

Definition

In a poset P, an element y covers an element x if $x \leq y$, and there doesn't exist a distinct element z such that $x \leq z \leq y$. We write $x \lessdot y$.

Hasse Diagrams

Figure: The Hasse diagram of the set of subsets of (x, y, z)

Posets can be represented in diagrams called Hasse diagrams, which appear like directed graphs. An arrow points from the smaller element to the larger element.
In this example, the relation \leq is equivalent to the inclusion relation \in.

Example: Young's lattice

Young's lattice Y is the poset of integer partitions, non-increasing ordered tuples $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. These are represented visually by upper-left justified sets of boxes.

An element of Y is greater than another element of Y if each row is at least as large as the equivalent row in the other element.

Figure: The Hasse diagram of Young's lattice Y up to rank 5 .

Differential posets

Definition (Stanley)

An r-differential poset P is a poset satisfying the following:
$1 P$ is locally finite, graded, and has a unique minimal element \widehat{O}.

2 For every two elements $x, y \in P$, the number of elements covering both x and y is the same as the number of elements covered by both x and y.
3 If an element $x \in P$ covers d elements, then $r+d$ elements cover x.

Example: Young's lattice

Young's lattice Y is a 1-differential poset. Y^{r} is the r-differential poset form of Young's lattice, which is the set $\underbrace{Y \times Y \times Y \times \ldots \times Y}_{r \text { times }}$. An element in Y^{r} is an ordered r-tuple of elements of Y. Stanley conjectured that Y^{r} is the smallest r-differential poset by size.

Figure: The Hasse diagram of Young's lattice Y up to rank 5 .

Example: Fibonacci Lattices

Figure: The Hasse diagram of the Fibonacci lattice $Z(2)$, a 2-differential poset, up to rank 3.

The r-Fibonacci poset, notated by $Z(r)$, is the differential poset defined by the reflection-extension construction.

Fibonnaci Reflection-Extension Construction

Figure: Reflecting the element in row 0 onto row 2

Figure: Extending every element of row 1 twice

Fibonnaci Reflection-Extension Construction

Figure: Reflecting row 1 onto row 3

Figure: Extending each element in row 2 twice

Enumerative identities

Definition

Define $e(x)=\sum_{y<x} e(y)$. Equivalently, $e(x)$ equals the number of paths up from \widehat{O} to x.

Many combinatorial and enumerative properties of Young's lattice apply to differential posets in general, making them interesting to study.
For example, the Robinson-Schensted bijection applied to Young's lattice tells us that $\sum_{x \in P_{n}} e(x)^{2}=n!$ for $x \in Y$. However, $\sum_{x \in P_{n}} e(x)^{2}=r^{n} n$! for any r-differential poset P.

Enumerative Identities Example: Young's Lattice

The $e(x)$'s for the elements of row 5 of Y are 1, 4, 5, 6, 5, 4, 1. Therefore,
$\sum_{x \in Y_{5}} e(x)^{2}=1^{2}+4^{2}+5^{2}+$ $6^{2}+5^{2}+4^{2}+1^{2}=120=1^{5} * 5$!

Enumerative Identities Example: 2-Fibonacci Poset

The $e(x)$'s for the elements of row 3 of $Z(2)$, the 2-differential Fibonacci poset, are
$1,1,1,4,1,2,2,1,4,1,1,1$.
Therefore, $\sum_{x \in Z(2)_{3}} e(x)^{2}=$
$1+1+1+16+1+4+4+1+$ $16+1+1+1=48=2^{3} * 3$!

Rank Sizes in Differential Posets

Definition

The rank of an element in a differential poset is the number of steps taken to reach \widehat{O}.

Definition

Define p_{n} to be the number of elements in rank n of a differential poset P.

r-Fibonacci Numbers

Definition

The r-Fibonacci numbers $F_{r}(x)$ satisfy $F_{r}(0)=1, F_{r}(1)=r$, and $F_{r}(x)=r \cdot F_{r}(x-1)+F_{r}(x-2)$.

Note that if $r=1$, we just get the regular Fibonacci numbers. Since the reflection-extension construction of the r-Fibonacci poset consists of reflecting the second to last row, and extending r elements per element in the last row, the rank sizes of the r-Fibonacci poset are indeed the r-Fibonacci numbers.

Byrnes' Theorem

Theorem (Byrnes 2012)

For any r-differential poset P we have:

$$
p_{n} \leq r \sum_{i=0}^{n} p_{i}-\left(p_{n-1}-1\right)
$$

and therefore $p_{n} \leq F_{r}(n)$.
The r-Fibonacci numbers satisfy Byrnes' inequality, and some induction is sufficient to show $F_{r}(n)$ is the maximum rank size of rank n.

Uniqueness of the maximal extension

Now, we move on to new results:

Theorem

In a differential poset P, if $p_{n}=F_{r}(n)$ for some particular n, then the partial r-differential poset $P_{[0, n]}$ is isomorphic to the r-Fibonacci poset $Z(r)_{[0, n]}$.

Future directions

From the fact that the Fibonacci poset is the largest differential poset, Byrnes hypothesized that the reflection-extension construction will also give the maximal extension for any partial differential poset. Equivalently:

Conjecture (Byrnes 2012)
In a differential poset,

$$
p_{n} \leq r p_{n-1}+p_{n-1}
$$

Acknowledgements

I'd like to thank

- MIT PRIMES

■ My mentor Christian Gaetz

- My parents

References

國 Patrick Byrnes.
Structural Aspects of Differential Posets.
ProQuest LLC, Ann Arbor, MI, 2012.
Thesis (Ph.D.)-University of Minnesota.
R Richard P. Stanley.
Differential posets.
J. Amer. Math. Soc., 1(4):919-961, 1988.

Are there any questions?

