Maximal Extensions of Differential Posets

Benjamin Wright Mentored by Christian Gaetz

Phillips Exeter Academy

MIT PRIMES Conference 5/19/19

▲ロ > ▲ 圖 > ▲ 画 > ▲ 画 > 一 画 … の Q ()

Benjamin Wright

Posets

Definition

A partially ordered set, or poset, is a set P following the properties:

- **1** Certain elements $x, y \in P$ are relatable under the binary relation \leq .
- 2 If $x \le y$ and $y \le x$ then x = y.
- 3 If $x \leq y$, and $y \leq z$, then $x \leq z$.

Definition

In a poset *P*, an element *y* covers an element *x* if $x \le y$, and there doesn't exist a distinct element *z* such that $x \le z \le y$. We write $x \le y$.

Hasse Diagrams

Figure: The Hasse diagram of the set of subsets of (x, y, z)

Posets can be represented in diagrams called *Hasse diagrams*, which appear like directed graphs. An arrow points from the smaller element to the larger element. In this example, the relation \leq is equivalent to the inclusion relation \in .

Benjamin Wright

Example: Young's lattice

Young's lattice Y is the poset of *integer partitions*, non-increasing ordered tuples $\lambda = (\lambda_1, \dots, \lambda_n)$. These are represented visually by upper-left justified sets of boxes.

An element of Y is greater than another element of Y if each row is at least as large as the equivalent row in the other element.

Figure: The Hasse diagram of Young's lattice Y up to rank 5.

Benjamin Wright

Differential posets

Definition (Stanley)

An *r*-differential poset P is a poset satisfying the following:

- **1** *P* is locally finite, graded, and has a unique minimal element \hat{O} .
- 2 For every two elements x, y ∈ P, the number of elements covering both x and y is the same as the number of elements covered by both x and y.
- 3 If an element $x \in P$ covers d elements, then r + d elements cover x.

Example: Young's lattice

Figure: The Hasse diagram of Young's lattice *Y* up to rank 5.

Young's lattice Y is a 1-differential poset. Y^r is the r-differential poset form of Young's lattice, which is the set $Y \times Y \times Y \times \dots \times Y$. An r times element in Y^r is an ordered r-tuple of elements of Y. Stanley conjectured that Y^r is the smallest *r*-differential poset by size.

Example: Fibonacci Lattices

Figure: The Hasse diagram of the Fibonacci lattice Z(2), a 2-differential poset, up to rank 3.

The *r*-Fibonacci poset, notated by Z(r), is the differential poset defined by the reflection-extension construction.

Fibonnaci Reflection-Extension Construction

Figure: Reflecting the element in row 0 onto row 2

Figure: Extending every element of row 1 twice

Benjamin Wright

Fibonnaci Reflection-Extension Construction

Figure: Reflecting row 1 onto row 3

Figure: Extending each element in row 2 twice

Benjamin Wright

Enumerative identities

Definition

Define $e(x) = \sum_{y \le x} e(y)$. Equivalently, e(x) equals the number of paths up from \widehat{O} to x.

Many combinatorial and enumerative properties of Young's lattice apply to differential posets in general, making them interesting to study.

For example, the Robinson-Schensted bijection applied to Young's lattice tells us that $\sum_{x \in P_n} e(x)^2 = n!$ for $x \in Y$. However, $\sum_{x \in P_n} e(x)^2 = r^n n!$ for any *r*-differential poset *P*.

Enumerative Identities Example: Young's Lattice

The e(x)'s for the elements of row 5 of Y are 1, 4, 5, 6, 5, 4, 1. Therefore, $\sum_{x \in Y_5} e(x)^2 = 1^2 + 4^2 + 5^2 + 6^2 + 5^2 + 4^2 + 1^2 = 120 = 1^5 * 5!$

Benjamin Wright

Future directions

Enumerative Identities Example: 2-Fibonacci Poset

The e(x)'s for the elements of row 3 of Z(2), the 2-differential Fibonacci poset, are 1, 1, 1, 4, 1, 2, 2, 1, 4, 1, 1, 1. Therefore, $\sum_{x \in Z(2)_3} e(x)^2 =$ 1 + 1 + 1 + 16 + 1 + 4 + 4 + 1 + $16 + 1 + 1 + 1 = 48 = 2^3 * 3!$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ● ⑦ � @ ◆

Benjamin Wright

Rank Sizes in Differential Posets

Definition

The *rank* of an element in a differential poset is the number of steps taken to reach \widehat{O} .

Definition

Define p_n to be the number of elements in rank n of a differential poset P.

・ロト ・四ト ・ヨト ・ヨト ・ヨー うへの

r-Fibonacci Numbers

Definition

The *r*-Fibonacci numbers $F_r(x)$ satisfy $F_r(0) = 1$, $F_r(1) = r$, and $F_r(x) = r \cdot F_r(x-1) + F_r(x-2)$.

Note that if r = 1, we just get the regular Fibonacci numbers. Since the reflection-extension construction of the *r*-Fibonacci poset consists of reflecting the second to last row, and extending *r* elements per element in the last row, the rank sizes of the *r*-Fibonacci poset are indeed the *r*-Fibonacci numbers.

Byrnes' Theorem

Theorem (Byrnes 2012)

For any r-differential poset P we have:

$$p_n \leq r \sum_{i=0}^n p_i - (p_{n-1} - 1),$$

and therefore $p_n \leq F_r(n)$.

The *r*-Fibonacci numbers satisfy Byrnes' inequality, and some induction is sufficient to show $F_r(n)$ is the maximum rank size of rank *n*.

Benjamin Wright

э

(日) (同) (三) (三)

Uniqueness of the maximal extension

Now, we move on to new results:

Theorem

In a differential poset P, if $p_n = F_r(n)$ for some particular n, then the partial r-differential poset $P_{[0,n]}$ is isomorphic to the r-Fibonacci poset $Z(r)_{[0,n]}$.

Benjamin Wright

A (1) > A (1) > A

э

Future directions

From the fact that the Fibonacci poset is the largest differential poset, Byrnes hypothesized that the reflection-extension construction will also give the maximal extension for *any* partial differential poset. Equivalently:

Conjecture (Byrnes 2012)

In a differential poset,

$$p_n \leq rp_{n-1} + p_{n-1}$$

Benjamin Wright

Acknowledgements

I'd like to thank

- MIT PRIMES
- My mentor Christian Gaetz
- My parents

References

Patrick Byrnes.

Structural Aspects of Differential Posets. ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–University of Minnesota.

Richard P. Stanley.

Differential posets.

J. Amer. Math. Soc., 1(4):919-961, 1988.

Benjamin Wright

・ 同 ト ・ ヨ ト ・ ヨ ト

2

Are there any questions?