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Algebraic Geometry

Algebraic geometry is the study of varieties: The set of common roots of a
set of polynomials f1, . . . , fn in k[x1, . . . , xm]. Usually this will be over
k = C.

Example

V(x2 + y2) = V((x + iy)(x − iy)) = {(z ,±iz) : z ∈ C}

We care about compactifications of varieties; a space is compact if limits
exist. In our example, we want to add in z →∞.
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Tropicalization

Consider some variety V in C2. We map elements of V ∩ (C×)2 to R2 by:

Logt : (x , y)→ (logt |x |, logt |y |).

This generates an amoeba of the variety V :

Figure: Amoeba of x + y = 1 (from [G])

Brandon Wang (Saratoga High School) Quotients of Tropical Moduli Spaces May 2019 3 / 21



Tropicalization

Consider some variety V in C2. We map elements of V ∩ (C×)2 to R2 by:

Logt : (x , y)→ (logt |x |, logt |y |).

This generates an amoeba of the variety V

:

Figure: Amoeba of x + y = 1 (from [G])

Brandon Wang (Saratoga High School) Quotients of Tropical Moduli Spaces May 2019 3 / 21



Tropicalization

Consider some variety V in C2. We map elements of V ∩ (C×)2 to R2 by:

Logt : (x , y)→ (logt |x |, logt |y |).

This generates an amoeba of the variety V :

Figure: Amoeba of x + y = 1 (from [G])

Brandon Wang (Saratoga High School) Quotients of Tropical Moduli Spaces May 2019 3 / 21



Tropicalization, Continued

By taking t →∞,

Figure: Tropicalization of x + y = 1 (from [G])
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The Tropical Semiring

Consider the maps:
logt(t

x + ty ), logt(t
x · ty )

as t →∞.

They become x ⊕ y = max(x , y) and x � y = x + y .

For a polynomial

f (x , y) =
∑
i ,j≥0

ai ,jx
iy j ,

its tropicalization is the tropical polynomial

trop f (x , y) = g(x , y) =
⊕

(ci ,j � ix � jy).

where

ci ,j = lim
t→∞

|ai ,j | =

{
−∞, ai ,j = 0

0, ai ,j 6= 0
.
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Putting it Together

trop f (x , y) is a tropical polynomial, in the semiring (R,⊕,�).

For a tropical polynomial g(x , y) =
⊕

(ci ,j � ix � iy), we define its
associated tropical hypersurface as the points where g(x , y) is not smooth.

Theorem (Kapranov 2000)

V(trop f (x1, . . . , xn)) = tropV(f (x1, . . . , xn)).
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Application: Approximating Roots

Example

Compute the magnitudes of the roots of

P(x) = x3 + 1014x2 + 1018x + 1030 = 0.

Solution: Approximate with t = 100. Tropical curve is

max(3x , 7 + 2x , 9 + x , 15)

which has variety {4, 4, 7} =⇒ 108, 108, 1014.

Actual roots: x ≈ −1014, −5000± 108i .
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Moduli Spaces

Automorphisms on P1, are Möbius transformations:

z → az + b

cz + d

i.e. maps that preserve cross ratio:

(z1, z2; z3, z4) =
z3 − z1
z3 − z2

· z4 − z2
z4 − z1

.

We are interested in studying the moduli space M0,n of n distinct points
on the projective line P1 up to automorphism.
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More on Moduli Spaces

For n ≥ 3, we can send P1 → 0,P2 →∞, P3 → 1, and
P3+n → (P1,P2;P3+n,P3).

For n ≥ 3, M0,n is the configuration space of n − 3 points in C× − {1}.
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More on Moduli Spaces

For a vector ~x = (x1, . . . , xn) ∈ Zn with ~x ·~1 = 0, consider the space
M(~x) of rational functions on P1 up to automorphism whose zeroes have
order x1, . . . , xn.

Example

k(z − z1)(z − z3)

(z − z2)2
∈M(〈1,−2, 1〉).

Proposition (Well Known)

M(~x) =M0,n × C×

Understanding the behavior of M0,n in M(~x) tells us about M0,n.
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Tropical Moduli Spaces

We consider the moduli space Mtrop
0,n of tropical curves of genus 0, which

consists of all metric trees with n labeled, unbounded edges and whose
vertices all have valence (degree) at least 3.

Figure: This tropical conic is a member of Mtrop
0,6 .

The tree structure (with lengths ignored) is the combinatorial type.
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Mtrop
0,n as a fan

Suppose we have a fixed combinatorial type with ` bounded edges. Then,
the space of such possible trees is a cone (R≥0)`.

This gives a fan structure: faces of cones are also cones.

Figure: A polyhedral fan in R2 (from [MS])
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Mtrop
0,n as a fan

Theorem (Speyer and Sturmfels 2006)

Mtrop
0,n can be embedded as a tropical fan in R(n2)−n.
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M(~x)trop

For fixed ~x ∈ Zn with ~x ·~1 = 0, consider maps from an element of Mtrop
0,n

to R with the following properties:

The map is linear with constant slope on each edge.

The slope along infinite edge i is xi going away from the vertex
adjacent to i .

We have the following balancing condition: We can arrange the tree
so that there is a flow/current condition from left to right.

The set of such maps is M(~x)trop.
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Example of the Balancing Condition

Figure: This is an element of M(〈4, 4,−5,−1,−1,−1〉) (from [CMR])
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Understanding M(~x)trop

Proposition (Well known)

M(~x)trop =Mtrop
0,n × R.

In particular, for fixed ~x and element T of Mtrop
0,n , the corresponding

element of M(~x)trop is fixed up to shifting.

Recall...

Proposition (also well known)

M(~x) =M0.n × C×.

In fact,

Theorem (Tevelev)

The tropicalization tropM(~x) of the variety M(~x) is M(~x)trop.
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This project

Goal: Canonical fan structure on M(~x)trop =Mtrop
0,n × R without cones

containing lines through the origin.

Need to subdivide the space C × R for cones C of Mtrop
0,n , i.e. maps from

trees of a certain combinatorial type.

Two ways to do this:

1. Divide into cones based on which (interior) vertices are mapped to
R>0 and R<0; “sign subdivision”.

2. Divide into cones based on the relative order of 0 and the interior
vertices; “order subdivision”.
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Current Work

Goal: Understand the embedding of Mtrop
0,n in M(~x)trop, or the (Chow)

quotient map M(~x)trop →Mtrop
0,n .

Theorem (Own)

The “universal family” of the sign subdivision of M(~x)trop to make the
quotient map a fan morphism is in fact the order subdivision.
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Future Work and Difficulties

Goal: Extend to positive genera.

Difficulty: Mtrop
g ,n × Rk 6=M(~x)trop for any k .
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