Quotients of Tropical Moduli Spaces

Brandon Wang Mentor: Dhruv Ranganathan

Saratoga High School

May 18, 2019 MIT PRIMES Conference

< 3 × 1

Algebraic Geometry

Algebraic geometry is the study of varieties: The set of common roots of a set of polynomials f_1, \ldots, f_n in $k[x_1, \ldots, x_m]$. Usually this will be over $k = \mathbb{C}$.

Algebraic Geometry

Algebraic geometry is the study of varieties: The set of common roots of a set of polynomials f_1, \ldots, f_n in $k[x_1, \ldots, x_m]$. Usually this will be over $k = \mathbb{C}$.

Example

$$\mathbb{V}(x^2+y^2) = \mathbb{V}((x+iy)(x-iy)) = \{(z,\pm iz) \colon z \in \mathbb{C}\}$$

Algebraic Geometry

Algebraic geometry is the study of varieties: The set of common roots of a set of polynomials f_1, \ldots, f_n in $k[x_1, \ldots, x_m]$. Usually this will be over $k = \mathbb{C}$.

Example

$$\mathbb{V}(x^2+y^2) = \mathbb{V}((x+iy)(x-iy)) = \{(z,\pm iz) \colon z \in \mathbb{C}\}$$

We care about compactifications of varieties; a space is compact if limits exist. In our example, we want to add in $z \to \infty$.

Tropicalization

Consider some variety V in \mathbb{C}^2 . We map elements of $V \cap (\mathbb{C}^{\times})^2$ to \mathbb{R}^2 by:

 $\operatorname{Log}_t: (x, y) \to (\operatorname{log}_t |x|, \operatorname{log}_t |y|).$

→ < Ξ → </p>

Tropicalization

Consider some variety V in \mathbb{C}^2 . We map elements of $V \cap (\mathbb{C}^{\times})^2$ to \mathbb{R}^2 by:

$$\operatorname{Log}_t: (x, y) \to (\operatorname{log}_t |x|, \operatorname{log}_t |y|).$$

This generates an amoeba of the variety V

< 3 > <

Tropicalization

Consider some variety V in \mathbb{C}^2 . We map elements of $V \cap (\mathbb{C}^{\times})^2$ to \mathbb{R}^2 by:

$$\operatorname{Log}_t: (x, y) \to (\operatorname{log}_t |x|, \operatorname{log}_t |y|).$$

This generates an amoeba of the variety V:

Figure: Amoeba of x + y = 1 (from [G])

Tropicalization, Continued

By taking $t
ightarrow \infty$,

Figure: Tropicalization of x + y = 1 (from [G])

< ∃ >

The Tropical Semiring

Consider the maps:

$$\log_t(t^x + t^y), \log_t(t^x \cdot t^y)$$

as $t \to \infty$.

(日) (同) (三) (三)

The Tropical Semiring

Consider the maps:

$$\log_t(t^x + t^y), \log_t(t^x \cdot t^y)$$

as $t \to \infty$.

They become $x \oplus y = \max(x, y)$ and $x \odot y = x + y$.

A (10) A (10) A (10)

The Tropical Semiring

Consider the maps:

$$\log_t(t^x + t^y), \log_t(t^x \cdot t^y)$$

as $t \to \infty$.

They become $x \oplus y = \max(x, y)$ and $x \odot y = x + y$.

For a polynomial

$$f(x,y) = \sum_{i,j\geq 0} a_{i,j} x^i y^j,$$

its tropicalization is the tropical polynomial

$$\operatorname{trop} f(x,y) = g(x,y) = \bigoplus (c_{i,j} \odot i x \odot j y).$$

where

$$c_{i,j} = \lim_{t \to \infty} |a_{i,j}| = egin{cases} -\infty, & a_{i,j} = 0 \ 0, & a_{i,j}
eq 0 \ \end{pmatrix}.$$

< 回 > < 三 > < 三 >

Putting it Together

trop f(x, y) is a tropical polynomial, in the semiring $(\mathbb{R}, \oplus, \odot)$.

(日) (同) (三) (三)

Putting it Together

trop f(x, y) is a tropical polynomial, in the semiring $(\mathbb{R}, \oplus, \odot)$.

For a tropical polynomial $g(x, y) = \bigoplus (c_{i,j} \odot ix \odot iy)$, we define its associated tropical hypersurface as the points where g(x, y) is not smooth.

< 回 > < 三 > < 三 >

Putting it Together

trop f(x, y) is a tropical polynomial, in the semiring $(\mathbb{R}, \oplus, \odot)$.

For a tropical polynomial $g(x, y) = \bigoplus (c_{i,j} \odot ix \odot iy)$, we define its associated tropical hypersurface as the points where g(x, y) is not smooth.

Theorem (Kapranov 2000)

$$\mathbb{V}(\operatorname{trop} f(x_1,\ldots,x_n)) = \operatorname{trop} \mathbb{V}(f(x_1,\ldots,x_n)).$$

Example

Compute the magnitudes of the roots of

$$P(x) = x^3 + 10^{14}x^2 + 10^{18}x + 10^{30} = 0.$$

Example

Compute the magnitudes of the roots of

$$P(x) = x^3 + 10^{14}x^2 + 10^{18}x + 10^{30} = 0.$$

Solution: Approximate with t = 100.

Example

Compute the magnitudes of the roots of

$$P(x) = x^3 + 10^{14}x^2 + 10^{18}x + 10^{30} = 0.$$

Solution: Approximate with t = 100. Tropical curve is

$$\max(3x, 7+2x, 9+x, 15)$$

which has variety $\{4,4,7\}\implies 10^8,10^8,10^{14}.$

Example

Compute the magnitudes of the roots of

$$P(x) = x^3 + 10^{14}x^2 + 10^{18}x + 10^{30} = 0.$$

Solution: Approximate with t = 100. Tropical curve is

$$\max(3x, 7+2x, 9+x, 15)$$

which has variety $\{4, 4, 7\} \implies 10^8, 10^8, 10^{14}$.

Actual roots: $x \approx -10^{14}$. $-5000 \pm 10^8 i$.

(3)

Moduli Spaces

Automorphisms on \mathbb{P}^1 , are Möbius transformations:

$$z
ightarrow rac{az+b}{cz+d}$$

i.e. maps that preserve cross ratio:

$$(z_1, z_2; z_3, z_4) = \frac{z_3 - z_1}{z_3 - z_2} \cdot \frac{z_4 - z_2}{z_4 - z_1}.$$

イロト イヨト イヨト イヨト

Moduli Spaces

Automorphisms on \mathbb{P}^1 , are Möbius transformations:

$$z
ightarrow rac{az+b}{cz+d}$$

i.e. maps that preserve cross ratio:

$$(z_1, z_2; z_3, z_4) = \frac{z_3 - z_1}{z_3 - z_2} \cdot \frac{z_4 - z_2}{z_4 - z_1}$$

We are interested in studying the moduli space $\mathcal{M}_{0,n}$ of *n* distinct points on the projective line \mathbb{P}^1 up to automorphism.

For $n \geq 3$, we can send $P_1 \rightarrow 0, P_2 \rightarrow \infty, P_3 \rightarrow 1$, and $P_{3+n} \rightarrow (P_1, P_2; P_{3+n}, P_3)$.

< 回 > < 三 > < 三 >

For $n \geq 3$, we can send $P_1 \rightarrow 0, P_2 \rightarrow \infty, P_3 \rightarrow 1$, and $P_{3+n} \rightarrow (P_1, P_2; P_{3+n}, P_3)$.

For $n \geq 3$, $\mathcal{M}_{0,n}$ is the configuration space of n-3 points in $\mathbb{C}^{\times} - \{1\}$.

< 同 ト く ヨ ト く ヨ ト

For a vector $\vec{x} = (x_1, \ldots, x_n) \in \mathbb{Z}^n$ with $\vec{x} \cdot \vec{1} = 0$, consider the space $\mathcal{M}(\vec{x})$ of rational functions on \mathbb{P}^1 up to automorphism whose zeroes have order x_1, \ldots, x_n .

For a vector $\vec{x} = (x_1, \ldots, x_n) \in \mathbb{Z}^n$ with $\vec{x} \cdot \vec{1} = 0$, consider the space $\mathcal{M}(\vec{x})$ of rational functions on \mathbb{P}^1 up to automorphism whose zeroes have order x_1, \ldots, x_n .

Example
$$rac{k(z-z_1)(z-z_3)}{(z-z_2)^2}\in \mathcal{M}(\langle 1,-2,1
angle).$$

For a vector $\vec{x} = (x_1, \ldots, x_n) \in \mathbb{Z}^n$ with $\vec{x} \cdot \vec{1} = 0$, consider the space $\mathcal{M}(\vec{x})$ of rational functions on \mathbb{P}^1 up to automorphism whose zeroes have order x_1, \ldots, x_n .

Example

$$rac{k(z-z_1)(z-z_3)}{(z-z_2)^2}\in \mathcal{M}(\langle 1,-2,1
angle).$$

Proposition (Well Known)

$$\mathcal{M}(\vec{x}) = \mathcal{M}_{0,n} \times \mathbb{C}^{\times}$$

< 回 ト < 三 ト < 三 ト

For a vector $\vec{x} = (x_1, \ldots, x_n) \in \mathbb{Z}^n$ with $\vec{x} \cdot \vec{1} = 0$, consider the space $\mathcal{M}(\vec{x})$ of rational functions on \mathbb{P}^1 up to automorphism whose zeroes have order x_1, \ldots, x_n .

Example

$$rac{k(z-z_1)(z-z_3)}{(z-z_2)^2}\in \mathcal{M}(\langle 1,-2,1
angle).$$

Proposition (Well Known)

$$\mathcal{M}(\vec{x}) = \mathcal{M}_{0,n} \times \mathbb{C}^{\times}$$

Understanding the behavior of $\mathcal{M}_{0,n}$ in $\mathcal{M}(\vec{x})$ tells us about $\mathcal{M}_{0,n}$.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Tropical Moduli Spaces

We consider the moduli space $\mathcal{M}_{0,n}^{\text{trop}}$ of tropical curves of genus 0, which consists of all metric trees with *n* labeled, unbounded edges and whose vertices all have valence (degree) at least 3.

Tropical Moduli Spaces

We consider the moduli space $\mathcal{M}_{0,n}^{\text{trop}}$ of tropical curves of genus 0, which consists of all metric trees with *n* labeled, unbounded edges and whose vertices all have valence (degree) at least 3.

Figure: This tropical conic is a member of $\mathcal{M}_{0,6}^{trop}$.

Tropical Moduli Spaces

We consider the moduli space $\mathcal{M}_{0,n}^{\text{trop}}$ of tropical curves of genus 0, which consists of all metric trees with *n* labeled, unbounded edges and whose vertices all have valence (degree) at least 3.

Figure: This tropical conic is a member of $\mathcal{M}_{0,6}^{\text{trop}}$.

The tree structure (with lengths ignored) is the combinatorial type.

 $\mathcal{M}_{0,n}^{\mathsf{trop}}$ as a fan

Suppose we have a fixed combinatorial type with ℓ bounded edges. Then, the space of such possible trees is a cone $(\mathbb{R}_{\geq 0})^{\ell}$.

 $\mathcal{M}_{0,n}^{\mathsf{trop}}$ as a fan

Suppose we have a fixed combinatorial type with ℓ bounded edges. Then, the space of such possible trees is a cone $(\mathbb{R}_{\geq 0})^{\ell}$.

This gives a fan structure: faces of cones are also cones.

Figure: A polyhedral fan in \mathbb{R}^2 (from [MS])

Brandon Wang (Saratoga High School) Quotients of Tropical Moduli Spaces

 $\mathcal{M}_{0n}^{\mathsf{trop}}$ as a fan

Theorem (Speyer and Sturmfels 2006)

 $\mathcal{M}_{0,n}^{\text{trop}}$ can be embedded as a tropical fan in $\mathbb{R}^{\binom{n}{2}-n}$.

For fixed $\vec{x} \in \mathbb{Z}^n$ with $\vec{x} \cdot \vec{1} = 0$, consider maps from an element of $\mathcal{M}_{0,n}^{\text{trop}}$ to \mathbb{R} with the following properties:

< 回 > < 三 > < 三 >

For fixed $\vec{x} \in \mathbb{Z}^n$ with $\vec{x} \cdot \vec{1} = 0$, consider maps from an element of $\mathcal{M}_{0,n}^{\text{trop}}$ to \mathbb{R} with the following properties:

The map is linear with constant slope on each edge.

(3)

For fixed $\vec{x} \in \mathbb{Z}^n$ with $\vec{x} \cdot \vec{1} = 0$, consider maps from an element of $\mathcal{M}_{0,n}^{\text{trop}}$ to \mathbb{R} with the following properties:

The map is linear with constant slope on each edge.

The slope along infinite edge i is x_i going away from the vertex adjacent to i.

For fixed $\vec{x} \in \mathbb{Z}^n$ with $\vec{x} \cdot \vec{1} = 0$, consider maps from an element of $\mathcal{M}_{0,n}^{\text{trop}}$ to \mathbb{R} with the following properties:

The map is linear with constant slope on each edge.

The slope along infinite edge i is x_i going away from the vertex adjacent to i.

We have the following balancing condition: We can arrange the tree so that there is a flow/current condition from left to right.

For fixed $\vec{x} \in \mathbb{Z}^n$ with $\vec{x} \cdot \vec{1} = 0$, consider maps from an element of $\mathcal{M}_{0,n}^{\text{trop}}$ to \mathbb{R} with the following properties:

The map is linear with constant slope on each edge.

The slope along infinite edge i is x_i going away from the vertex adjacent to i.

We have the following balancing condition: We can arrange the tree so that there is a flow/current condition from left to right.

The set of such maps is $\mathcal{M}(\vec{x})^{\text{trop}}$.

Example of the Balancing Condition

Figure: This is an element of $\mathcal{M}(\langle 4, 4, -5, -1, -1, -1 \rangle)$ (from [CMR])

Understanding $\mathcal{M}(\vec{x})^{\text{trop}}$

Proposition (Well known)

$$\mathcal{M}(ec{x})^{\mathsf{trop}} = \mathcal{M}_{0,n}^{\mathsf{trop}} imes \mathbb{R}.$$

In particular, for fixed \vec{x} and element T of $\mathcal{M}_{0,n}^{\text{trop}}$, the corresponding element of $\mathcal{M}(\vec{x})^{\text{trop}}$ is fixed up to shifting.

→ 3 → 4 3

Understanding $\mathcal{M}(\vec{x})^{\text{trop}}$

Proposition (Well known)

$$\mathcal{M}(ec{x})^{\mathsf{trop}} = \mathcal{M}_{0,n}^{\mathsf{trop}} imes \mathbb{R}.$$

In particular, for fixed \vec{x} and element T of $\mathcal{M}_{0,n}^{\text{trop}}$, the corresponding element of $\mathcal{M}(\vec{x})^{\text{trop}}$ is fixed up to shifting.

Recall...

Proposition (also well known)

$$\mathcal{M}(\vec{x}) = \mathcal{M}_{0.n} \times \mathbb{C}^{\times}.$$

過 ト イヨ ト イヨト

Understanding $\mathcal{M}(\vec{x})^{\text{trop}}$

Proposition (Well known)

$$\mathcal{M}(\vec{x})^{\mathsf{trop}} = \mathcal{M}_{0,n}^{\mathsf{trop}} imes \mathbb{R}.$$

In particular, for fixed \vec{x} and element T of $\mathcal{M}_{0,n}^{\text{trop}}$, the corresponding element of $\mathcal{M}(\vec{x})^{\text{trop}}$ is fixed up to shifting.

Recall...

Proposition (also well known)

$$\mathcal{M}(\vec{x}) = \mathcal{M}_{0.n} \times \mathbb{C}^{\times}.$$

In fact,

Theorem (Tevelev)

The tropicalization trop $\mathcal{M}(\vec{x})$ of the variety $\mathcal{M}(\vec{x})$ is $\mathcal{M}(\vec{x})^{\text{trop}}$.

Brandon Wang (Saratoga High School)

Goal: Canonical fan structure on $\mathcal{M}(\vec{x})^{\text{trop}} = \mathcal{M}_{0,n}^{\text{trop}} \times \mathbb{R}$ without cones containing lines through the origin.

Goal: Canonical fan structure on $\mathcal{M}(\vec{x})^{\text{trop}} = \mathcal{M}_{0,n}^{\text{trop}} \times \mathbb{R}$ without cones containing lines through the origin.

Need to subdivide the space $C \times \mathbb{R}$ for cones C of $\mathcal{M}_{0,n}^{\text{trop}}$, i.e. maps from trees of a certain combinatorial type.

Goal: Canonical fan structure on $\mathcal{M}(\vec{x})^{\text{trop}} = \mathcal{M}_{0,n}^{\text{trop}} \times \mathbb{R}$ without cones containing lines through the origin.

Need to subdivide the space $C \times \mathbb{R}$ for cones C of $\mathcal{M}_{0,n}^{\text{trop}}$, i.e. maps from trees of a certain combinatorial type.

Two ways to do this:

Goal: Canonical fan structure on $\mathcal{M}(\vec{x})^{\text{trop}} = \mathcal{M}_{0,n}^{\text{trop}} \times \mathbb{R}$ without cones containing lines through the origin.

Need to subdivide the space $C \times \mathbb{R}$ for cones C of $\mathcal{M}_{0,n}^{\text{trop}}$, i.e. maps from trees of a certain combinatorial type.

Two ways to do this:

- 1. Divide into cones based on which (interior) vertices are mapped to $\mathbb{R}_{>0}$ and $\mathbb{R}_{<0}$; "sign subdivision".
- 2. Divide into cones based on the relative order of 0 and the interior vertices; "order subdivision".

Current Work

Goal: Understand the embedding of $\mathcal{M}_{0,n}^{\text{trop}}$ in $\mathcal{M}(\vec{x})^{\text{trop}}$, or the (Chow) quotient map $\mathcal{M}(\vec{x})^{\text{trop}} \to \mathcal{M}_{0,n}^{\text{trop}}$.

< 回 > < 三 > < 三 >

Current Work

Goal: Understand the embedding of $\mathcal{M}_{0,n}^{\text{trop}}$ in $\mathcal{M}(\vec{x})^{\text{trop}}$, or the (Chow) quotient map $\mathcal{M}(\vec{x})^{\text{trop}} \to \mathcal{M}_{0,n}^{\text{trop}}$.

Theorem (Own)

The "universal family" of the sign subdivision of $\mathcal{M}(\vec{x})^{\text{trop}}$ to make the quotient map a fan morphism is in fact the order subdivision.

.

Future Work and Difficulties

Goal: Extend to positive genera.

Future Work and Difficulties

Goal: Extend to positive genera.

Difficulty: $\mathcal{M}_{g,n}^{\mathrm{trop}} \times \mathbb{R}^k \neq \mathcal{M}(\vec{x})^{\mathrm{trop}}$ for any k.

< ∃ > <

Thank You to ...

My mentor, Dhruv Ranganathan

Image: A matrix

→ Ξ →

Thank You to ...

My mentor, Dhruv Ranganathan

PRIMES-USA and the MIT math department for this opportunity

3 ×

My mentor, Dhruv Ranganathan

PRIMES-USA and the MIT math department for this opportunity

Dr. Tanya Khovanova for advice and assistance

My mentor, Dhruv Ranganathan

PRIMES-USA and the MIT math department for this opportunity

Dr. Tanya Khovanova for advice and assistance

My parents for their continued support

References

[CMR] R. Cavalieri, H. Markwig, D. Ranganathan, *Tropical Compactification and the Gromov-Witten Theory of* P¹, math.AG/14102837 (2016).
[G] A. Gathmann, *Tropical Algebraic Geometry*, math.AG/0601322 (2006).
[MS] D. Maclagan and B. Sturmfels, *Introduction to Tropical Geometry* (2015)

・聞き ・ ほき・ ・ ほき