The Shuffle Algebra of the Hilbert Scheme of Points of the Plane

Frank Wang
Mentor: Yu Zhao

Montgomery High School

MIT PRIMES Conference May 18, 2019

Algebras

Definition

A module M over a ring R is a set of elements that can be added together and multiplied by a scalar $\lambda \in R$. An algebra is a module equipped with a product between elements in M that outputs another element in M.

Examples:

Algebras

Definition

A module M over a ring R is a set of elements that can be added together and multiplied by a scalar $\lambda \in R$. An algebra is a module equipped with a product between elements in M that outputs another element in M.

Examples:
Polynomials in $R: R\left[x_{1}, \ldots, x_{n}\right]$

Algebras

Definition

A module M over a ring R is a set of elements that can be added together and multiplied by a scalar $\lambda \in R$. An algebra is a module equipped with a product between elements in M that outputs another element in M.

Examples:
Polynomials in $R: R\left[x_{1}, \ldots, x_{n}\right]$
Rational functions in $R: R\left(x_{1}, \ldots, x_{n}\right)$

Algebras

Definition

A module M over a ring R is a set of elements that can be added together and multiplied by a scalar $\lambda \in R$. An algebra is a module equipped with a product between elements in M that outputs another element in M.

Examples:
Polynomials in R : $R\left[x_{1}, \ldots, x_{n}\right]$
Rational functions in R : $R\left(x_{1}, \ldots, x_{n}\right)$
Laurent polynomials in $R: R\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$

Algebras

Definition

A module M over a ring R is a set of elements that can be added together and multiplied by a scalar $\lambda \in R$. An algebra is a module equipped with a product between elements in M that outputs another element in M.

Examples:
Polynomials in R : $R\left[x_{1}, \ldots, x_{n}\right]$
Rational functions in $R: R\left(x_{1}, \ldots, x_{n}\right)$
Laurent polynomials in $R: R\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$
The set of $n \times n$ square matrices in R

The Shuffle Algebra

For a ring R, the shuffle algebra A^{R} is the subset of the set of symmetric rational functions in arbitrarily many variables with coefficients in R, generated by 1 variable functions.

The shuffle product takes a function in k variables and a function in I variables and "shuffles" their variables to get a function in $k+I$ variables:

The Shuffle Algebra

For a ring R, the shuffle algebra A^{R} is the subset of the set of symmetric rational functions in arbitrarily many variables with coefficients in R, generated by 1 variable functions.

The shuffle product takes a function in k variables and a function in / variables and "shuffles" their variables to get a function in $k+I$ variables:

$$
\begin{gathered}
F(a, b) * G(c, d)=F(a, b) G(c, d)+F(a, c) G(b, d)+F(a, d) G(b, c) \\
+F(b, c) G(a, d)+F(b, d) G(a, c)+F(c, d) G(a, b)
\end{gathered}
$$

The Integral Shuffle Algebra

Definition

The integral shuffle algebra is a subset of $\bigoplus_{k \geq 0} \operatorname{Sym}_{\mathbf{R}}\left(z_{1}, \ldots, z_{k}\right)$ and is the shuffle algebra over the ring $\mathbf{R}=\mathbb{C}\left[q_{1}^{ \pm 1}, q_{2}^{ \pm 1}\right]$.
The shuffle product is

$$
\begin{gathered}
P\left(z_{1}, \ldots, z_{k}\right) * Q\left(z_{1}, \ldots, z_{l}\right)= \\
\frac{1}{k!!!} \sum_{\text {sym }} P\left(z_{1}, \ldots, z_{k}\right) Q\left(z_{k+1}, \ldots, z_{k+\prime}\right) \prod_{\substack{1 \leq i \leq k \\
k<j \leq k+l}} \frac{\left(z_{i}-q_{1} q_{2} z_{j}\right)\left(z_{j}-q_{1} z_{i}\right)\left(z_{j}-q_{2} z_{i}\right)}{z_{i}-z_{j}} .
\end{gathered}
$$

We want to find conditions to determine whether a given symmetric rational function is in the integral shuffle algebra.

The Fractional Shuffle Algebra

The fractional shuffle algebra is the shuffle algebra over the ring $\mathbf{K}=\mathbb{C}\left(q_{1}, q_{2}\right)$ with the same shuffle product as the integral shuffle algebra.

Theorem (Negut, 2014)
A symmetric rational function $p\left(z_{1}, \ldots, z_{k}\right)$ is in the fractional shuffle algebra if and only if it is a Laurent polynomial ($p \in \mathbf{K}\left[z_{1}^{ \pm 1}, \ldots, z_{k}^{ \pm 1}\right]$) and it satisfies the wheel conditions:

$$
p\left(z_{1}, q_{1} z_{1}, q_{1} q_{2} z_{1}, z_{4}, z_{5}, \ldots, z_{k}\right)=p\left(z_{1}, q_{2} z_{1}, q_{1} q_{2} z_{1}, z_{4}, z_{5}, \ldots, z_{k}\right)=0 .
$$

These conditions are necessary but not sufficient for the integral shuffle algebra.

Ideals

Definition

An ideal of a ring R is a subset of R that is closed under addition and multiplication by elements of R. An ideal can be written as $\left(a_{1}, \ldots, a_{n}\right)$ where a_{1}, \ldots, a_{n} are the generators of the ideal.

Examples:

Ideals

Definition

An ideal of a ring R is a subset of R that is closed under addition and multiplication by elements of R. An ideal can be written as $\left(a_{1}, \ldots, a_{n}\right)$ where a_{1}, \ldots, a_{n} are the generators of the ideal.

Examples:
(2) of \mathbb{Z} is the even numbers

Ideals

Definition

An ideal of a ring R is a subset of R that is closed under addition and multiplication by elements of R. An ideal can be written as $\left(a_{1}, \ldots, a_{n}\right)$ where a_{1}, \ldots, a_{n} are the generators of the ideal.

Examples:
(2) of \mathbb{Z} is the even numbers

Ideal form of wheel conditions: $p\left(z_{1}, q_{1} z_{1}, q_{1} q_{2} z_{1}, \ldots\right)=0$ if and only if $p \in\left(q_{1} q_{2} z_{1}-z_{3}, q_{1} z_{1}-z_{2}, q_{2} z_{2}-z_{3}\right)$ of the ring of Laurent polynomials.

Ideals

Definition

An ideal of a ring R is a subset of R that is closed under addition and multiplication by elements of R. An ideal can be written as $\left(a_{1}, \ldots, a_{n}\right)$ where a_{1}, \ldots, a_{n} are the generators of the ideal.

Examples:
(2) of \mathbb{Z} is the even numbers

Ideal form of wheel conditions: $p\left(z_{1}, q_{1} z_{1}, q_{1} q_{2} z_{1}, \ldots\right)=0$ if and only if $p \in\left(q_{1} q_{2} z_{1}-z_{3}, q_{1} z_{1}-z_{2}, q_{2} z_{2}-z_{3}\right)$ of the ring of Laurent polynomials.

Ideals can also be thought of as R-modules that are contained in R.

Quotients

Definition

A quotient R / I of a ring R by an ideal I is the ring of equivalence classes in the ring where two elements a and b are equivalent if $a-b \in I$.

Examples:

Quotients

Definition

A quotient R / I of a ring R by an ideal I is the ring of equivalence classes in the ring where two elements a and b are equivalent if $a-b \in I$.

Examples:

$$
\mathbb{Z}_{2}=\mathbb{Z} /(2) \text { is the integers } \bmod 2
$$

Quotients

Definition

A quotient R / I of a ring R by an ideal I is the ring of equivalence classes in the ring where two elements a and b are equivalent if $a-b \in I$.

Examples:

$$
\begin{aligned}
& \mathbb{Z}_{2}=\mathbb{Z} /(2) \text { is the integers } \bmod 2 \\
& R[x] /(x)=R
\end{aligned}
$$

Quotients

Definition

A quotient R / I of a ring R by an ideal I is the ring of equivalence classes in the ring where two elements a and b are equivalent if $a-b \in I$.

Examples:

$$
\begin{aligned}
& \mathbb{Z}_{2}=\mathbb{Z} /(2) \text { is the integers mod } 2 \\
& R[x] /(x)=R \\
& R[x] /\left(x^{2}\right)=\{a x+b \mid a, b \in R\}
\end{aligned}
$$

The Hilbert Scheme of Points in the Plane

The Hilbert scheme Hilb_{n} of n points in the plane is the set of ideals $I \subset \mathbb{C}[x, y]$ such that the dimension of $\mathbb{C}[x, y] / I$ as a vector space over \mathbb{C} is n.
Examples:

The Hilbert Scheme of Points in the Plane

The Hilbert scheme Hilb_{n} of n points in the plane is the set of ideals $I \subset \mathbb{C}[x, y]$ such that the dimension of $\mathbb{C}[x, y] / I$ as a vector space over \mathbb{C} is n.
Examples:

$$
\mathbb{C}[x, y] /(x, y)=\mathbb{C} \Rightarrow(x, y) \in \operatorname{Hilb}_{1}
$$

The Hilbert Scheme of Points in the Plane

The Hilbert scheme Hilb_{n} of n points in the plane is the set of ideals $I \subset \mathbb{C}[x, y]$ such that the dimension of $\mathbb{C}[x, y] / I$ as a vector space over \mathbb{C} is n.
Examples:

$$
\begin{aligned}
& \mathbb{C}[x, y] /(x, y)=\mathbb{C} \Rightarrow(x, y) \in \operatorname{Hilb}_{1} \\
& \mathbb{C}[x, y] /\left(x^{2}, x y, y^{2}\right)=\{a x+\text { by }+c\} \Rightarrow\left(x^{2}, x y, y^{2}\right) \in \text { Hilb }_{3}
\end{aligned}
$$

The Hilbert Scheme of Points in the Plane

The Hilbert scheme Hilb_{n} of n points in the plane is the set of ideals $I \subset \mathbb{C}[x, y]$ such that the dimension of $\mathbb{C}[x, y] / I$ as a vector space over \mathbb{C} is n.
Examples:

$$
\begin{aligned}
& \mathbb{C}[x, y] /(x, y)=\mathbb{C} \Rightarrow(x, y) \in \mathrm{Hilb}_{1} \\
& \mathbb{C}[x, y] /\left(x^{2}, x y, y^{2}\right)=\{a x+\text { by }+c\} \Rightarrow\left(x^{2}, x y, y^{2}\right) \in \text { Hilb }_{3} \\
& \mathbb{C}[x, y] /(x)=\left\{a+b y+c y^{2}+\ldots\right\} \text { so }(x) \notin \text { Hilb }_{n} \text { for any } n
\end{aligned}
$$

Relation of Shuffle Algebra to Hilbert Scheme

Theorem (Schiffmann and Vasserot, 2013)

Consider the equivariant K-theory group $K^{T}\left(\right.$ Hilb $\left._{n}\right)$ of the Hilbert scheme and let

$$
L_{\mathbf{R}}=\bigoplus_{n \geq 0} K^{T}\left(\text { Hilb }_{n}\right), \quad L_{K}=L_{\mathbf{R}} \otimes_{\mathbf{R}} \mathbf{K}
$$

where $\mathbf{R}=\mathbb{C}\left[q_{1}^{ \pm 1}, q_{2}^{ \pm 1}\right]$ and $\mathbf{K}=\mathbb{C}\left(q_{1}, q_{2}\right)$.
Then L_{R} is a module over the integral shuffle algebra and L_{K} is a module over the fractional shuffle algebra.

Ongoing Work

Theorem

Let $A_{k}^{\mathbf{R}}$ be the subset of the integral shuffle algebra consisting of functions in k variables. Then the following hold:
A_{k}^{R} is an ideal of $\mathrm{R}\left[z_{1}^{ \pm 1}, \ldots, z_{k}^{ \pm 1}\right]$ for all k.
A_{2}^{R} is the ideal $\left(z_{1} * z_{1}^{0}, z_{1}^{0} * z_{1}^{0}\right)$ of $\mathrm{R}\left[z_{1}^{ \pm 1}, z_{2}^{ \pm 1}\right]$.
As an ideal of $\mathbf{R}\left[z_{1}^{ \pm 1}, z_{2}^{ \pm 1}, z_{3}^{ \pm 1}\right], A_{3}^{\mathbf{R}}$ is generated by the elements $z_{1}^{d_{1}} * z_{1}^{d_{2}} * z_{1}^{0}$ for $0 \leq d_{1} \leq 2,0 \leq d_{2} \leq 1$.

Ongoing Work

Recall the ideal form of the wheel conditions:

$$
\begin{aligned}
& p \in\left(q_{1} q_{2} z_{1}-z_{3}, q_{1} z_{1}-z_{2}, q_{2} z_{2}-z_{3}\right), \\
& p \in\left(q_{1} q_{2} z_{1}-z_{3}, q_{2} z_{1}-z_{2}, q_{1} z_{2}-z_{3}\right) .
\end{aligned}
$$

We create a similar condition from the generators of A_{2}^{R} :

Theorem

A_{k}^{R} is contained in the ideal

$$
\left(z_{1} * z_{1}^{0}, z_{1}^{0} * z_{1}^{0}\right)
$$

of $\mathbf{R}\left[z_{1}^{ \pm 1}, \ldots, z_{k}^{ \pm 1}\right]$ for $k \geq 2$.

Plans for Future Work

The first theorem also showed that $A_{3}^{\mathbf{R}}$ is finitely generated as an ideal.

Plans for Future Work

The first theorem also showed that $A_{3}^{\mathbf{R}}$ is finitely generated as an ideal.

- Use this to prove another general condition.

Plans for Future Work

The first theorem also showed that $A_{3}^{\mathbf{R}}$ is finitely generated as an ideal.

- Use this to prove another general condition.
- Find a computer algebra system/algorithm to calculate ideals of $\mathbf{R}\left[z_{1}^{ \pm 1}, z_{2}^{ \pm 1}, z_{3}^{ \pm 1}\right]$, as hand calculations are not feasible:

$$
\begin{gathered}
P\left(z_{1}, \ldots, z_{k}\right) * Q\left(z_{1}, \ldots, z_{l}\right)= \\
\frac{1}{k!!!} \sum_{\text {sym }} P\left(z_{1}, \ldots, z_{k}\right) Q\left(z_{k+1}, \ldots, z_{k+l}\right) \prod_{\substack{1 \leq i \leq k \\
k<j \leq k+1}} \frac{\left(z_{i}-q_{1} q_{2} z_{j}\right)\left(z_{j}-q_{1} z_{i}\right)\left(z_{j}-q_{2} z_{i}\right)}{z_{i}-z_{j}} .
\end{gathered}
$$

Plans for Future Work

The first theorem also showed that $A_{3}^{\mathbf{R}}$ is finitely generated as an ideal.

- Use this to prove another general condition.
- Find a computer algebra system/algorithm to calculate ideals of $\mathbf{R}\left[z_{1}^{ \pm 1}, z_{2}^{ \pm 1}, z_{3}^{ \pm 1}\right]$, as hand calculations are not feasible:

$$
\begin{gathered}
P\left(z_{1}, \ldots, z_{k}\right) * Q\left(z_{1}, \ldots, z_{l}\right)= \\
\frac{1}{k!!!} \sum_{\text {sym }} P\left(z_{1}, \ldots, z_{k}\right) Q\left(z_{k+1}, \ldots, z_{k+l}\right) \prod_{\substack{1 \leq i \leq k \\
k<j \leq k+l}} \frac{\left(z_{i}-q_{1} q_{2} z_{j}\right)\left(z_{j}-q_{1} z_{i}\right)\left(z_{j}-q_{2} z_{i}\right)}{z_{i}-z_{j}} .
\end{gathered}
$$

- Try to prove that conditions are sufficient or find new ways to generate conditions that can be proven.

Difficulties of the Project: $z_{1}^{0} * z_{1}^{0} * z_{1}^{0}$

$$
\begin{aligned}
& z_{1}^{0} * z_{1}^{0} * z_{1}^{0}=6 q_{1}^{3} q_{2}^{3} z_{1}^{4} z_{2}^{2}+\left(-3 q_{1}^{2} q_{2}^{2}-3 q_{1}^{3} q_{2}^{2}-3 q_{1}^{2} q_{2}^{3}+6 q_{1}^{3} q_{2}^{3}-3 q_{1}^{4} q_{2}^{3}-3 q_{1}^{3} q_{2}^{4}-3 q_{1}^{4} q_{2}^{4}\right) z_{1}^{3} z_{2}^{3}+6 q_{1}^{3} q_{2}^{3} z_{1}^{2} z_{2}^{4} \\
& +\left(-3 q_{1}^{2} q_{2}^{2}-3 q_{1}^{3} q_{2}^{2}-3 q_{1}^{2} q_{2}^{3}+6 q_{1}^{3} q_{2}^{3}-3 q_{1}^{4} q_{2}^{3}-3 q_{1}^{3} q_{2}^{4}-3 q_{1}^{4} q_{2}^{4}\right) z_{1}^{4} z_{2} z_{3}+\left(q_{1} q_{2}+4 q_{1}^{2} q_{2}+q_{1}^{3} q_{2}+4 q_{1} q_{2}^{2}-7 q_{1}^{2} q_{2}^{2}\right. \\
& \left.-7 q_{1}^{3} q_{2}^{2}+4 q_{1}^{4} q_{2}^{2}+q_{1} q_{2}^{3}-7 q_{1}^{2} q_{2}^{3}+24 q_{1}^{3} q_{2}^{3}-7 q_{1}^{4} q_{2}^{3}+q_{1}^{5} q_{2}^{3}+4 q_{1}^{2} q_{2}^{4}-7 q_{1}^{3} q_{2}^{4}-7 q_{1}^{4} q_{2}^{4}+4 q_{1}^{5} q_{2}^{4}+q_{1}^{3} q_{2}^{5}+4 q_{1}^{4} q_{2}^{5}+q_{1}^{5} q_{2}^{5}\right) z_{1}^{3} z_{2}^{2} z_{3} \\
& +\left(q_{1} q_{2}+4 q_{1}^{2} q_{2}+q_{1}^{3} q_{2}+4 q_{1} q_{2}^{2}-7 q_{1}^{2} q_{2}^{2}-7 q_{1}^{3} q_{2}^{2}+4 q_{1}^{4} q_{2}^{2}+q_{1} q_{2}^{3}-7 q_{1}^{2} q_{2}^{3}+24 q_{1}^{3} q_{2}^{3}-7 q_{1}^{4} q_{2}^{3}+q_{1}^{5} q_{2}^{3}+4 q_{1}^{2} q_{2}^{4}-7 q_{1}^{3} q_{2}^{4}\right. \\
& \left.-7 q_{1}^{4} q_{2}^{4}+4 q_{1}^{5} q_{2}^{4}+q_{1}^{3} q_{2}^{5}+4 q_{1}^{4} q_{2}^{5}+q_{1}^{5} q_{2}^{5}\right) z_{1}^{2} z_{2}^{3} z_{3}+\left(-3 q_{1}^{2} q_{2}^{2}-3 q_{1}^{3} q_{2}^{2}-3 q_{1}^{2} q_{2}^{3}+6 q_{1}^{3} q_{2}^{3}-3 q_{1}^{4} q_{2}^{3}-3 q_{1}^{3} q_{2}^{4}-3 q_{1}^{4} q_{2}^{4}\right) z_{1} z_{2}^{4} z_{3} \\
& +6 q_{1}^{3} q_{2}^{3} z_{1}^{4} z_{3}^{2}+\left(q_{1} q_{2}+4 q_{1}^{2} q_{2}+q_{1}^{3} q_{2}+4 q_{1} q_{2}^{2}-7 q_{1}^{2} q_{2}^{2}-7 q_{1}^{3} q_{2}^{2}+4 q_{1}^{4} q_{2}^{2}+q_{1} q_{2}^{3}-7 q_{1}^{2} q_{2}^{3}+24 q_{1}^{3} q_{2}^{3}-7 q_{1}^{4} q_{2}^{3}+q_{1}^{5} q_{2}^{3}+4 q_{1}^{2} q_{2}^{4}\right. \\
& \left.-7 q_{1}^{3} q_{2}^{4}-7 q_{1}^{4} q_{2}^{4}+4 q_{1}^{5} q_{2}^{4}+q_{1}^{3} q_{2}^{5}+4 q_{1}^{4} q_{2}^{5}+q_{1}^{5} q_{2}^{5}\right) z_{1}^{3} z_{2} z_{3}^{2}+\left(-1-2 q_{1}-2 q_{1}^{2}-q_{1}^{3}-2 q_{2}-q_{1} q_{2}+6 q_{1}^{2} q_{2}-q_{1}^{3} q_{2}-2 q_{1}^{4} q_{2}-2 q_{2}^{2}\right. \\
& +6 q_{1} q_{2}^{2}-13 q_{1}^{2} q_{2}^{2}-13 q_{1}^{3} q_{2}^{2}+6 q_{1}^{4} q_{2}^{2}-2 q_{1}^{5} q_{2}^{2}-q_{2}^{3}-q_{1} q_{2}^{3}-13 q_{1}^{2} q_{2}^{3}+42 q_{1}^{3} q_{2}^{3}-13 q_{1}^{4} q_{2}^{3}-q_{1}^{5} q_{2}^{3}-q_{1}^{6} q_{2}^{3}-2 q_{1} q_{2}^{4}+6 q_{1}^{2} q_{2}^{4} \\
& \left.-13 q_{1}^{3} q_{2}^{4}-13 q_{1}^{4} q_{2}^{4}+6 q_{1}^{5} q_{2}^{4}-2 q_{1}^{6} q_{2}^{4}-2 q_{1}^{2} q_{2}^{5}-q_{1}^{3} q_{2}^{5}+6 q_{1}^{4} q_{2}^{5}-q_{1}^{5} q_{2}^{5}-2 q_{1}^{6} q_{2}^{5}-q_{1}^{3} q_{2}^{6}-2 q_{1}^{4} q_{2}^{6}-2 q_{1}^{5} q_{2}^{6}-q_{1}^{6} q_{2}^{6}\right) z_{1}^{2} z_{2}^{2} z_{3}^{2} \\
& +\left(q_{1} q_{2}+4 q_{1}^{2} q_{2}+q_{1}^{3} q_{2}+4 q_{1} q_{2}^{2}-7 q_{1}^{2} q_{2}^{2}-7 q_{1}^{3} q_{2}^{2}+4 q_{1}^{4} q_{2}^{2}+q_{1} q_{2}^{3}-7 q_{1}^{2} q_{2}^{3}+24 q_{1}^{3} q_{2}^{3}-7 q_{1}^{4} q_{2}^{3}+q_{1}^{5} q_{2}^{3}+4 q_{1}^{2} q_{2}^{4}-7 q_{1}^{3} q_{2}^{4}-7 q_{1}^{4} q_{2}^{4}\right. \\
& \left.+4 q_{1}^{5} q_{2}^{4}+q_{1}^{3} q_{2}^{5}+4 q_{1}^{4} q_{2}^{5}+q_{1}^{5} q_{2}^{5}\right) z_{1} z_{2}^{3} z_{3}^{2}+6 q_{1}^{3} q_{2}^{3} z_{2}^{4} z_{3}^{2}+\left(-3 q_{1}^{2} q_{2}^{2}-3 q_{1}^{3} q_{2}^{2}-3 q_{1}^{2} q_{2}^{3}+6 q_{1}^{3} q_{2}^{3}-3 q_{1}^{4} q_{2}^{3}-3 q_{1}^{3} q_{2}^{4}-3 q_{1}^{4} q_{2}^{4}\right) z_{1}^{3} z_{3}^{3} \\
& +\left(q_{1} q_{2}+4 q_{1}^{2} q_{2}+q_{1}^{3} q_{2}+4 q_{1} q_{2}^{2}-7 q_{1}^{2} q_{2}^{2}-7 q_{1}^{3} q_{2}^{2}+4 q_{1}^{4} q_{2}^{2}+q_{1} q_{2}^{3}-7 q_{1}^{2} q_{2}^{3}+24 q_{1}^{3} q_{2}^{3}-7 q_{1}^{4} q_{2}^{3}+q_{1}^{5} q_{2}^{3}+4 q_{1}^{2} q_{2}^{4}-7 q_{1}^{3} q_{2}^{4}-7 q_{1}^{4} q_{2}^{4}\right. \\
& \left.+4 q_{1}^{5} q_{2}^{4}+q_{1}^{3} q_{2}^{5}+4 q_{1}^{4} q_{2}^{5}+q_{1}^{5} q_{2}^{5}\right) z_{1}^{2} z_{2} z_{3}^{3}+\left(q_{1} q_{2}+4 q_{1}^{2} q_{2}+q_{1}^{3} q_{2}+4 q_{1} q_{2}^{2}-7 q_{1}^{2} q_{2}^{2}-7 q_{1}^{3} q_{2}^{2}+4 q_{1}^{4} q_{2}^{2}+q_{1} q_{2}^{3}-7 q_{1}^{2} q_{2}^{3}+24 q_{1}^{3} q_{2}^{3}\right. \\
& \left.-7 q_{1}^{4} q_{2}^{3}+q_{1}^{5} q_{2}^{3}+4 q_{1}^{2} q_{2}^{4}-7 q_{1}^{3} q_{2}^{4}-7 q_{1}^{4} q_{2}^{4}+4 q_{1}^{5} q_{2}^{4}+q_{1}^{3} q_{2}^{5}+4 q_{1}^{4} q_{2}^{5}+q_{1}^{5} q_{2}^{5}\right) z_{1} z_{2}^{2} z_{3}^{3}+\left(-3 q_{1}^{2} q_{2}^{2}-3 q_{1}^{3} q_{2}^{2}-3 q_{1}^{2} q_{2}^{3}+6 q_{1}^{3} q_{2}^{3}-3 q_{1}^{4} q_{2}^{3}\right. \\
& \left.-3 q_{1}^{3} q_{2}^{4}-3 q_{1}^{4} q_{2}^{4}\right) z_{2}^{3} z_{3}^{3}+6 q_{1}^{3} q_{2}^{3} z_{1}^{2} z_{3}^{4}+\left(-3 q_{1}^{2} q_{2}^{2}-3 q_{1}^{3} q_{2}^{2}-3 q_{1}^{2} q_{2}^{3}+6 q_{1}^{3} q_{2}^{3}-3 q_{1}^{4} q_{2}^{3}-3 q_{1}^{3} q_{2}^{4}-3 q_{1}^{4} q_{2}^{4}\right) z_{1} z_{2} z_{3}^{4}-6 q_{1}^{3} q_{2}^{3} z_{2}^{2} z_{3}^{4}
\end{aligned}
$$

Acknowledgements

- My mentor, Yu Zhao
- The MIT PRIMES Program
- The MIT Math Department
- Dr. Tanya Khovanova

