Character Theory of Finite Groups

Elias Sink and Allen Wang

Mentor: Chris Ryba

PRIMES Conference: May 18th, 2019

Elias Sink and Allen Wang

Character Theory of Finite Groups

PRIMES Conference 1 / 13

Image: A matrix of the second seco

• The only math that we truly understand is linear algebra.

3

(日) (同) (三) (三)

- The only math that we truly understand is linear algebra.
- Representation theory gives us a nice way of translating abstract relations into an easier language.

Image: A match a ma

- The only math that we truly understand is linear algebra.
- Representation theory gives us a nice way of translating abstract relations into an easier language.
- We will focus on the finite representation of groups and work with vector spaces over \mathbb{C} . We pick \mathbb{C} because it is algebraically closed and has characteristic 0.

Image: A math a math

Definition

A representation of a group G is the pair (V, ρ) where V is a vector space and ρ is a group homomorphism from $G \to GL(V)$, i.e. $\rho(g_1)\rho(g_2) = \rho(g_1g_2)$.

Image: A matrix of the second seco

Definition

A representation of a group G is the pair (V, ρ) where V is a vector space and ρ is a group homomorphism from $G \to GL(V)$, i.e. $\rho(g_1)\rho(g_2) = \rho(g_1g_2)$.

For example, the regular representation of a group G is the representation $(\mathbb{C}[G], \rho)$ where $\mathbb{C}[G]$ is the vector space freely generated by G and $\rho(g)$ is multiplication by g on the left.

< < p>< < p>

Definition

A representation of a group G is the pair (V, ρ) where V is a vector space and ρ is a group homomorphism from $G \to GL(V)$, i.e. $\rho(g_1)\rho(g_2) = \rho(g_1g_2)$.

For example, the regular representation of a group G is the representation $(\mathbb{C}[G], \rho)$ where $\mathbb{C}[G]$ is the vector space freely generated by G and $\rho(g)$ is multiplication by g on the left.

Definition

Given a group G and representations V and W, let $\operatorname{Hom}_{G}(V, W)$ be the linear maps $\phi: V \to W$ with $\phi \rho_{V}(g) = \rho_{W}(g)\phi$.

イロト 不得下 イヨト イヨト

Definition

A representation V of G is simple (or irreducible) if there is no proper nonzero subrepresentation of V.

(日) (周) (三) (三)

Definition

A representation V of G is simple (or irreducible) if there is no proper nonzero subrepresentation of V.

Lemma (Schur)

Let V and W be simple representations of G. If they are distinct, then dim $\operatorname{Hom}_{G}(V, W) = 0$. If $V \cong W$, then dim $\operatorname{Hom}_{G}(V, W) = 1$.

(日) (周) (三) (三)

Definition

A representation V of G is simple (or irreducible) if there is no proper nonzero subrepresentation of V.

Lemma (Schur)

Let V and W be simple representations of G. If they are distinct, then dim $\operatorname{Hom}_{G}(V, W) = 0$. If $V \cong W$, then dim $\operatorname{Hom}_{G}(V, W) = 1$.

Let nonzero $\phi: V \to W$ be in $\operatorname{Hom}_{G}(V, W)$. If V is simple, then ϕ is injective. If W is simple, then ϕ is surjective.

Definition

A representation V of G is simple (or irreducible) if there is no proper nonzero subrepresentation of V.

Lemma (Schur)

Let V and W be simple representations of G. If they are distinct, then dim $\operatorname{Hom}_{G}(V, W) = 0$. If $V \cong W$, then dim $\operatorname{Hom}_{G}(V, W) = 1$.

Let nonzero $\phi: V \to W$ be in $\operatorname{Hom}_{G}(V, W)$. If V is simple, then ϕ is injective. If W is simple, then ϕ is surjective.

Theorem (Maschke)

Let V be any representation of G. Then V is the direct sum of simple representations of G.

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Examples of Representations

Example (C_3)

The regular representation of C_3 is \mathbb{C}^3 where the action of $g \in C_3$ is cyclically permuting the coordinates.

- The space (a, a, a) is the trivial representation.
- The space (a, b, c): a + b + c = 0 is a two-dimensional subrepresentation.

Image: A matrix of the second seco

Examples of Representations

Example (C_3)

The regular representation of C_3 is \mathbb{C}^3 where the action of $g \in C_3$ is cyclically permuting the coordinates.

- The space (a, a, a) is the trivial representation.
- The space (a, b, c): a + b + c = 0 is a two-dimensional subrepresentation.

Example (S_3)

We give examples of irreducible representations of S_3 .

- The trivial representation, $\mathbb{C}_+,$ which sends all g to 1.
- The sign representation, \mathbb{C}_- , which sends all elements to $\mathrm{sgn}(g) \in \{-1,+1\}.$
- The space (a, b, c): a + b + c = 0, \mathbb{C}^2 , where g acts by permutation of coordinates.

Definition

The character χ_V of a representation V is the function $\chi: G \to \mathbb{C}$ defined by $\chi(g) = \text{Tr}(\rho(g))$.

3

(日) (周) (三) (三)

Definition

The character χ_V of a representation V is the function $\chi : G \to \mathbb{C}$ defined by $\chi(g) = \text{Tr}(\rho(g))$.

Note that since $\text{Tr}(MgM^{-1}) = \text{Tr}(g)$, so character is independent of the choice of basis for V. Similarly, $\text{Tr}(g_2g_1g_2^{-1}) = \text{Tr}(g_1)$, so χ is constant on conjugacy classes, i.e. it is a class function.

Definition

The character χ_V of a representation V is the function $\chi : G \to \mathbb{C}$ defined by $\chi(g) = \text{Tr}(\rho(g))$.

Note that since $\text{Tr}(MgM^{-1}) = \text{Tr}(g)$, so character is independent of the choice of basis for V. Similarly, $\text{Tr}(g_2g_1g_2^{-1}) = \text{Tr}(g_1)$, so χ is constant on conjugacy classes, i.e. it is a class function.

Lemma

If V and W are representations of G, then $\chi_{V \oplus W} = \chi_V + \chi_W$.

Definition

The character χ_V of a representation V is the function $\chi : G \to \mathbb{C}$ defined by $\chi(g) = \text{Tr}(\rho(g))$.

Note that since $Tr(MgM^{-1}) = Tr(g)$, so character is independent of the choice of basis for V. Similarly, $Tr(g_2g_1g_2^{-1}) = Tr(g_1)$, so χ is constant on conjugacy classes, i.e. it is a class function.

Lemma

If V and W are representations of G, then $\chi_{V \oplus W} = \chi_V + \chi_W$.

$$\chi_{V\oplus W}(g) = \operatorname{Tr} \begin{bmatrix} \rho_V(g) & 0\\ 0 & \rho_W(g) \end{bmatrix} = \operatorname{Tr}(\rho_V(g)) + \operatorname{Tr}(\rho_W(g))$$
$$= \chi_V(g) + \chi_W(g)$$

Example (S_3)

• The trivial representation, \mathbb{C}_+ , has character $\chi(g) = 1$.

3

(日) (周) (三) (三)

Example (S_3)

- The trivial representation, \mathbb{C}_+ , has character $\chi(g) = 1$.
- The sign representation, \mathbb{C}_{-} , has character $\chi(g) = \operatorname{sgn}(g)$.

- 3

(日) (周) (三) (三)

Example (S_3)

- The trivial representation, \mathbb{C}_+ , has character $\chi(g) = 1$.
- The sign representation, \mathbb{C}_- , has character $\chi(g) = \operatorname{sgn}(g)$.
- The space (a, b, c) : a + b + c = 0 where g acts by permutation of coordinates is the mean zero representation, C². Thus, χ(g) is one less than the number of fixed points of g.

イロト イヨト イヨト

Inner Product

• What kind of structure do characters have?

Inner Product

- What kind of structure do characters have?
- It can be shown from Maschke's Theorem that characters of simple representations are linearly independent and span the vector space F_c(G, C) of class functions G → C.

- 3

(日) (周) (三) (三)

Inner Product

- What kind of structure do characters have?
- It can be shown from Maschke's Theorem that characters of simple representations are linearly independent and span the vector space F_c(G, C) of class functions G → C.
- Define an inner product (-,-) on $F_c(G,\mathbb{C})$ by

$$(f_1, f_2) = rac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}$$

or, letting $\{C_i\}$ be the conjugacy classes of G,

$$\sum_{i} \frac{|C_i|}{|G|} f_1(C_i) \overline{f_2(C_i)}.$$

Orthogonality Relations

Theorem (Orthogonality by rows)

For V, W simple,
$$(\chi_V, \chi_W) = \begin{cases} 1 & V \cong W \\ 0 & V \not\cong W \end{cases}$$

3

(日) (同) (三) (三)

Orthogonality Relations

Theorem (Orthogonality by rows)

For V, W simple,
$$(\chi_V, \chi_W) = \begin{cases} 1 & V \cong W \\ 0 & V \not\cong W \end{cases}$$

Proof sketch: it can be shown that

$$\frac{1}{|G|}\sum_{g\in G}\chi_V(g)\overline{\chi_W(g)} = \dim \operatorname{Hom}_G(W, V).$$

The result then follows immediately from Schur's lemma.

Image: A math a math

Orthogonality Relations

Theorem (Orthogonality by rows)

For V, W simple,
$$(\chi_V, \chi_W) = \begin{cases} 1 & V \cong W \\ 0 & V \not\cong W \end{cases}$$

• Proof sketch: it can be shown that

$$\frac{1}{|G|}\sum_{g\in G}\chi_V(g)\overline{\chi_W(g)} = \dim \operatorname{Hom}_G(W, V).$$

The result then follows immediately from Schur's lemma.

• Thus this basis is orthonormal with respect to (-, -).

イロト イヨト イヨト

Orthogonality Relations, Cont.

• A different orthonormal basis is given by $\{\sqrt{|G|/|C_i|}\delta_i\}$, where $\delta_i(g) = \begin{cases} 1 & g \in C_i \\ 0 & g \notin C_i \end{cases}$

Orthogonality Relations, Cont.

- A different orthonormal basis is given by $\{\sqrt{|G|}/|C_i|\delta_i\}$, where $\delta_i(g) = \begin{cases} 1 & g \in C_i \\ 0 & g \notin C_i \end{cases}$
- Some calculation gives $(\delta_i, \delta_j) = \sum_V \chi_V(C_i)\chi_V(C_j)$, where the sum is over simple representations.

Orthogonality Relations, Cont.

- A different orthonormal basis is given by $\{\sqrt{|G|/|C_i|}\delta_i\}$, where $\delta_i(g) = \begin{cases} 1 & g \in C_i \\ 0 & g \notin C_i \end{cases}$
- Some calculation gives $(\delta_i, \delta_j) = \sum_V \chi_V(C_i)\chi_V(C_j)$, where the sum is over simple representations. This leads to

Theorem (Orthogonality by columns)

$$\sum_{V} \chi_{V}(C_{i}) \chi_{V}(C_{j}) = \begin{cases} |G|/|C_{i}| & i = j \\ 0 & i \neq j \end{cases}$$

Elias Sink and Allen Wang

10 / 13

Character Tables

• These data can be summarized in a character table. Rows are indexed by simples, columns by conjugacy classes. The number in row V and column C is $\chi_V(C)$. A row giving the size of each conjugacy class is also included.

Example (S_3)

<i>S</i> ₃	1 ³	$1^{1}2^{1}$	3 ¹
#	1	3	2
\mathbb{C}_+	1	1	1
\mathbb{C}_{-}	1	-1	1
\mathbb{C}^2	2	0	-1

11 / 13

Conclusion

• This information, together with Schur's lemma and Maschke's theorem, can be used to extract the simple summands (with multiplicity) of any representation of *G*, which determine it up to isomorphism.

Conclusion

- This information, together with Schur's lemma and Maschke's theorem, can be used to extract the simple summands (with multiplicity) of any representation of *G*, which determine it up to isomorphism.
- Furthermore, this is accomplished with a easy, concrete computation. Operations such as taking quotients and tensor products are similarly tractable with this machine.

Conclusion

- This information, together with Schur's lemma and Maschke's theorem, can be used to extract the simple summands (with multiplicity) of any representation of *G*, which determine it up to isomorphism.
- Furthermore, this is accomplished with a easy, concrete computation. Operations such as taking quotients and tensor products are similarly tractable with this machine.
- Thus the character table of a finite group gives an essentially complete description of its representation theory as well as a powerful computational tool for working with ostensibly abstract objects.

Acknowledgements

We would like to thank:

æ

イロト イヨト イヨト イヨト

• Our mentor, Chris Ryba

3

(日) (周) (三) (三)

- Our mentor, Chris Ryba
- Dr. Gerovitch and the MIT PRIMES program

3

Image: A math a math

- Our mentor, Chris Ryba
- Dr. Gerovitch and the MIT PRIMES program
- Prof. Pavel Etingof for his course notes and book

Image: A matrix of the second seco

- Our mentor, Chris Ryba
- Dr. Gerovitch and the MIT PRIMES program
- Prof. Pavel Etingof for his course notes and book
- Our parents

3

Image: A matrix of the second seco