Character Theory of Finite Groups

Elias Sink and Allen Wang

Mentor: Chris Ryba

PRIMES Conference: May 18th, 2019

Motivation

- The only math that we truly understand is linear algebra.

Motivation

- The only math that we truly understand is linear algebra.
- Representation theory gives us a nice way of translating abstract relations into an easier language.

Motivation

- The only math that we truly understand is linear algebra.
- Representation theory gives us a nice way of translating abstract relations into an easier language.
- We will focus on the finite representation of groups and work with vector spaces over \mathbb{C}. We pick \mathbb{C} because it is algebraically closed and has characteristic 0 .

Basic Definitions

Definition

A representation of a group G is the pair (V, ρ) where V is a vector space and ρ is a group homomorphism from $G \rightarrow \mathrm{GL}(V)$, i.e. $\rho\left(g_{1}\right) \rho\left(g_{2}\right)=\rho\left(g_{1} g_{2}\right)$.

Basic Definitions

Definition

A representation of a group G is the pair (V, ρ) where V is a vector space and ρ is a group homomorphism from $G \rightarrow \mathrm{GL}(V)$, i.e.
$\rho\left(g_{1}\right) \rho\left(g_{2}\right)=\rho\left(g_{1} g_{2}\right)$.
For example, the regular representation of a group G is the representation $(\mathbb{C}[G], \rho)$ where $\mathbb{C}[G]$ is the vector space freely generated by G and $\rho(g)$ is multiplication by g on the left.

Basic Definitions

Definition

A representation of a group G is the pair (V, ρ) where V is a vector space and ρ is a group homomorphism from $G \rightarrow \mathrm{GL}(V)$, i.e.
$\rho\left(g_{1}\right) \rho\left(g_{2}\right)=\rho\left(g_{1} g_{2}\right)$.
For example, the regular representation of a group G is the representation ($\mathbb{C}[G], \rho$) where $\mathbb{C}[G]$ is the vector space freely generated by G and $\rho(g)$ is multiplication by g on the left.

Definition

Given a group G and representations V and W, let $\operatorname{Hom}_{G}(V, W)$ be the linear maps $\phi: V \rightarrow W$ with $\phi \rho_{V}(g)=\rho_{W}(g) \phi$.

Basic Results

Definition

A representation V of G is simple (or irreducible) if there is no proper nonzero subrepresentation of V.

Basic Results

Definition

A representation V of G is simple (or irreducible) if there is no proper nonzero subrepresentation of V.

Lemma (Schur)
Let V and W be simple representations of G. If they are distinct, then $\operatorname{dim} \operatorname{Hom}_{G}(V, W)=0$. If $V \cong W$, then $\operatorname{dim} \operatorname{Hom}_{G}(V, W)=1$.

Basic Results

Definition

A representation V of G is simple (or irreducible) if there is no proper nonzero subrepresentation of V.

Lemma (Schur)
Let V and W be simple representations of G. If they are distinct, then $\operatorname{dim} \operatorname{Hom}_{G}(V, W)=0$. If $V \cong W$, then $\operatorname{dim} \operatorname{Hom}_{G}(V, W)=1$.

Let nonzero $\phi: V \rightarrow W$ be in $\operatorname{Hom}_{G}(V, W)$. If V is simple, then ϕ is injective. If W is simple, then ϕ is surjective.

Basic Results

Definition

A representation V of G is simple (or irreducible) if there is no proper nonzero subrepresentation of V.

Lemma (Schur)

Let V and W be simple representations of G. If they are distinct, then $\operatorname{dim} \operatorname{Hom}_{G}(V, W)=0$. If $V \cong W$, then $\operatorname{dim} \operatorname{Hom}_{G}(V, W)=1$.

Let nonzero $\phi: V \rightarrow W$ be in $\operatorname{Hom}_{G}(V, W)$. If V is simple, then ϕ is injective. If W is simple, then ϕ is surjective.

Theorem (Maschke)
Let V be any representation of G. Then V is the direct sum of simple representations of G.

Examples of Representations

Example (C_{3})

The regular representation of C_{3} is \mathbb{C}^{3} where the action of $g \in C_{3}$ is cyclically permuting the coordinates.

- The space (a, a, a) is the trivial representation.
- The space $(a, b, c): a+b+c=0$ is a two-dimensional subrepresentation.

Examples of Representations

Example (C_{3})

The regular representation of C_{3} is \mathbb{C}^{3} where the action of $g \in C_{3}$ is cyclically permuting the coordinates.

- The space (a, a, a) is the trivial representation.
- The space $(a, b, c): a+b+c=0$ is a two-dimensional subrepresentation.

Example (S_{3})
We give examples of irreducible representations of S_{3}.

- The trivial representation, \mathbb{C}_{+}, which sends all g to 1 .
- The sign representation, \mathbb{C}_{-}, which sends all elements to $\operatorname{sgn}(g) \in\{-1,+1\}$.
- The space $(a, b, c): a+b+c=0, \mathbb{C}^{2}$, where g acts by permutation of coordinates.

Definition of Characters

Definition

The character χ_{V} of a representation V is the function $\chi: G \rightarrow \mathbb{C}$ defined by $\chi(g)=\operatorname{Tr}(\rho(g))$.

Definition of Characters

Definition

The character χ_{V} of a representation V is the function $\chi: G \rightarrow \mathbb{C}$ defined by $\chi(g)=\operatorname{Tr}(\rho(g))$.

Note that since $\operatorname{Tr}\left(M g M^{-1}\right)=\operatorname{Tr}(g)$, so character is independent of the choice of basis for V. Similarly, $\operatorname{Tr}\left(g_{2} g_{1} g_{2}^{-1}\right)=\operatorname{Tr}\left(g_{1}\right)$, so χ is constant on conjugacy classes, i.e. it is a class function.

Definition of Characters

Definition

The character χ_{V} of a representation V is the function $\chi: G \rightarrow \mathbb{C}$ defined by $\chi(g)=\operatorname{Tr}(\rho(g))$.

Note that since $\operatorname{Tr}\left(M g M^{-1}\right)=\operatorname{Tr}(g)$, so character is independent of the choice of basis for V. Similarly, $\operatorname{Tr}\left(g_{2} g_{1} g_{2}^{-1}\right)=\operatorname{Tr}\left(g_{1}\right)$, so χ is constant on conjugacy classes, i.e. it is a class function.

Lemma
If V and W are representations of G, then $\chi_{V \oplus W}=\chi_{V}+\chi_{W}$.

Definition of Characters

Definition

The character χ_{V} of a representation V is the function $\chi: G \rightarrow \mathbb{C}$ defined by $\chi(g)=\operatorname{Tr}(\rho(g))$.

Note that since $\operatorname{Tr}\left(M g M^{-1}\right)=\operatorname{Tr}(g)$, so character is independent of the choice of basis for V. Similarly, $\operatorname{Tr}\left(g_{2} g_{1} g_{2}^{-1}\right)=\operatorname{Tr}\left(g_{1}\right)$, so χ is constant on conjugacy classes, i.e. it is a class function.

Lemma

If V and W are representations of G, then $\chi_{V \oplus W}=\chi_{V}+\chi_{W}$.

$$
\begin{aligned}
\chi v \oplus W(g)=\operatorname{Tr}\left[\begin{array}{cc}
\rho_{V}(g) & 0 \\
0 & \rho_{W}(g)
\end{array}\right] & =\operatorname{Tr}\left(\rho_{V}(g)\right)+\operatorname{Tr}\left(\rho_{W}(g)\right) \\
& =\chi_{V}(g)+\chi_{W}(g)
\end{aligned}
$$

Examples of Characters

Example (S_{3})

- The trivial representation, \mathbb{C}_{+}, has character $\chi(g)=1$.

Examples of Characters

Example $\left(S_{3}\right)$

- The trivial representation, \mathbb{C}_{+}, has character $\chi(g)=1$.
- The sign representation, \mathbb{C}_{-}, has character $\chi(g)=\operatorname{sgn}(g)$.

Examples of Characters

Example (S_{3})

- The trivial representation, \mathbb{C}_{+}, has character $\chi(g)=1$.
- The sign representation, \mathbb{C}_{-}, has character $\chi(g)=\operatorname{sgn}(g)$.
- The space $(a, b, c): a+b+c=0$ where g acts by permutation of coordinates is the mean zero representation, \mathbb{C}^{2}. Thus, $\chi(g)$ is one less than the number of fixed points of g.

Inner Product

- What kind of structure do characters have?

Inner Product

- What kind of structure do characters have?
- It can be shown from Maschke's Theorem that characters of simple representations are linearly independent and span the vector space $F_{c}(G, \mathbb{C})$ of class functions $G \rightarrow \mathbb{C}$.

Inner Product

- What kind of structure do characters have?
- It can be shown from Maschke's Theorem that characters of simple representations are linearly independent and span the vector space $F_{c}(G, \mathbb{C})$ of class functions $G \rightarrow \mathbb{C}$.
- Define an inner product $(-,-)$ on $F_{c}(G, \mathbb{C})$ by

$$
\left(f_{1}, f_{2}\right)=\frac{1}{|G|} \sum_{g \in G} f_{1}(g) \overline{f_{2}(g)}
$$

or, letting $\left\{C_{i}\right\}$ be the conjugacy classes of G,

$$
\sum_{i} \frac{\left|C_{i}\right|}{|G|} f_{1}\left(C_{i}\right) \overline{f_{2}\left(C_{i}\right)}
$$

Orthogonality Relations

Theorem (Orthogonality by rows)
For V, W simple, $(\chi v, \chi W)= \begin{cases}1 & V \cong W \\ 0 & V \nsubseteq W\end{cases}$

Orthogonality Relations

Theorem (Orthogonality by rows)
For V, W simple, $(\chi v, \chi W)= \begin{cases}1 & V \cong W \\ 0 & V \nsubseteq W\end{cases}$

- Proof sketch: it can be shown that

$$
\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \overline{\chi_{W}(g)}=\operatorname{dim} \operatorname{Hom}_{G}(W, V)
$$

The result then follows immediately from Schur's lemma.

Orthogonality Relations

Theorem (Orthogonality by rows)
For V, W simple, $(\chi v, \chi W)= \begin{cases}1 & V \cong W \\ 0 & V \nsubseteq W\end{cases}$

- Proof sketch: it can be shown that

$$
\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \overline{\chi_{W}(g)}=\operatorname{dim} \operatorname{Hom}_{G}(W, V)
$$

The result then follows immediately from Schur's lemma.

- Thus this basis is orthonormal with respect to $(-,-)$.

Orthogonality Relations, Cont.

- A different orthonormal basis is given by $\left\{\sqrt{|G| /\left|C_{i}\right|} \delta_{i}\right\}$, where

$$
\delta_{i}(g)= \begin{cases}1 & g \in C_{i} \\ 0 & g \notin C_{i}\end{cases}
$$

Orthogonality Relations, Cont.

- A different orthonormal basis is given by $\left\{\sqrt{|G| /\left|C_{i}\right|} \delta_{i}\right\}$, where

$$
\delta_{i}(g)= \begin{cases}1 & g \in C_{i} \\ 0 & g \notin C_{i}\end{cases}
$$

- Some calculation gives $\left(\delta_{i}, \delta_{j}\right)=\sum_{v} \chi_{v}\left(C_{i}\right) \chi_{V}\left(C_{j}\right)$, where the sum is over simple representations.

Orthogonality Relations, Cont.

- A different orthonormal basis is given by $\left\{\sqrt{|G| /\left|C_{i}\right|} \delta_{i}\right\}$, where

$$
\delta_{i}(g)= \begin{cases}1 & g \in C_{i} \\ 0 & g \notin C_{i}\end{cases}
$$

- Some calculation gives $\left(\delta_{i}, \delta_{j}\right)=\sum_{V} \chi_{v}\left(C_{i}\right) \chi_{V}\left(C_{j}\right)$, where the sum is over simple representations. This leads to

Theorem (Orthogonality by columns)
$\sum_{v} \chi_{v}\left(C_{i}\right) \chi v\left(C_{j}\right)= \begin{cases}|G| /\left|C_{i}\right| & i=j \\ 0 & i \neq j\end{cases}$

Character Tables

- These data can be summarized in a character table. Rows are indexed by simples, columns by conjugacy classes. The number in row V and column C is $\chi_{V}(C)$. A row giving the size of each conjugacy class is also included.

Example (S_{3})

S_{3}	1^{3}	$1^{1} 2^{1}$	3^{1}
$\#$	1	3	2
\mathbb{C}_{+}	1	1	1
\mathbb{C}_{-}	1	-1	1
\mathbb{C}^{2}	2	0	-1

Conclusion

- This information, together with Schur's lemma and Maschke's theorem, can be used to extract the simple summands (with multiplicity) of any representation of G, which determine it up to isomorphism.

Conclusion

- This information, together with Schur's lemma and Maschke's theorem, can be used to extract the simple summands (with multiplicity) of any representation of G, which determine it up to isomorphism.
- Furthermore, this is accomplished with a easy, concrete computation. Operations such as taking quotients and tensor products are similarly tractable with this machine.

Conclusion

- This information, together with Schur's lemma and Maschke's theorem, can be used to extract the simple summands (with multiplicity) of any representation of G, which determine it up to isomorphism.
- Furthermore, this is accomplished with a easy, concrete computation. Operations such as taking quotients and tensor products are similarly tractable with this machine.
- Thus the character table of a finite group gives an essentially complete description of its representation theory as well as a powerful computational tool for working with ostensibly abstract objects.

Acknowledgements

We would like to thank:

Acknowledgements

We would like to thank:

- Our mentor, Chris Ryba

Acknowledgements

We would like to thank:

- Our mentor, Chris Ryba
- Dr. Gerovitch and the MIT PRIMES program

Acknowledgements

We would like to thank:

- Our mentor, Chris Ryba
- Dr. Gerovitch and the MIT PRIMES program
- Prof. Pavel Etingof for his course notes and book

Acknowledgements

We would like to thank:

- Our mentor, Chris Ryba
- Dr. Gerovitch and the MIT PRIMES program
- Prof. Pavel Etingof for his course notes and book
- Our parents

