Introduction to Representation Theory

Victor Luo and Sasha Shashkov
Mentor: Yau Wing Li

May 18, 2019

What is a Representation?

Let G be a group. A representation ρ of G with dimension n is a function that assigns every $g \in G$ an $n \times n$ matrix $\rho(g)$, such that

$$
\rho(g h)=\rho(g) \rho(h) \text { (matrix multiplication). }
$$

- Equivalently, a representation is a group homomorphism $\rho: G \rightarrow G L(n, F)$ (the group of $n \times n$ invertible matrices over F), where F is any field.
- The matrices $\rho(g)$ can be seen as linear transformations acting on an n-dimensional vector space (defined over F).
- In this talk, we will consider finite groups G and take $F=\mathbb{C}$; these representations exhibit nicer properties, as we will see.

Example: Representation of D_{8}

Consider the group of symmetries D_{8} of the above square, centered at the origin. Because the center is fixed by any symmetry, each element of D_{8} corresponds to a 2-dimensional linear transformation, which corresponds to a 2×2 matrix over \mathbb{R} or \mathbb{C}.

This leads to a 2-dimensional representation of D_{8} :

Example: Representation of D_{8}

Let id be the group identity, r correspond to a 90° counterclockwise rotation, and s correspond to a reflection about the x-axis.

$$
\left.\begin{array}{cc}
i d & r \\
{\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]}
\end{array} \begin{array}{cc}
r^{2} & r^{3} \\
{\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]}
\end{array} \begin{array}{cc}
{\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]}
\end{array} \begin{array}{cc}
s r^{2}
\end{array} \begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

Equivalent Representations

Call two representations ρ_{1} and ρ_{2} equivalent if they have the same dimension and ρ_{2} can be obtained from ρ_{1} by a change of basis.

- Formally, this means there exists a square matrix T such that for all $g \in G$,

$$
\rho_{2}(g)=T^{-1} \rho_{1}(g) T
$$

Suppose we change our basis from $\{[1,0],[0,1]\}$ to $\{[1,0][-1,1]\}$, as shown. Then this yields an equivalent representation of D_{8} :

Equivalent Representations

$$
\begin{aligned}
& \text { id } \begin{aligned}
& r & r^{2}
\end{aligned} \\
& \underset{s}{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \underset{s r}{\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right]} \underset{s r^{2}}{\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]} \underset{s r^{3}}{\left[\begin{array}{ll}
-1 & 2 \\
-1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & -2 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
-1 & 0 \\
-1 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
-1 & 2 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right]}
\end{aligned}
$$

In this case, our matrix $T=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$.

FG-Modules

Let F be a field and G be a group. An $F G$-module is a vector space V over F with left multiplication by elements of G, such that multiplication by any element g is a linear transformation in V.
There is a correspondence between $F G$-modules and representations of G :

Theorem

- For any n-dimensional representation ρ over F of G, F^{n} is an $F G$-module if for any $v \in F^{n}$ and $g \in G, g v$ is defined as

$$
g v=\rho(g) v
$$

- For any n-dimensional FG-module V with basis \mathscr{B}, then $\rho: G \rightarrow G L(n, F)$ is a representation if for all $g \in G$, we define

$$
\rho(g)=[g]_{\mathscr{B}} .
$$

FG-Submodules

If V is an $F G$-module, then an $F G$-submodule of V is any subspace W of V which is also an $F G$-module.

- Equivalently, W is an $F G$-submodule of V if for all $g \in G$ and $w \in W, g w \in W$ (multiplication in V).
For example, the following representation of D_{8} corresponds to a $\mathbb{C} D_{8}$-module, and has two $\mathbb{C} D_{8}$-submodules:

$$
\left.\begin{array}{ccc}
i d & r & r^{2} \\
{\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]} & \left.\begin{array}{cc}
r^{3} \\
1 & 1
\end{array}\right] & \left.\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]
\end{array} \begin{array}{cc}
r^{3} \\
\hline-1 & 0 \\
1 & 1
\end{array}\right]
$$

FG-Submodules

The two submodules are the subspaces generated by the vectors $[2,-1]$ and $[0,1]$, respectively. Using the unique basis for each subspace, the corresponding representations of D_{8} are:

id	r	r^{2}	r^{3}	$i d$	r	r^{2}	r^{3}
$[1]$	$[-1]$	$[1]$	$[-1]$	$[1]$	$[1]$	$[1]$	$[1]$
s	$s r$	$s r^{2}$	$s r^{3}$	s	$s r$	$s r^{2}$	$s r^{3}$
$[1]$	$[-1]$	$[1]$	$[-1]$	$[-1]$	$[-1]$	$[-1]$	$[-1]$

Reducibility of FG-Modules

An nonzero $F G$-module V is called reducible if it has an $F G$-submodule not equal to $\{0\}$ or V. Otherwise, it is irreducible.

- If V is a n-dimensional reducible $F G$-module with a k-dimensional submodule W, then there exists a basis \mathscr{B} of V such that for all $g \in G$,

$$
[g]_{\mathscr{B}}=\left[\begin{array}{c|c}
X_{g} & 0 \\
\hline Y_{g} & Z_{g}
\end{array}\right]
$$

for some matrices X_{g}, Y_{g}, Z_{g} where X_{g} is a $k \times k$ matrix.

- Then, if we define $\rho(g)=X_{g}$ and $\phi(g)=Z_{g}$, both ρ and ϕ are representations of G.

Reducibility of FG-Modules

An nonzero $F G$-module is called reducible if it has an $F G$-submodule not equal to $\{0\}$ or V. Otherwise, it is irreducible.

- This is the same process we used to decompose the $\mathbb{C} D_{8}$-module in the previous example:

$$
\left.\begin{array}{ccc}
i d & r & r^{2} \\
{\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]} & {\left[\begin{array}{cc}
\frac{-1}{1} & 0 \\
\hline
\end{array}\right.} & \left.\begin{array}{cc}
\frac{1}{3} & 0 \\
0 & \frac{1}{2}
\end{array}\right]
\end{array} \begin{array}{cc}
\frac{-1}{1} & 0 \\
s r^{3}
\end{array}\right]
$$

- Because the top-right entries were all 0 , we were able to obtain the red and blue representations.

Direct Sums

We can also combine two $F G$-modules: if V and W are two $F G$-modules, then the space $V \oplus W$ also forms an $F G$-module if we define multiplication as follows:

- For any vector $x \in V \oplus W, x$ can be written as $v+w$ for unique vectors $v \in V$ and $w \in W$. Then, define

$$
g x=g v+g w
$$

for all $g \in G$.

Direct Sums

- For example, if ρ and ϕ are representations corresponding to the $\mathbb{C} D_{8}$-modules V and W, then we can obtain the representation $\rho \oplus \phi$ corresponding to the $\mathbb{C} D_{8}$-module $V \oplus W$ in the following manner:

$$
\left.\begin{array}{c}
i d \\
\left.\rho=\begin{array}{cc}
r & r^{2} \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}
\end{array} \begin{array}{cc}
r^{3} \\
{\left[\begin{array}{cc}
1 & -2 \\
1 & -1
\end{array}\right]}
\end{array} \begin{array}{cc}
-1 & 0 \\
-1 & 1
\end{array}\right]
\end{array} \begin{array}{cc}
-1 & 2 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right] .
$$

Direct Sums

- For example, if ρ and ϕ are representations corresponding to the $\mathbb{C} D_{8}$-modules V and W, then we can obtain the representation $\rho \oplus \phi$ corresponding to the $\mathbb{C} D_{8}$-module $V \oplus W$ in the following manner:

$$
\left.\begin{array}{c}
\text { id } \\
\left.\rho \oplus \phi=\begin{array}{cc}
r & r^{2} \\
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{array} \begin{array}{cc}
r^{3} \\
{\left[\begin{array}{ccc}
1 & -2 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{array} \begin{array}{ccc}
{\left[\begin{array}{cc}
-1 & 0
\end{array}\right.} & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array} \begin{array}{ccc}
{\left[\begin{array}{cc}
-1 & 2
\end{array}\right.} & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Group Algebra

The Group Algebra FG is the $|G|$ dimensional vector space of all expressions of the form $\sum_{g \in G} \lambda_{g} g$ with multiplication given by

$$
\left(\sum_{g \in G} \lambda_{g} g\right)\left(\sum_{h \in G} \mu_{h} h\right)=\sum_{g, h \in G} \lambda_{g} \mu_{h}(g h)
$$

It is referred to as the regular $F G$-module and the representation which arises from this is the regular representation.

Theorem

Write the regular $\mathbb{C} G$-module as the direct sum of irreducible $\mathbb{C} G$-modules as

$$
\mathbb{C} G=U_{1} \oplus U_{2} \oplus \ldots \oplus U_{r}
$$

Then every irreducible $\mathbb{C} G$-module is isomorphic to some U_{i}.

Group Algebra of D_{8}

$$
D_{8}=\left\langle r, s: r^{4}=1, s^{2}=1, s r s^{-1}=r^{-1}\right\rangle
$$

Let $u, v \in \mathbb{C} D_{8}$ such that

$$
u=3+r^{3}+2 s \quad v=6 r+5 s r
$$

Then

$$
\begin{aligned}
u v & =\left(3+r^{3}+2 s\right)(6 r+5 s r) \\
& =18(r)+15(s r)+6\left(r^{3}\right)(r)+5\left(r^{3}\right)(s r)+12(s)(r)+10(s)(s r) \\
& =18 r+15 s r+6+5 s r^{2}+12 s r+10 r \\
& =6+28 r+27 s r+5 s r^{2}
\end{aligned}
$$

Maschke's Theorem

Theorem

Let F be \mathbb{R} or \mathbb{C}, and let V be an $F G$-module. If U is an $F G$-submodule of V, then there is an $F G$-submodule W of V such that $V=U \oplus W$.

Corollary

V is completely reducible if it can be written as $V=U_{1} \oplus U_{2} \oplus \ldots \oplus U_{r}$, where each U_{i} is an irreducible $F G$-module. If F is \mathbb{C} or \mathbb{R}, then every non-zero FG-module is completely reducible.

Decomposition of Group Algebra

Take $V=\mathbb{C} D_{8}$, and $U \subset V$ such that

$$
U=\operatorname{span}\left(\sum_{g \in G} g\right)=\operatorname{span}\left(1+r+r^{2}+\ldots+s r^{3}\right)
$$

We want to find W such that $V=U \oplus W$.
Taking

$$
W=\left\{\sum_{g \in G} a_{g} g: \sum_{g \in G} a_{g}=0\right\}
$$

gives two G-invariant subspaces whose direct sum is clearly V.

Schur's Lemma

Let V and W be irreducible $\mathbb{C} G$-modules.
(1) If $\phi: V \rightarrow W$ is a $\mathbb{C} G$-homomorphism, then either ϕ is a $\mathbb{C} G$-isomophism or $\phi(v)=0$ for all $v \in V$.
(2) If $\phi: V \rightarrow V$ is a $\mathbb{C} G$-homomorphism, then ϕ is a scalar multiple of the identity endomorphism 1_{V}.

Abstract

Corollary If every irreducible $\mathbb{C} G$-module of a finite group G has dimension one, then G is abelian.

Using this fact we can prove that every group of order $|G|=p^{2}$ is abelian.

Acknowledgements

Thank you to our mentor Yau Wing Li, and all the organizers of PRIMES that provided us with this wonderful opportunity!

