# 3-symmetric Graphs 

Sebastian Jeon<br>Mentor: Tanya Khovanova<br>Bergen County Academies<br>May 18-19, 2019<br>MIT PRIMES Conference

## Symmetric permutations

Motivation: Consider randomly chosen permutations.

## Symmetric permutations

Motivation: Consider randomly chosen permutations.

## Definition

Call a pair of terms $\left(p_{i}, p_{j}\right)$ in a permutation $p$ an inversion if $i>j$ and $p_{i}<p_{j}$.

## Example

In the permutation $1,3,2$, the pair $(3,2)$ forms an inversion.

## Symmetric permutations

Motivation: Consider randomly chosen permutations.

## Definition

Call a pair of terms $\left(p_{i}, p_{j}\right)$ in a permutation $p$ an inversion if $i>j$ and $p_{i}<p_{j}$.

## Example

In the permutation $1,3,2$, the pair $(3,2)$ forms an inversion.
Property: A random permutation should have about an equal number of inversions as non-inversions.

## Definition

Call a permutation 2-symmetric if it has the same number of inversions as non-inversions.

## Examples of 2-symmetric permutations

## Example

$4,1,2,3$ is 2 -symmetric.

- $(4,1),(4,2),(4,3)$ are inversions, while
- $(1,2),(1,3),(2,3)$ are not.


## Examples of 2-symmetric permutations

## Example

$4,1,2,3$ is 2 -symmetric.

- $(4,1),(4,2),(4,3)$ are inversions, while
- $(1,2),(1,3),(2,3)$ are not.


Figure: The permutation $4,1,2,3$.

## 3-symmetric permutations

## Definition

Call a permutation 3-symmetric if a randomly chosen unordered triplet of points is equally likely to be ordered like each of the six permutations of $1,2,3$.

## Example

The permutation $4,7,2,9,5,1,8,3,6$ is 3 -symmetric (PRIMES 2018, Eric Zhang and Tanya Khovanova).

Generalize to $k$-symmetric easily.

## Analogous definition for graphs

A random graph on $n$ vertices is formed by choosing to include each edge with probability $\frac{1}{2}$.

Definition
Call a graph 2-symmetric if it has the same number of edges as non-edges.

## Analogous definition for graphs

A random graph on $n$ vertices is formed by choosing to include each edge with probability $\frac{1}{2}$.

## Definition

Call a graph 2-symmetric if it has the same number of edges as non-edges.

Example:


Figure: A 2-symmetric graph with 4 vertices.

## Size restrictions

Assume $G$ is 2 -symmetric and $G$ has $n$ vertices.
Then since $G$ must have $\frac{\binom{n}{2}}{2}$ edges, we need $n \equiv 0,1 \bmod 4$.

## $k$-symmetric graphs

Extend the definition to $k$-symmetric graphs:

## Definition

A graph $G$ is $k$-symmetric if for any subgraph $H$ of $G$ with $|H|=k$, the density of $H$ in $G$ is the same as the probability that a randomly chosen graph on $k$ vertices is isomorphic with $H$.

Note the analogy with $k$-symmetric permutations.

## Example: 3-symmetric graphs

Consider $k=3$. Then

- $\frac{1}{8}$ of triplets of points in $G$ must be triangles,
- $\frac{3}{8}$ are paths of length 2 ,
- $\frac{3}{8}$ are single edges, and
- $\frac{1}{8}$ are independent sets.

- •

Figure: Possible graphs on 3 vertices.

## Size restrictions

$k$-symmetric graphs restrict size as well. For $k=3$, then $8 \left\lvert\,\binom{ n}{3}\right.$ which implies $|G| \equiv 0,1,2,8,10 \bmod 16$.

## $k$-symmetric $m$-symmetric for $m<k$

## Theorem

If a graph $G$ is $k$-symmetric, it is also $m$-symmetric for any $m<k$.
Sketch: Double counting subgraphs.

## $k$-symmetric $\Longrightarrow m$-symmetric for $m<k$

## Theorem

If a graph $G$ is $k$-symmetric, it is also $m$-symmetric for any $m<k$.
Sketch: Double counting subgraphs.

## Corollary

If $G$ is 3 -symmetric, then $|G| \equiv 0,1,8 \bmod 16$.

## Examples of 3-symmetric graphs



Figure: A wheel and its complement.

There are 74 graphs on 8 vertices that are 3 -symmetric (verified by Prof. David Perkinson with a computer).

## Inflation

A possible mechanism for generating 3-symmetric graphs.

## Definition

For graphs $G$ and $H$, define the inflation (or the lexicographic product) of $G$ with respect to $H$ as the graph inflate $(G, H)$ with $|G||H|$ vertices where:

- Each vertex in $G$ is replaced with a graph isomorphic to $H$, and
- If $H_{i}, H_{j}$ are the graphs that correspond to nodes $i$ and $j$ in $G$, and $\{i, j\}$ is an edge in $G$, then an edge is drawn between each vertex in $H_{i}$ to each vertex in $H_{j}$.


## Inflation Example



Figure: inflate ( $\square, \widehat{\wedge})$

## Inflation and symmetric graphs

Inflation preserves 3-symmetric graphs in the limit case.

## Theorem

Let $G_{1}, G_{2}, \ldots$ be a sequence of 3-symmetric graphs whose sizes go to $\infty$, and $H$ also be 3 -symmetric. Then the densities of any subgraph of size 3 in the inflation of $H$ into $G_{i}$ will tend to their expected probabilities in a random graph.

## 3-symmetric graph of size 16

- We used a C++ program to add edges randomly between two wheels.
- Randomness: Enumerate the 64 "cross-edges", generate a random permutation of length 64, and take the first 32 and use them as the edges.
- This creates a 2-symmetric graph; check whether it is 3-symmetric


## 3-symmetric graph of size 16

The number of 2-symmetric graphs generated this way that were also 3 -symmetric was 561 out of $10^{5}$ trials ( $\approx 0.56 \%$ ).

## A 3-symmetric graph of size 16



Figure: A 3 -symmetric graph of size 16 formed by connecting two wheels.

## Statistics of 3-symmetric graphs of size 16

Maximum clique sizes (500 trials):

| Max Clique | Frequency |
| :---: | :---: |
| 4 | 41 |
| 5 | 436 |
| 6 | 23 |

Max degree:

| Max Degree | Frequency |
| :---: | :---: |
| 9 | 1 |
| 10 | 115 |
| 11 | 260 |
| 12 | 109 |
| 13 | 14 |
| 14 | 1 |

## Attempting to construct $k$-symmetric graphs, $k>3$

By the size restrictions, 4-symmetric graphs have at least 256 vertices.
Computational limits:

- $\binom{256}{4}$ subgraphs to consider
- Need to solve graph isomorphism problem for larger $k$
- Conjecture: 3 -symmetric graphs with $8 n$ vertices exist for all $n \geq 1$.
- If true, find asymptotics on the number of 3-symmetric graphs
- Find mechanisms to generate $k$-symmetric graphs


## Acknowledgements

- Dr. Tanya Khovanova
- PRIMES
- My parents

