3-symmetric Graphs

Sebastian Jeon Mentor: Tanya Khovanova

Bergen County Academies

May 18-19, 2019 MIT PRIMES Conference Motivation: Consider randomly chosen permutations.

Motivation: Consider randomly chosen permutations.

Definition

Call a pair of terms (p_i, p_j) in a permutation p an **inversion** if i > j and $p_i < p_j$.

Example

In the permutation 1, 3, 2, the pair (3, 2) forms an inversion.

Motivation: Consider randomly chosen permutations.

Definition

Call a pair of terms (p_i, p_j) in a permutation p an **inversion** if i > j and $p_i < p_j$.

Example

In the permutation 1, 3, 2, the pair (3, 2) forms an inversion.

Property: A random permutation should have about an equal number of inversions as non-inversions.

Definition

Call a permutation 2-symmetric if it has the same number of inversions as non-inversions.

Examples of 2-symmetric permutations

Example

4, 1, 2, 3 is 2-symmetric.

- (4,1),(4,2),(4,3) are inversions, while
- (1,2),(1,3),(2,3) are not.

A∄ ▶ ∢ ∃=

Examples of 2-symmetric permutations

Example

4, 1, 2, 3 is 2-symmetric.

- (4,1),(4,2),(4,3) are inversions, while
- (1,2),(1,3),(2,3) are not.

Figure: The permutation 4, 1, 2, 3.

Definition

Call a permutation **3-symmetric** if a randomly chosen unordered triplet of points is equally likely to be ordered like each of the six permutations of 1, 2, 3.

Example

The permutation 4, 7, 2, 9, 5, 1, 8, 3, 6 is 3-symmetric (PRIMES 2018, Eric Zhang and Tanya Khovanova).

Generalize to k-symmetric easily.

Analogous definition for graphs

A random graph on n vertices is formed by choosing to include each edge with probability $\frac{1}{2}.$

Definition

Call a graph **2-symmetric** if it has the same number of edges as non-edges.

Analogous definition for graphs

A random graph on n vertices is formed by choosing to include each edge with probability $\frac{1}{2}.$

Definition

Call a graph **2-symmetric** if it has the same number of edges as non-edges.

Example:

Figure: A 2-symmetric graph with 4 vertices.

Assume G is 2-symmetric and G has n vertices. Then since G must have $\frac{\binom{n}{2}}{2}$ edges, we need $n \equiv 0, 1 \mod 4$.

Extend the definition to *k*-symmetric graphs:

Definition

A graph G is k-symmetric if for any subgraph H of G with |H| = k, the density of H in G is the same as the probability that a randomly chosen graph on k vertices is isomorphic with H.

Note the analogy with k-symmetric permutations.

Example: 3-symmetric graphs

Consider k = 3. Then

- $\frac{1}{8}$ of triplets of points in G must be triangles,
- $\frac{3}{8}$ are paths of length 2,
- $\frac{3}{8}$ are single edges, and
- $\frac{1}{8}$ are independent sets.

Figure: Possible graphs on 3 vertices.

k-symmetric graphs restrict size as well. For k = 3, then $8 \mid \binom{n}{3}$ which implies $|G| \equiv 0, 1, 2, 8, 10 \mod 16$.

→ < ∃→

k-symmetric \implies *m*-symmetric for m < k

Theorem

If a graph G is k-symmetric, it is also m-symmetric for any m < k.

Sketch: Double counting subgraphs.

k-symmetric \implies *m*-symmetric for m < k

Theorem

If a graph G is k-symmetric, it is also m-symmetric for any m < k.

Sketch: Double counting subgraphs.

Corollary

If G is 3-symmetric, then $|G| \equiv 0, 1, 8 \mod 16$.

Figure: A wheel and its complement.

There are 74 graphs on 8 vertices that are 3-symmetric (verified by Prof. David Perkinson with a computer).

Inflation

A possible mechanism for generating 3-symmetric graphs.

Definition

For graphs G and H, define the **inflation** (or the **lexicographic product**) of G with respect to H as the graph inflate(G, H) with |G||H| vertices where:

- Each vertex in ${\cal G}$ is replaced with a graph isomorphic to ${\cal H},$ and
- If H_i, H_j are the graphs that correspond to nodes i and j in G, and $\{i, j\}$ is an edge in G, then an edge is drawn between each vertex in H_i to each vertex in H_j .

Inflation Example

Inflation preserves 3-symmetric graphs in the limit case.

Theorem

Let G_1, G_2, \ldots be a sequence of 3-symmetric graphs whose sizes go to ∞ , and H also be 3-symmetric. Then the densities of any subgraph of size 3 in the inflation of H into G_i will tend to their expected probabilities in a random graph.

3-symmetric graph of size 16

- We used a C++ program to add edges randomly between two wheels.
- Randomness: Enumerate the 64 "cross-edges", generate a random permutation of length 64, and take the first 32 and use them as the edges.
- This creates a 2-symmetric graph; check whether it is 3-symmetric

The number of 2-symmetric graphs generated this way that were also 3-symmetric was 561 out of 10^5 trials ($\approx 0.56\%$).

A 3-symmetric graph of size 16

Figure: A 3-symmetric graph of size 16 formed by connecting two wheels.

Statistics of 3-symmetric graphs of size 16

Maximum clique sizes (500 trials):

Max Clique	Frequency
4	41
5	436
6	23

Max degree:

Max Degree	Frequency
9	1
10	115
11	260
12	109
13	14
14	1

By the size restrictions, 4-symmetric graphs have at least 256 vertices.

Computational limits:

- $\binom{256}{4}$ subgraphs to consider
- $\bullet\,$ Need to solve graph isomorphism problem for larger k

Future

- Conjecture: 3-symmetric graphs with 8n vertices exist for all $n \ge 1$.
- If true, find asymptotics on the number of 3-symmetric graphs
- Find mechanisms to generate k-symmetric graphs

Acknowledgements

- Dr. Tanya Khovanova
- PRIMES
- My parents

₽ > < €

æ