### Critical Lattices of Symmetric Convex Domains

Srinivasan Sathiamurthy

Mentor: Anurag Rao

MIT PRIMES Conference

May 18-19, 2019

Srinivasan Sathiamurthy

# Convex Symmetric Domains in $\mathbb{R}^2$

- 1 Symmetric about the Origin
- 2 Convex
- 3 Bounded
- 4 Nonempty Interior (Positive Area)





Example

Non-example for property 2

Non-example for property 4

Srinivasan Sathiamurthy

Critical Lattices of Symmetric Convex Domains

May 18-19, 2019 2 - 16

### Lattices

Lattices in R<sup>2</sup>, Λ: The points of Λ with basis a = (α<sub>1</sub>, α<sub>2</sub>),
 b = (β<sub>1</sub>, β<sub>2</sub>) is the set:

$$\{u \cdot \mathbf{a} + v \cdot \mathbf{b} : u, v \in \mathbb{Z}\}.$$

Covolume, cov(Λ):

$$\mathsf{cov}(\Lambda) = |\mathsf{det}(\mathbf{a}, \mathbf{b})| = |\alpha_1 \cdot \beta_2 - \alpha_2 \cdot \beta_1|.$$

A Lattice with two different bases and their fundamental domains.



### Admissible Lattices

- A lattice Λ is K-admissible if the only point in common with Λ and the interior of K is the origin.
- Λ is critical for K if

$$\operatorname{cov}(\Lambda) = \min_{K \operatorname{-admissible} \Lambda'} \operatorname{cov}(\Lambda').$$

• Critical Value,  $\triangle K$ : For a K-critical  $\Lambda$ ,  $\triangle K = cov(\Lambda)$ .



Srinivasan Sathiamurthy

## Parallelograms and Critical Lattices

#### (Minkowski)

Any critical  $\Lambda$  contains three points  $P_1, P_2, P_3$  on the boundary C of K such that  $OP_1P_2P_3$  is a parallelogram.



•  $\Lambda_{\theta}$ : Let  $P'_{\theta}$  be any point in  $\{C \cap (C + P_{\theta})\}$ . Then

$$\Lambda_{\theta} := \big\langle P_{\theta}, P_{\theta}' \big\rangle.$$

•  $\Lambda_{\theta}$  is always *K*-admissible.



### $\Lambda_{\theta}$ and Critical Lattices

#### (Minkowski)

A is K-critical if and only if  $\Lambda = \Lambda_{\theta_0}$  for some  $\theta_0$  and

$$\operatorname{cov}(\Lambda_{ heta_0}) = \min_{0 \leq heta < 2\pi} \operatorname{cov}(\Lambda_{ heta}).$$



Srinivasan Sathiamurthy

### Question #1

#### Question #1:

Over all *K*, what are the possibilities for set  $S(K) = \{\theta \in [0, 2\pi] : \operatorname{cov}(\Lambda_{\theta}) = \triangle K\}$ ?

- Examples in Literature: Ellipse, Parallelogram, Hexagon
- Using Minkowski's procedure, we calculated *S*(*K*) for many other shapes.



Srinivasan Sathiamurthy

## **Regular Polygons**

When K are regular 6*n*-gons, S(K) consists of 6*n* distinct discrete points for  $n \ge 1$ .



#### Theorem (S., R.)

For every closed set  $\mathcal{C} \subset [0, \frac{\pi}{3}]$ , there exists a K such that

$$S(K) = \bigcup_{i=0}^{6} \left( \mathcal{C} + \frac{i\pi}{3} \right).$$

• S(K) is always closed.

### Cantor Set

- We considered pathological sets such as the Cantor set.
- Cantor set is the limit of a process that eliminates the middle third in each interval for each iteration.
- We constructed the Cantor Shape in a similar manner



Srinivasan Sathiamurthy

### Sketch of Proof: Procedure

• 
$$\mathcal{O} = [0, \frac{\pi}{3}] \setminus \mathcal{C} = \bigcup_{i=0}^{n} (a_i, b_i).$$

- For each interval  $(a_i, b_i)$ , we create a bump using the tangents at angles  $a_i$  and  $b_i$ .
- Translate  $(a_i, b_i)$  by  $\frac{\pi}{3}$  and repeat for each of the other  $\frac{1}{6}$ -arcs of the shape.

### Sketch of Proof: Diagram



Srinivasan Sathiamurthy

## Future Work: Lattice Packings

Q(K)

$$Q(K) = \frac{V(K)}{\triangle K}$$

#### Connection to Packings

Q(K) is called the packing density since it is related to the most economical way to pack the plane with copies of K so that their centers form a lattice.





## Future Work: Known Results

```
Theorem (Minkowski)
Q(K) \le 4
```

Theorem (Mahler)  $Q(K) \ge \sqrt{12}$ 

Question #2: What are all the domains with the worst packing densities?

Srinivasan Sathiamurthy

I would like to thank the following people:

- 1 Mentor: Anurag Rao
- 2 Problem Proposer: Professor Kleinbock
- 8 My parents
- 4 Dr. Tanya Khovanova
- 5 Dr. Slava Gerovitch and Prof. Pavel Etingof
- 6 MIT PRIMES