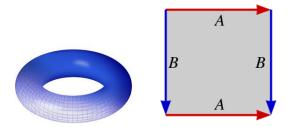
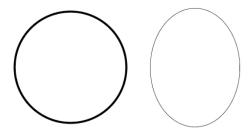
On the Distortion of Torus Knots

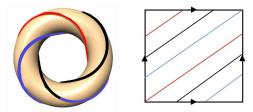

Zander Hill Mentor: Luis Kumanduri

BASIS Scottsdale PRIMES Conference

May 18, 2019


The Torus

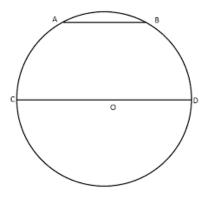
- The torus is an object in 3 dimensions which has a donut shape.
- It can also be thought of as a square with the left/right edges and top/bottom edges connected.


Knots in \mathbb{R}^3

In \mathbb{R}^3 , a knot K is an isotopy class of closed curves.

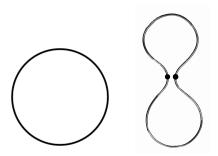
Knots on the Torus

- A torus knot is a closed loop placed on the surface of the torus.
 - It is completely determined by how many times it goes around the torus, akin to going across the edges of the square.
- The torus knot which goes around the outer circle p times and the inner circle q times is the p, q torus knot, written T_{p,q}.


Let S be a curve in \mathbb{R}^n . The *distortion* of S, written $\delta(S)$, is defined as

$$\sup_{u,v\in S}\left(\frac{d_S(u,v)}{|u-v|}\right)$$

where d(u, v) is the distance along S from u to v, and |u - v| is the Euclidean distance.


Distortion Example

The distortion of a circle is $\frac{\pi}{2}$.

Distortion of a Knot

Let K be a knot. There are many curves in \mathbb{R}^3 which may represent K, all isotopic to each other. The distortion of K, then, is the smallest distortion among all these curves, written $\delta(K)$.

Question, Gromov 1983

Question

Does every knot have a representative γ with $\delta(\gamma) < 100$? In particular, does such a γ exist for all torus knots $T_{p,q}$ as $p, q \to \infty$?

Theorem

Consider the torus knot $T_{p,q}$. Then, $\delta(T_{p,q}) > \frac{1}{160} \min(p,q)$.

Theorem, Studer 2015

Theorem

If
$$q \geq 50$$
, then $\delta(T_{2,q}) < \frac{7q}{\log(q)}$.

Our Main Result

Theorem

Let
$$q >> p$$
. Then, $\delta(T_{p,q}) < \frac{7q}{\log(q)}$.

Future Work

Conjecture

As
$$q o \infty$$
, we have $\delta(\mathcal{T}_{p,q}) \leq rac{\pi(p-1)q}{p\log q}$.

Question

Can we extend this bound to the (p,q)-cablings of certain knots?

Question

How do we define the notion of average distortion, and how does it differ from Gromov's distortion?

Acknowledgements

Luis Kumanduri

Prof. Larry Guth

Paul and Marizza Bailey

Dr. Tanya Khovanova

Prof. Pavel Etingof and Dr. Slava Gerovitch

The PRIMES programs

The MIT Math Department