Analysis of the One Line Factoring Algorithm on Large Semiprimes

Tejas Gopalakrishna Mentor: Yichi Zhang

May 18th, 2019 MIT PRIMES Conference What is a factoring algorithm?

Find a divisor of N.

Divide by every prime in $[1...\sqrt{N}]$

Example: N = 119

Divide by every prime in $[1...\sqrt{N}]$

Example: N = 119

Divide by every prime in $[1...\sqrt{N}]$

Divide by primes [2, 3, 5, 7]

Divide by every prime in $[1...\sqrt{N}]$

Example: N = 119

Divide by primes [2, 3, 5, 7]

119/2 not an integer.

Divide by every prime in $[1...\sqrt{N}]$

Example: N = 119

Divide by primes [2, 3, 5, 7]

119/2 not an integer.

119/3 not an integer.

Divide by every prime in $[1...\sqrt{N}]$

Example: N = 119

Divide by primes [2, 3, 5, 7]

119/2 not an integer.

119/3 not an integer.

119/5 not an integer.

Divide by every prime in $[1...\sqrt{N}]$

Example: N = 119

Divide by primes [2, 3, 5, 7]

119/2 not an integer.

119/3 not an integer.

119/5 not an integer.

119/7 = 17 is an integer!

Simple Factoring Algorithm: Fermat

Factoring ${\cal N}$

- Let $a := \lceil \sqrt{N} \rceil$
- Let $b := a^2 N$
- Repeat until b is a square: Increase a by 1 (a := a + 1) $b := a^2 - N$
- When b is a square, then $(a \sqrt{b})$ is a factor.

- Let $a := \lceil \sqrt{N} \rceil$
- Let $b := a^2 N$
- Repeat until b is a square: Increase a by 1 (a := a + 1) $b := a^2 - N$
- When b is a square, then $(a \sqrt{b})$ is a factor.

•
$$a := \lceil \sqrt{119} \rceil = 11$$

Simple Factoring Algorithm: Fermat

Factoring N

- Let $a := \lceil \sqrt{N} \rceil$
- Let $b := a^2 N$
- Repeat until b is a square: Increase a by 1 (a := a + 1) $b := a^2 - N$
- When b is a square, then $(a \sqrt{b})$ is a factor.

a := ⌈√119⌉ = 11
b := 11² - 119 = 2

- Let $a := \lceil \sqrt{N} \rceil$
- Let $b := a^2 N$
- Repeat until b is a square: Increase a by 1 (a := a + 1) $b := a^2 - N$
- When b is a square, then $(a \sqrt{b})$ is a factor.

- $a := \lceil \sqrt{119} \rceil = 11$
- $b := 11^2 119 = 2$
- b (2) is not a square:
 a := a + 1 = 12
 b := 12² 119 = 25

- Let $a := \lceil \sqrt{N} \rceil$
- Let $b := a^2 N$
- Repeat until b is a square: Increase a by 1 (a := a + 1) $b := a^2 - N$
- When b is a square, then $(a \sqrt{b})$ is a factor.

- $a := \lceil \sqrt{119} \rceil = 11$
- $b := 11^2 119 = 2$
- b (2) is not a square: a := a + 1 = 12 $b := 12^2 - 119 = 25$
- b = 25 is a square, so $12 - \sqrt{25} = 7$ is a factor.

- Let $a := \lceil \sqrt{N} \rceil$
- Let $b := a^2 N$
- Repeat until b is a square: Increase a by 1 (a := a + 1) $b := a^2 - N$
- When b is a square, then $(a \sqrt{b})$ is a factor.

- $a := \lceil \sqrt{119} \rceil = 11$
- $b := 11^2 119 = 2$
- b (2) is not a square: a := a + 1 = 12 $b := 12^2 - 119 = 25$
- b = 25 is a square, so $12 - \sqrt{25} = 7$ is a factor.

Works because of square difference $x^2 - y^2 = (x + y)(x - y)$

One Line Factoring Algorithm?

Slower than the leading algorithms

Slower than the leading algorithms

Much less space required

One line of PARI/GP...

 $OLF(x) =; i = 1; while (i < x, if (issquare (ceil (sqrt(i * x))^2%x), return (gcd(x, floor (ceil (sqrt(i * x)) - sqrt((ceil (i * x))^2)%)))); i++)$

The One Line Factoring Algorithm

Repeat for k = 1 to k = N:

Repeat for
$$k = 1$$
 to $k = N$:

• Let
$$m := \left\lceil \sqrt{N \cdot k} \right\rceil^2 \% N$$

• If *m* is a square:
Factor is
$$\operatorname{GCD}(N, \left\lceil \sqrt{N \cdot k} \right\rceil - \sqrt{m})$$

Repeat for
$$k = 1$$
 to $k = N$:

• Let
$$m := \left\lceil \sqrt{N \cdot k} \right\rceil^2 \% N$$

• If *m* is a square:
Factor is
$$GCD(N, \left\lceil \sqrt{N \cdot k} \right\rceil - \sqrt{m})$$

Example: N = 119

Repeat for
$$k = 1$$
 to $k = N$:

- Let $m := \left[\sqrt{N \cdot k}\right]^2 \% N$
- If *m* is a square: Factor is $\operatorname{GCD}(N, \left\lceil \sqrt{N \cdot k} \right\rceil - \sqrt{m})$

- Example: N = 119
- When k = 1, m = 2

Repeat for
$$k = 1$$
 to $k = N$:

- Let $m := \left[\sqrt{N \cdot k}\right]^2 \% N$
- If *m* is a square: Factor is $\operatorname{GCD}(N, \left\lceil \sqrt{N \cdot k} \right\rceil - \sqrt{m})$

- Example: N = 119
- When k = 1, m = 2
- When k = 2, m = 18

Repeat for
$$k = 1$$
 to $k = N$:

- Let $m := \left[\sqrt{N \cdot k}\right]^2 \% N$
- If *m* is a square: Factor is $\operatorname{GCD}(N, \left\lceil \sqrt{N \cdot k} \right\rceil - \sqrt{m})$

- Example: N = 119
- When k = 1, m = 2
- When k = 2, m = 18
- When k = 3, m = 4

Repeat for
$$k = 1$$
 to $k = N$:

- Let $m := \left[\sqrt{N \cdot k}\right]^2 \% N$
- If *m* is a square: Factor is $GCD(N, \left\lceil \sqrt{N \cdot k} \right\rceil - \sqrt{m})$

- Example: N = 119
- When k = 1, m = 2
- When k = 2, m = 18
- When k = 3, m = 4
- Factor: GCD(119, $\left\lceil \sqrt{119 \cdot 3} \right\rceil - \sqrt{4}$)

Repeat for
$$k = 1$$
 to $k = N$:

- Let $m := \left[\sqrt{N \cdot k}\right]^2 \% N$
- If *m* is a square: Factor is $GCD(N, \left\lceil \sqrt{N \cdot k} \right\rceil - \sqrt{m})$

- Example: N = 119
- When k = 1, m = 2
- When k = 2, m = 18
- When k = 3, m = 4
- Factor: $\begin{array}{c} \operatorname{GCD}(119, \left\lceil \sqrt{119 \cdot 3} \right\rceil - \sqrt{4}) \\ \operatorname{GCD}(119, 17) = 17 \end{array}$

Factor numbers N = pq

Factor numbers N = pq

Applications in cryptography (like RSA)

Factoring pq:

Factoring pq:

 X-coordinate is prime p,
 Y-coordinate is prime q,
 p, q are first

1600 primes

Factoring pq:

• X-coordinate is prime p, Y-coordinate is prime q,

p, q are first 1600 primes

• Green: Smaller prime returned

Factoring pq:

• X-coordinate is prime p, Y-coordinate is prime q,

p, q are first 1600 primes

- Green: Smaller prime returned
- If *p*,*q* are close: Smaller prime returned

Factoring pq:

• X-coordinate is prime p, Y-coordinate is prime q,

p, q are first 1600 primes

- Green: Smaller prime returned
- If *p*,*q* are close: Smaller prime returned
- Probability of green is $\sim 50\%$

Performance of OLF on semiprimes

Tejas Gopalakrishna

Performance of OLF on semiprimes

Number of iterations to factor *pq*:

• X-coordinate is prime p, Y-coordinate is prime q,

p, q are first 1600 primes

Performance of OLF on semiprimes

Number of iterations to factor *pq*:

• X-coordinate is prime p, Y-coordinate is prime q,

p, q are first 1600 primes

• Points colored from black to white; Whiter means more iterations required

The algorithm required trying **every number** from k = 1 to (at most) k = N

The algorithm required trying **every number** from k = 1 to (at most) k = N

Can we skip some k?

- The algorithm required trying **every number** from k = 1 to (at most) k = N
- Can we skip some k?
- What if we just use squarefree k?

Tejas Gopalakrishna

OLF on Large Semiprimes

• Green: Squarefree approach faster (fewer iterations)

- Green: Squarefree approach faster (fewer iterations)
- Distinct regions where this is more efficient

- Green: Squarefree approach faster (fewer iterations)
- Distinct regions where this is more efficient
- Better on roughly $\sim 35.5\%$ of semiprimes

How many iterations to factor a general integer?

How many iterations to factor a general integer?

- k^{th} bar: Amount of integers that requires kiterations to factor
- Decreases rapidly

How many iterations to factor a general integer?

- Decreases rapidly
- Therefore, skipping k will not **always** help.

How many iterations to factor semiprimes?

• However, the picture is different if only factoring semiprimes

How many iterations to factor semiprimes?

- However, the picture is different if only factoring semiprimes
- Many k not used.

How many iterations to factor semiprimes?

• What causes the strange bands?

- What causes the strange bands?
- Can we precisely definine when the lower prime is returned?

- What causes the strange bands?
- Can we precisely definine when the lower prime is returned?
- Prove the semiprime iterations conjecture.

- What causes the strange bands?
- Can we precisely definine when the lower prime is returned?
- Prove the semiprime iterations conjecture.
- When can we skip k in the general algorithm (not just semiprimes)?

- What causes the strange bands?
- Can we precisely definine when the lower prime is returned?
- Prove the semiprime iterations conjecture.
- When can we skip k in the general algorithm (not just semiprimes)?
- Anything else to make it faster!

• Mentor Yichi Zhang

- Mentor Yichi Zhang
- Dr. Stefan Wehmeir

- Mentor Yichi Zhang
- Dr. Stefan Wehmeir
- Dr. Tanya Khovanova

- Mentor Yichi Zhang
- Dr. Stefan Wehmeir
- Dr. Tanya Khovanova
- The PRIMES Program

- Mentor Yichi Zhang
- Dr. Stefan Wehmeir
- Dr. Tanya Khovanova
- The PRIMES Program
- My Family