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Background: Digital Signatures
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Signer Verifier

M = “Hello.”
σ = Sign(M, SKSigner)

M

σ

Verify(σ, M, PKSigner) = true



Background: Threshold Signatures
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 Verify(σ, M, PKgroup) = true

σ = Sign(M, SKgroup)



Distributed Key Generation (DKG)
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Distributed Key Generation (DKG)
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Distributed Key Generation (DKG): Applications
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● Generating secret keys for threshold signature schemes
● Generating random nonces for Schnorr threshold signatures 
● Random beacons
● Proactive Secret Sharing



Contributions
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DKG scheme Per-player bandwidth Per-player computation 
time (deal + verify)

Feldman DKG O(nt) O(nt)

Kate DKG O(n) O(nt)

AMT DKG O(n log(n)) O(n log(n))



DKG Outline
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● Each player i acts as a dealer and “shares” a secret si with all other players 
via Verifiable Secret Sharing (VSS) 

SK = ∑si

Player i

Pick a si

si1

si2

sin

● Our contribution: We show how to do VSS in O(n log n) time rather than 
O(nt) time, which helps scale DKG



Secret Sharing (SS)
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● Dealer picks a secret s and “shares” it with all other players such that t out of 
n can reconstruct it

p(x) = c0 + c1x + c2x
2 + … + 

ct-1x
t-1

s = c0



Secret Sharing (SS)
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Dealer

Pick a p(x)

p(1)

p(2)

p(n)



Verifiable Secret Sharing (VSS)
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Dealer

Pick a p(x)

y1 = p(1)
𝝅1

y2 = p(2)
𝝅2

yn = p(n)
𝝅n

Verify(y1, 𝝅1)

Verify(yn, 𝝅n)

Verify(y2, 𝝅2)



Polynomial Commitments

● Polynomial commitment to p(x) is gp(𝛂) 
● How do we provide evaluation proofs 𝝅i that a value p(i) = y and verify proof 

against commitment gp(𝛂) ?
● Polynomial remainder theorem: 

p(x) - y = q(x)(x-i) if and only if p(i) = y
● Proof: Commitment to quotient gq(𝛂)

● Verify? Check using magic! (bilinear pairings)
● Dealer: O(nt) time to compute evaluation proofs
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Solution: Multipoint Evaluation

● Need to build evaluation proofs that p(i) = y
● Key idea: multipoint evaluation is just a tree of polynomials. We commit to 

some of them and obtain proofs too.
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p(x)

p(1) p(2) p(3) p(n)

O(n log2n) rather 
than O(nt)



Multipoint Evaluation
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q1,4, 
r1,4

p / (x-1)(x-2)(x-3)(x-4)

q1,2, 
r1,2

r1,4  / (x-1)(x-2)
q3,4, 
r3,4

r1,4  / (x-3)(x-4)

q1, r1

r1,2  / (x-1)

q2, r2

r1,2  / (x-2)

q3, r3

r3,4  / (x-3)

q4, r4

r3,4  / (x-4)

r1 = p % (x-1) = p(1) r2 = p % (x-2) = p(2) r3 = p % (x-3) = p(3) r4 = p % (x-4) = p(4)

O(n log2n)



Authenticated Multipoint Evaluation Trees (AMT)
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q1,4, 
r1,4

p / (x-1)(x-2)(x-3)(x-4)

q1,2, 
r1,2

r1,4  / (x-1)(x-2)
q3,4, 
r3,4

r1,4  / (x-3)(x-4)

q1, r1

r1,2  / (x-1)

q2, r2

r1,2  / (x-2)

q3, r3

r3,4  / (x-3)

q4, r4

r3,4  / (x-4)

r1 = p % (x-1) = p(1) r2 = p % (x-2) = p(2) r3 = p % (x-3) = p(3) r4 = p % (x-4) = p(4)

𝝅3 = (gq1,4(𝛂)
, g

q3,4(𝛂)
, g

q3(𝛂))
p(x) = 
q1,4(x-1)(x-2)(x-3)(x-4) + q3,4(x-3)(x-4) + q3(x-3) + 
p(3)

    O(n log2n) 

→ O(n log n) 



Recap

● DKG - generate shared SK and PK, requires each player to perform a VSS
● VSS - pick polynomial p and send p(i) to each player i, needs to compute 

proofs that p(i) is valid using polynomial commitments
● Polynomial commitments - existing schemes like Kate take O(nt) to compute 

all proofs, AMT provides all proofs in O(n log2n) time
● Result: Faster DKG that scales to tens of thousands of players.
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Results
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18.52 
minutes

10.78 
hours
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Thank you!
Questions?
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