Scalable Distributed Key Generation

Robert Chen Mentored by Alin Tomescu

2019 PRIMES Conference 5/19/19

Background: Digital Signatures

Background: Threshold Signatures

Distributed Key Generation (DKG)

Distributed Key Generation (DKG)

Distributed Key Generation (DKG): Applications

- Generating secret keys for threshold signature schemes
- Generating random nonces for Schnorr threshold signatures
- Random beacons
- Proactive Secret Sharing

Contributions

DKG scheme	Per-player bandwidth	Per-player computation time (deal + verify)
Feldman DKG	O(nt)	O(nt)
Kate DKG	O(n)	O(nt)
AMT DKG	O(n log(n))	O(n log(n))

DKG Outline

Each player i acts as a dealer and "shares" a secret s_i with all other players via Verifiable Secret Sharing (VSS)

• **Our contribution:** We show how to do VSS in O(n log n) time rather than O(nt) time, which helps scale DKG

Secret Sharing (SS)

 Dealer picks a secret s and "shares" it with all other players such that t out of n can reconstruct it

$$p(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{t-1} x^{t-1}$$

 $s = c_0$

Polynomial Commitments

- Polynomial commitment to p(x) is $g^{p(\alpha)}$
- How do we provide evaluation proofs π_i that a value p(i) = y and verify proof against commitment g^{p(α)}?
- Polynomial remainder theorem:

p(x) - y = q(x)(x-i) if and only if p(i) = y

- Proof: Commitment to quotient g^{q(α)}
- Verify? Check using magic! (bilinear pairings)
- Dealer: O(nt) time to compute evaluation proofs

Solution: Multipoint Evaluation

O(n log²n) rather than O(nt)

- Need to build evaluation proofs that p(i) = y
- Key idea: multipoint evaluation is just a tree of polynomials. We commit to some of them and obtain proofs too.

Multipoint Evaluation

Authenticated Multipoint Evaluation Trees (AMT)

Recap

- DKG generate shared SK and PK, requires each player to perform a VSS
- VSS pick polynomial p and send p(i) to each player i, needs to compute proofs that p(i) is valid using polynomial commitments
- Polynomial commitments existing schemes like Kate take O(nt) to compute all proofs, AMT provides all proofs in O(n log²n) time
- Result: Faster DKG that scales to tens of thousands of players.

Acknowledgements

I would like to thank:

- My mentor, Alin Tomescu, for his support and guidance
- Srini Devadas, for coordinating CS-PRIMES
- My parents and family
- MIT-PRIMES program

Thank you! Questions?