Retained introns are translated and contribute antigens to the MHC I immunopeptidome

Sarah Chen

PRIMES Computational Biology 2019

Types of Intron Retention

RNA-seq data can distinguish exons and introns

RNA-seq data can distinguish exons and introns

Canonical splicing:

RNA-seq data can distinguish exons and introns

Canonical splicing:

Potential Intron Retention:

StringTie Transcript Assembly Can Predict Retained

Introns

StringTie Transcript Assembly Can Predict Retained

StringTie Transcript Assembly Can Predict Retained

Retained Intron Prediction

• Method applied to 4 B721 data samples treated as replicates, evaluated individually and in combination - **1799** retained introns predicted overall

 Combined analysis increases sensitivity of retained intron prediction to lowly expressed candidates

Retained Introns Can Be Translated and Presented by MHC I

Validating Retained Intron Candidates with Mass Spectrometry (MS)

Retained Introns Validated by MS

Retained Introns Predicted Across Replicates

Retained Introns Validated by MS

Retained Introns Predicted Across Replicates

Number of Peptides Found by MS Matching Canonical and Retained Intron Sequences

Retained Introns Validated by MS

Retained Introns Predicted Across Replicates

MS False Discovery Rate and Search Space Size

MS False Discovery Rate

MS False Discovery Rate and Search Space Size

MS False Discovery Rate

Unique 9-mers in the MS Search Space

MS False Discovery Rate and Search Space Size

Ribo-seq has the potential to improve the retained intron identification process

- Reducing the number of predictions \rightarrow higher % of validated predictions
- Decreasing the search space \rightarrow decreasing FDR.

Seeking better predictions with Ribo-seq

Ribo-seq provides additional information about translation of genome sequences

Seeking better predictions with Ribo-seq

Ribo-seq provides additional information about translation of genome sequences

Schematic of aligned Ribo-seq reads:

Ribo-seq can distinguish translated and untranslated transcripts

A retained intron supported by RNA-seq but not by Ribo-seq or mass spectrometry:

Ribo-seq can distinguish translated and untranslated transcripts

A retained intron supported by RNA-seq, Ribo-seq, and mass spectrometry:

Summary & Future Directions

What we have done:

- *De novo* assembly from RNA-seq \rightarrow 1799 retained introns predicted
- 141 peptides found by MS that support 134 retained introns
- Compared RNA-seq and Ribo-seq support for retained introns

Next steps:

- Continuing to explore potential of Ribo-seq for RI prediction
- Application to cancer data

Acknowledgements

Aviv Regev

Slava Gerovitch

Brian Haas

Karl Clauser

Tamara Ouspenskaia

Travis Law

Phillips Academy ANDOVER

