Latent representations of chemical ligands to predict combinatorial receptor-ligand interactions

Jonathan Yin Mentors: Dr. Hattie Chung, Michael Truell, Regev Group, Broad Institute

MIT PRIMES Conference, October 20, 2019

Receptors process signals from the environment

Intracellular Response

Understanding combinatorial receptor-ligand interactions

Similar chemicals activate similar sets of receptors

Receptors

Hallem, Ho, Carlson. Cell 2004.

Motivation

Predicting ligand-receptor interactions

Ability to control intracellular behaviors

Challenge: representing inputs for predictive algorithms

Images

Text

Low-level representation schemes: molecular fingerprints

Low-level representation schemes: SMILES

Simplified Molecular-Input Line-Entry System

Machine learning models typically require high quantities of data

In the absence of a large dataset, feature abstraction is necessary

Recent trend: feature abstraction with variational autoencoders (deep neural network)

Current models

Grammar Variational Autoencoder

Kushner et al. 2017

Jin et al. 2018

Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules

Syntax-Directed Variational Autoencoder for Structured Data

Dai et al. 2018

Gómez-Bombarelli et al. 2016

Issues with existing SMILES-based models

Cc1cn2c(CN(C)C(=O)c3ccc(F)cc3C)c(C)nc2s1 Cc1cc(F)ccc1C(=O)N(C)Cc1c(C)nc2scc(C)n12

Current models overemphasize molecular geometry

GrammarVAE latent space visualization

Kushner et al. 2017

Evaluating the latent space of current models

Molecular fingerprint still performs the best

Data from Hallem, Ho, Carlson. Cell 2004.

Our Approach

Incorporating prior knowledge helps the model

Receptors

Our model: two-tower approach

Two-tower architecture

Our results

Combinatorial Ligand-receptor binding Feature abstraction with VAEs: Two-tower approach Predicting receptor activities