A method to recognize universal patterns in genome structure using Hi-C

Neil Chowdhury Phillips Exeter Academy

Mentor: Sameer Abraham Massachusetts Institute of Technology

Introduction to Hi-C

Hi-C Matrix of Rao et al. (2014) GM12878 genome

- Hi-C: Process of finding contact probabilities between every pair of regions in a DNA strand
- Graphed as a square adjacency matrix (rows/cols are regions, cells are probabilities)
- Contact probabilities measures the interaction frequency of two regions

Patterns in Hi-C

Datasets used: Schwarzer et al. (2017) NIPBL mutant, Rao et al. (2014) GM12878

Compartmentalization

- Checkerboarding pattern
- Seen in both cis and trans interactions
- Pattern captured by sign of eigenvector
- Clear that there are subcompartments within A/B

Methodology and Challenges

- Methodology: Use existing clustering techniques from data science to find subcompartments in Hi-C
- Challenges:
 - Process Hi-C data into a form amenable to existing clustering algorithms
 - Assess the quality of clusters
 - Assess the number of clusters

What is clustering?

- Clusters are tightly packed groups of points in space
- Clustering is the process of algorithmically finding these groups of points

Clustering algorithms

(finding k clusters in a set of n points in space)

- K-means
 - k centroids

Example of Clusters (Wikipedia)

Voronoi diagram generated by the means

K-means algorithm

- each point is in the cluster with the nearest centroid (means)
- minimize variance (squared Euclidean distance) within each cluster
- Agglomerative
 - start with each point in its own cluster
 - repeatedly merge a pair of clusters by some linkage criterion (single, ward, average) until k clusters reached
- Spectral
 - create an affinity matrix, compute eigenvectors, use k-means to cluster eigenvectors

(images from Wikipedia)

Creating a matrix for clustering

Even chromosomes

- Problem with cis interactions: scaling of contact probability and TADs interfere with compartmentalization
- Construct a matrix with all odd chromosomes vs. all even chromosomes (all trans interactions). Technique used in Rao et al. (2014).
- Clustering rows: treat rows as points in thousand-dimensional space and columns as dimensions
- Clustering columns: treat columns as points and rows as dimensions

Visualization of cluster labels

Column cluster labels (sorted)

- Run clustering procedure on rows and columns
- 2. Sort matrix by row and column according to cluster label
- 3. Plot matrix
- 4. Add clustering labels to the top and left

9

Eigendecomposition vs. clustering (k=2)

Stability

Given: a set S of data points, a clustering algorithm ${\mathcal A}$ that takes the number k of clusters as input

- (1) For $k = 2, ..., k_{\max}$
 - (a) Generate perturbed versions S_b $(b = 1, \ldots, b_{\max})$ of the original data set (for example by subsampling or adding noise, see below)
 - (b) For $b=1,\ldots,b_{\max}$: Cluster the data set S_b with algorithm ${\cal A}$ into k clusters to obtain clustering ${\cal C}_b$
 - (c) For $b, b' = 1, \ldots, b_{\max}$: Compute pairwise distances $d(\mathcal{C}_b, \mathcal{C}_{b'})$ between these clusterings (using one of the distance functions described below)
 - (d) Compute instability as the mean distance between clusterings $\mathcal{C}_b\colon$

$$\widehat{\mathrm{nstab}}(k,n) = rac{1}{b_{\mathrm{max}}^2} \sum_{b,b'=1}^{b_{max}} d(\mathcal{C}_b,\mathcal{C}_{b'})$$

(2) Choose the parameter k that gives the best stability, in the simplest case as follows:

$$K := \operatorname*{argmin}_k \widehat{\operatorname{Instab}}(k,n)$$

Stability metric from Luxburg (2010).

K-means

- k<=4 is most stable
- k=6, k=7 clusters look very similar

12

Agglomerative

- Linkage measures the distance between clusters
- Average linkage most stable
- Stability increases as k gets larger

Neil Chowdhury

Agglomerative (average linkage)

Dimensionality reduction

 Parallel coordinates plot: 4 clusters have distinct positions in 25-dimensional space (each zig-zag line represents a point)

subsampling

Dimensionality reduction using principal component analysis (PCA) improves stability of K-means

•

Eigenvector:

Negative (B)

- Supported by stability analysis
- Replicates the results of agglomerative clustering

Positive (A)

A2, B1, B2 deficient in H4k20me1
B regions generally deficient in all proteins

Repli-seq

• Replication order: A1, A2, B1 = B2

Histones (Merriam-Webster)

ChromHMM states

ChromHMM states

Enh -	1.1	0.56	0.077	0.31
EnhLo1 -	1.5	0.77	0.12	0.43
EnhLo2 -	0.63	0.47	0.082	0.29
EnhPois1 -	0.89	0.55	0.11	0.35
EnhPois2 -	5.9	3.7	0.53	2.1
HetCons -	0.66	0.71	1.3	0.57
HetFac -	10	4.8	0.58	1.9
Quies -	19	43	90	69
QuiesG -	37	31	5.2	19
TssA -	0.77	0.36	0.066	0.24
TssAFlnk1 -	2.1	0.78	0.092	0.37
TssAFlnk2 -	0.84	0.44	0.085	0.29
TssBiv -	1.4	0.66	0.16	0.37
Tx1 -	2.8	1.1	0.11	0.51
Tx2 -	15	8	1.5	4.8
	Al	A2	B1	B2

- ChromHMM (hidden Markov model) running on ChIP-seq classifies DNA into 15 states (promotors, enhancers, quiescent, transcription start sites, etc.)
- B1 mainly made up of Quies state (light gray)

Conclusion

- Demonstrated that there are four nuclear subcompartments with distinctive features
- Framework for clustering Hi-C data

Future Work

- Compare to physics models of chromatin
- Write software pipeline to find the compartments (A1, A2, B1, B2) given any Hi-C matrix
- More sophisticated graph-based clustering techniques (simulated annealing)
- More fine-grained analysis with resolution higher than 1mb

Acknowledgements

- ENCODE project
 - Hi-C matrices, ChIP-seq, Repli-seq, ChromHMM
- Sameer Abraham for mentoring me
- Martin Falk and Prof. Leonid Mirny for inviting me to MIT MirnyLab and providing me with computational resources
- Dr. Slava Gerovitch and Prof. Srini Devadas for inviting me to MIT PRIMES-CS

ChIP-seq/Repli-seq enrichments compared to Rao et al. clusters

		33	33	~	Ţ	33				~	~	32		0			0.	F 25	old C 1	hange) 4
D		H3K36me	H3K27me	H3K9me3	H4K20m6	H4K20me	H2A.Z	H3K27ac	H3K4me1	H3K4me2	H3K4me3	H3K79me	H3K9ac	Lamin A/(NADs	RepG1	RepS1	RepS2	RepS3	RepS4	RepG2
	A1	3.5	1.1	1.1	1.4	1.0	3.6	7.8	2.6	4.6	4.5	11.5	7,1	0.7	0.1	10.4	3.1	0.5	0.1	0.2	1.0
	A2	2.6	1.0	1.4	1.1	1.0	2.7	4.7	2.1	3.3	2.5	4.3	3.1	0.7	0.4	3.8	2.9	2.0	0.5	0.2	0.7
	B1	1.0	1.5	1.1	1.2	1.0	0.9	0.9	1.0	0.9	0.9	1.0	1.0	1.1	1.0	1.3	1.8	2.5	2.1	0.4	0.5
	B2	0.9	0.8	1.0	0.8	1.1	0.7	0.6	0.5	0.5	0.8	0.8	0.8	1.7	4.5	0.5	0.1	0.4	1.8	3.7	3.7
	В3	0.9	0.9	0.8	0.9	1.0	0.8	0.6	0.5	0.5	0.8	0.9	0.9	1.6	0.0	0.5	0.1	0.4	1.8	3.6	3.3
	B4	3.5	0.8	3.6	0.9	2.2	5.3	7.0	1.2	4.5	4.6	6.8	8.5	1.0	7.8	1.5	2.1	2.0	1.6	0.5	0.7

Rao et al. (2014)

Distribution of logged trans contact probabilities

Adjusted Rand Index (ARI)

- X and Y are two clusterings of the same set. X_i and Y_i each represent a cluster.
- ARI measures similarity between the two clusterings

X Y	Y_1	Y_2		Y_s	\mathbf{Sums}
X_1	n_{11}	n_{12}	•••	n_{1s}	a_1
X_2	n_{21}	n_{22}		n_{2s}	a_2
÷	÷	÷	·	÷	:
X_r	n_{r1}	n_{r2}	•••	n_{rs}	a_r
Sums	b_1	b_2	•••	b_s	

Contingency table (Wikipedia)

$$\widehat{ARI} = \frac{\sum_{ij} \binom{n_{ij}}{2} - \left[\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}\right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}\right] - \left[\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}\right] / \binom{n}{2}}$$

ARI formula (Wikipedia)

NIPBL vs. Untreated (UNTR)

- Mouse liver cells
- NIPBL is a cohesion loading protein thought to be responsible for loop extrusion

ChromHMM

Agglomerative (single linkage, k=5)

Comparison with human cells

NIPBL factor removed Mouse liver GM12878 (Human cell line)

Effect of Dimensionality Reduction

