Cache-Efficient Parallel Partition Algorithms

Alek Westover

MIT PRIMES

October 20, 2019

THE PARTITION PROBLEM

An unpartitioned array:

THE PARTITION PROBLEM

An unpartitioned array:

An array partitioned relative to a pivot value:

WHAT IS A PARALLEL ALGORITHM?

Fundamental primitive: *Parallel for loop*

Parallel-For i from 1 to 4: **Do** X_i

WHAT IS A PARALLEL ALGORITHM?

More complicated parallel structures can be made by combining parallel for loops and recursion.

T_p : TIME TO RUN ON p processors

Important extreme cases:

Work: T_1

- time to run in serial
- "sum of all work"

Span: T_{∞}

- time to run on infinitely many processors
- "height of the graph"

BOUNDING T_p with Work and Span

Brent's Theorem: [Brent, 74]

$$T_p = \Theta\left(\frac{T_1}{p} + T_\infty\right)$$

Take away: Work T_1 and span T_∞ determine T_p .

THE STANDARD PARALLEL PARTITION ALGORITHM

StepSpanCreate filtered arrayO(1)Compute prefix sums of filtered array $O(\log n)$ Use prefix sums to partition arrayO(1)

Total work: $T_1 = O(n)$ Total span: $T_{\infty} = O(\log n)$

The Problem

Standard Algorithm is slow in practice

- Uses extra memory
- Makes multiple passes over array

"bad cache behavior"

Fastest algorithms in practice lack theoretical guarantees

Lock-based and atomic-variable based algorithms

[Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders, 2017; Philip Heidelberger, Alan Norton, and John T. Robinson, 1990; Philippas Tsigas and Yi Zhang, 2003]

► The Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

No locks or atomic-variables, but no bound on span

OUR QUESTION

Can we create an algorithm with *theoretical guarantees* that is *fast in practice*?

OUR RESULT

The Smoothed-Striding Algorithm

Key Features:

- linear work and polylogarithmic span (like the Standard Algorithm)
- fast in practice (like the Strided Algorithm)
- theoretically optimal cache behavior (unlike any past algorithm)

STRIDED VERSUS SMOOTHED-STRIDING ALGORITHM

Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

- Good cache behavior in practice
- Worst case span is $T_{\infty} \approx n$

• On random inputs span is $T_{\infty} = \tilde{O}(n^{2/3})$

STRIDED VERSUS SMOOTHED-STRIDING ALGORITHM

Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

- Good cache behavior in practice
- Worst case span is $T_{\infty} \approx n$

• On random inputs span is $T_{\infty} = \tilde{O}(n^{2/3})$

Smoothed-Striding Algorithm

- Provably optimal cache behavior
- Span is $T_{\infty} = O(\log n \log \log n)$ with high probability in *n*
- Uses randomization *inside* the algorithm

SMOOTHED-STRIDING ALGORITHM'S PERFORMANCE

The Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

This step is highly parallel.

- ► Recursion is impossible!
- Final Step: Partition the subarray *in serial*.

Subproblem Span $T_{\infty} \approx v_{\max} - v_{\min}$

- Recursion is impossible!
- Final Step: Partition the subarray *in serial*.

Subproblem Span $T_{\infty} \approx v_{\max} - v_{\min} \longleftarrow n$ in worst case.

The Smoothed-Striding Algorithm

Logically partition the array into chunks of adjacent elements

Key difference: Form groups U_i that contain a random element from each chunk

Perform serial partitions on each U_i in parallel over the U_i 's

This step is highly parallel.

Define v_i = index of first element greater than the pivot in U_i

Identify leftmost and rightmost v_i

Final step: Recursively partition the subarray

Final step: Recursively partition the subarray

- Recursion is now possible!
- ▶ Randomness guarantees that $v_{max} v_{min}$ is small

A KEY CHALLENGE

How do we store the U_i 's if they are all random?

Storing which elements make up each U_i takes too much space!

Strided Algorithm *P_i*.

Smoothed-Striding Algorithm U_i.

AN OPEN QUESTION

Our algorithm: span $T_{\infty} = O(\log n \log \log n)$

Standard Algorithm: span $T_{\infty} = O(\log n)$.

Can we get optimal cache behavior and span $O(\log n)$?

ACKNOWLEDGMENTS

- ► MIT PRIMES
- ► William Kuszmaul, my PRIMES mentor
- My parents

Question Slides

How to Store the groups

The solution is to make the groups dependent on one another. Let *g* be the size of a chunk. Then we only need to store a single group and then the elements of the other groups are determined by this group.

Specifically, let *X* be an array with values chosen uniformly from $\{1, 2, ..., g\}$. Then the *i*-th element of U_i has index

 $1+((X[i]+j) \mod g)$

THE STANDARD PARALLEL PARTITION ALGORITHM

THE STANDARD PARALLEL PARTITION ALGORITHM

