Can robust ensembling schemes improve defenses against adversarial inputs?

Aditya Saligrama

Mentors: Guillaume Leclerc, Prof. Aleksander Mądry

Mądry Lab, MIT CSAIL Theory of Computation

9.5th Annual MIT PRIMES Conference, October 20, 2019

Deep learning and adversarial examples

Aditya Saligrama

9.5th Annual MIT PRIMES Conference

Deep learning

• Has become ubiquitous in the last few years and can outperform humans on some tasks

(DeepAl 2019)

(Karpathy 2015)

Adversarial attacks

- Modify image in a set *S*, such as L2-ball of size ε, to maximize loss *L*
 - Imperceptible to human observer
 - Fools deep learning models

 $\hat{\delta} = \underset{||\delta|| < \epsilon}{\operatorname{argmax}} L(\theta, x + \delta, y)$

(Mądry and Schmidt 2018)

Aditya Saligrama

9.5th Annual MIT PRIMES Conference

Adversarial attacks

- Modify image in a set *S*, such as L2-ball of size ε, to maximize loss *L*
 - Imperceptible to human observer
 - Fools deep learning models
- Many ways of synthesizing adversarial examples:
 - Such as PGD projected gradient descent (Mądry et al. 2017)

"airliner"

(Mądry and Schmidt 2018)

9.5th Annual MIT PRIMES Conference

Robust training

- Train robust model θ on dataset *D*:
 - Resistant to adversarial attacks
 - Robust training via PGD (Mądry et al. 2017)
 - Many other ways...

Robust training

- Train robust model θ on dataset *D*:
 - Resistant to adversarial attacks
 - Robust training via PGD (Mądry et al. 2017)
 - Many other ways...

	Natural train	Robust train (ε=0.031)
Natural test		
Adv. test (ε=0.031)		

Robust training

- Train robust model θ on dataset *D*:
 - Resistant to adversarial attacks
 - Robust training via PGD (Mądry et al. 2017)
 - Many other ways...

ResNet18 models (He et al. 2015) trained on CIFAR10

	Natural train	Robust train (ε=0.031)
Natural test	93%	83%
Adv. test (ε=0.031)	0%	51%

Our goal: Robust train on natural test → natural train on natural test Robust train on adv. test → natural test

Aditya Saligrama

9.5th Annual MIT PRIMES Conference

Ensembling schemes

Aditya Saligrama

9.5th Annual MIT PRIMES Conference

Adversarial ensembling

<u>Using ensembling for training (lots of prior work, different from previous slide):</u>

- Vanilla ensembling (baseline for this talk)
 - Random initializations, train M standard models
- Ensemble Adversarial Training (Tramèr et al. 2017)
 - Collect adversarial examples from multiple models
 - Transfer examples to train single model
- Ensemble diversity (Pang et al. 2019)
 - Coupled training of all *M* models to promote diversity

	Robust training (Mądry et al. 2017)	Vanilla ensembling	Ensemble diversity (Pang et al. 2019)
Natural test	83%	94%	93%
Adv. test	51% (ε=0.03)	0%	30% (ɛ=0.02)

Our proposed methods

Aditya Saligrama

9.5th Annual MIT PRIMES Conference

Robust ensembling

- Train *M* independent models robustly
 - *i*'th model with seed *i*

 $\widehat{\theta}_{i} = \underset{\theta}{\operatorname{argmin}} E_{(x,y)\sim D} \left[\max_{\substack{||\delta|| \leq \epsilon}} L(\theta, x + \delta, y) \right]$ Robust training with initialization seed i

$$c(x, \boldsymbol{\theta}, \boldsymbol{\pi}) = \max_{y} \sum_{i=1}^{M} \pi_{i} \theta_{i}(x, y)$$

 $\theta_i(x, y)$: model *i*'s probability of class *y* on instance *x*

Aditya Saligrama

9.5th Annual MIT PRIMES Conference

How to understand ensembles?

Value of the game (discrete): • Player: random strategy over *M* models • Probability $\pi_1 \dots \pi_M$ • Adversary: perturbation $\delta_1 \dots \delta_S (S \to \infty)$ with probability $q_1 \dots q_S$ $\ell(\mathbf{q}, \pi, L) = E_{\delta \sim \mathbf{q}} E_{\theta_j \sim \pi} L(\theta_j, x + \delta, y)$ • Player strategy
• β_1 • θ_2 • θ_3 • δ_1 • Loss• δ_2 • δ_2 • δ_3 • $\delta_$

Key point: Adversary plays against ensemble rather than single model for each instance $\min_{\pi} \max_{\mathbf{q}} \ell(\mathbf{q}, \pi, L) \leq \max_{\delta} \frac{1}{M} \sum_{j} L(\theta_{j}, x + \delta, y)$ $\overset{\mathsf{VS.}}{\underset{\delta \in S}{\max} L(\theta, x + \delta, y)}$

How to understand ensembles?

Value of the game (discrete):

- Player: random strategy over M models
 - Probability $\pi_1 \dots \pi_M$
- Adversary: perturbation $\delta_1 \dots \delta_S (S \to \infty)$ with probability $q_1 \dots q_S$

 $\ell(\mathbf{q}, \pi, L) = E_{\delta \sim \mathbf{q}} E_{\theta_j \sim \pi} L(\theta_j, x + \delta, y)$

Key point: Adversary plays against ensemble rather than single model for each instance $\min_{\pi} \max_{\mathbf{q}} \ell(\mathbf{q}, \pi, L) \leq \max_{\delta} \frac{1}{M} \sum_{j} L(\theta_j, x + \delta, y)$ VS.

$$\max_{\delta \in S} L(\theta, x + \delta, y)$$

robust ensemble loss ≤ single robust model loss Why? Choose **q** to focus on single model

Aditya Saligrama

Robust ensembling: Results

	Single non- robust model	Single robust model	Robust ensemble (20 models)
Natural test	93.2%	82.7%	86.1%
Adv. Test (ε = 0.031, k = 14)	0.0%	51.8%	58.0%

Different models may mispredict on same instances, but require different perturbations

Still, large gap between natural performance of non-robust model and robust ensembles!

How to bridge this gap?

Robust and non-robust features

- Images comprised of robust and non-robust features (Ilyas et al. 2019)
- Key insight: Robust features do not have enough info about particular instances
 - Non-robust features contain remaining info

Robust features

Robust Correlated even with	features I with label adversary	Non-robust features Correlated with label on average, but can be flipped within ℓ_2 ball			; 'erage, l ₂ ball
Eyes	Gills		*	-	
		Inp	out	(Engs	strom et al. 2019)

Robust + non-robust features

Robust and non-robust features

- Images comprised of robust and non-robust features (Ilyas et al. 2019)
- Key insight: Robust features do not have enough info about particular instances
 - Non-robust features contain remaining info
 - Objective: Augment non-robust features with robust features without losing robustness

Robust features

Robust Correlated even with	features I with label adversary	Corre but c	Non-robu lated with l an be flipp	st feature: label on av ped within	s /erage, { ₂ ball
Eyes	Gills	B	*	8	
		Input (Engstrom			strom et a

Robust + non-robust features

et al. 2019)

Aditya Saligrama

Natural

Natural

Aditya Saligrama

Aditya Saligrama

9.5th Annual MIT PRIMES Conference

Replicate Last Robust Layer + Attach Natural Last Layer + Train Last Composite Layer Independently

Aditya Saligrama

9.5th Annual MIT PRIMES Conference

Replicate Last Robust Layer + Attach Natural Last Layer + Train Last Composite Layer Independently

Composite prediction = ensemble average

Composite acc. \geq single robust model acc.

Composite ensembling: Results

1-composite (**naïve stacking**) is a disaster!

2-composite (**random splitting and stacking independently**) is optimal size for both natural and adversarial

	Single non- robust model	Single robust model	Robust ensemble (20 models)	2-Composite of robust and non- robust features
Natural test	93.2%	82.7%	86.1%	94.2%
Adv. Test (ε = 0.031, k = 14)	0.0%	51.8%	58.0%	81.2%

Meta-composite ensembling

Aditya Saligrama

9.5th Annual MIT PRIMES Conference

Meta-composite ensembling

9.5th Annual MIT PRIMES Conference

Meta-composite ensembling

• Combine *M* independently trained composite models

	Single non- robust model	Single robust model	Robust ensemble (20 models)	2-Composite of robust and non-robust features	5 meta 2- composites
Natural test	93.2%	82.7%	86.1%	94.2%	94.9%
Adv. Test (ε = 0.031, k = 14)	0.0%	51.8%	58.0%	81.2%	83.5%

Key insights and Conclusions

- Robust ensembling outperforms single models
 - Choosing models randomly forces adversary to use average strategy
 - Different models may mispredict the same way, but require different perturbations
- Proposed composite and meta-composite models
 - Re-incorporate non-robust features
 - Significantly improve natural and adversarial accuracy
 - Adversary may be hamstrung trying to attack non-robust component only
 - (Robust natural approximately equal to meta-composite adversarial accuracy)
- Bridged natural and adversarial accuracy gap
 - Appears to resolve tension between robustness and accuracy suggested by Tsipras et al. (2018)
 - Non-robust features are an important component of achieving natural accuracy
 - Meta-composites achieve SOTA natural accuracy compared to ResNet18-based architectures

Future work

- Tune ensemble weights (π) and composite parameters
- PGD: Gradient ascent with projection onto ball
 - Tuning parameters: learning rate (η), attack steps (k), random restarts
 - Random restarts did not decrease performance
 - Attack steps and learning rate changed performance but not significantly
 - Tested along a 2D grid of attack steps and learning rate
- Validation with other adversarial attacks such as Carlini-Wagner (Carlini and Wagner 2017)
- Use meta-composite framework to improve natural accuracy outside adversarial context

9.5th Annual MIT PRIMES Conference

Acknowledgements

- Guillaume Leclerc and Prof. Aleksander Mądry
- Logan Engstrom, Andrew Ilyas, and the rest of Mądry Lab
- Dr. Slava Gerovitch and Prof. Srini Devadas

Questions?

Aditya Saligrama

9.5th Annual MIT PRIMES Conference