Can robust ensembling schemes improve
defenses against adversarial inputs?

Aditya Saligrama

Mentors: Guillaume Leclerc, Prof. Aleksander Madry
Madry Lab, MIT CSAIL Theory of Computation

9.5t Annual MIT PRIMES Conference, October 20, 2019




Deep learning and
adversarial examples




Deep learning

* Has become ubiquitous in the last few years and can outperform humans on some tasks
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What the computer sees

. 82% cat

15% dog
2% hat
1% mug

image classification

(Karpathy 2015)
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Adversarial attacks

* Modify image in a set S, such as L2-ball of size g, to maximize loss L 5 = argmaxL(6,x + &,y)
* Imperceptible to human observer 15]<e

* Fools deep learning models

“airliner”

(Madry and Schmidt 2018)
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Adversarial attacks

* Modify image in a set S, such as L2-ball of size g, to maximize loss L
* Imperceptible to human observer

* Fools deep learning models

* Many ways of synthesizing adversarial examples:
* Such as PGD - projected gradient descent (Madry et al. 2017)
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5 = argmaxL(6,x + &,y)
161]<e

(Madry and Schmidt 2018)
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Robust training

e Train robust model O on dataset D: é‘ — aromin E max L(6 x + &
* Resistant to adversarial attacks 9g (x,y)~D [||5||S€ ( ) 'y)]

* Robust training via PGD (Madry et al. 2017) ~— Newtainingdata

* Many other ways... LEEEDEET
NEmsaPuEon
il 0 2 T I i e
SEE*RRITw
AErESNERE S
FENEN S =
REANTEED .=

Training dataset

O EEEEEE——

;.

Neural network

Perturbation Model parameters

Adversary Diagram adapted from Bhat (2018)
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Robust training

e Train robust model O on dataset D: é‘ — aromin E max L(6 x + &
* Resistant to adversarial attacks 9g (x,y)~D [||6||56 ( ) 'y)]

* Robust training via PGD (Madry et al. 2017) — Newtrainingdata

Many other ways... LEEEDEET
NEmsaPuEon
il 0 2 T I i e
SEE*RRITw
AErESNERE S
FENEN S =
REANTEED .=

Training dataset

O EEEEEE——

7.
Neural network

ResNet18 models (He et al. 2015)
trained on CIFAR10 Perturbation Model parameters

Natural train Robust train Adversary Diagram adapted from Bhat (2018)
(€=0.031)

Natural test
Adv. test (¢=0.031)

Aditya Saligrama 9.5t Annual MIT PRIMES Conference October 20, 2019



Robust training

e Train robust model O on dataset D: é‘ — aromin E max L(6 x + &
* Resistant to adversarial attacks 9g (x,y)~D [||6||56 ( ) 'y)]

* Robust training via PGD (Madry et al. 2017) — Newtrainingdata

Many other ways... LEEEDEET
NEmsaPuEon
il 0 2 T I i e
SEE*RRITw
AErESNERE S
FENEN S =
REANTEED .=

Training dataset

O EEEEEE——

:;;j..
Neural network

ResNet18 models (He et al. 2015)

trained on CIFAR10 Perturbation Model parameters
_ Robust train gt adopted fom ot 2015
(e=0.031)
Natural test 93% 83%
Adv. test (¢=0.031) 0% 51%
Our goal:

Robust train on natural test = natural train on natural test
Robust train on adv. test 2 natural test
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Ensembling schemes
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Adversarial ensembling

Using ensembling for training (lots of prior work, different from previous slide):

* Vanilla ensembling (baseline for this talk)
* Random initializations, train M standard models

« Ensemble Adversarial Training (Trameér et al. 2017)
* Collect adversarial examples from multiple models
* Transfer examples to train single model

* Ensemble diversity (Pang et al. 2019)
* Coupled training of all M models to promote diversity

Robust training Vanilla ensembling | Ensemble diversity (Pang et al. 2019)
(Madry et al. 2017)

Natural test 83% 94% 93%
Adv. test 51% (£=0.03) 0% 30% (£=0.02)
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Our proposed methods




Robust ensembling

* Train Mindependent models robustly  |§. = argmin E(xy)~p [max L(6,x + &,y)]
* j’th model with seed i 2 ’ 161|<e
~ Robust training with initialization seed |
Robust
model o
0, )
~ M
Robust c(x,0,m) = maxz m;0;(x,y)
model R y
0
i J ‘ 0;(x,v): model i’s probability
of class y on instance x
Robust
model Ty
Oy
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How to understand ensembles?

» Player strategy

Value of the game (discrete): Adversary --n-

* Player: random strategy over M models strategy Loss
* Probability my ... my,
* Adversary: perturbation §; ... 65 (S = o) with probability q; ... g5

07

f(q, T, L) — E5NqE9jN7rL(9ja T+ 67 y)
03

Key point: Adversary plays against ensemble rather than single
model for each instance

min, maxq ¢(q, 7, L) < max; ﬁ Zj L(0;,z+4,y)
VS.
max L(B,x+6,y)
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How to understand ensembles?

» Player strategy

Value of the game (discrete): Adversary --n-

* Player: random strategy over M models strategy Loss
* Probability my ... my,
* Adversary: perturbation §; ... 65 (S = o) with probability q; ... g5

07

f(q, T, L) — E5NqE9jN7rL(9ja T+ 67 y)
03

Key point: Adversary plays against ensemble rather than single
model for each instance

min, maxq (q, 7, L) < max; ﬁ Zj L0,z +6,y) robust ensemble loss < single robust model loss

Why? Choose q to focus on single model
VS.

max L(6,x +§, y)

Aditya Saligrama 9.5 Annual MIT PRIMES Conference October 20, 2019



Robust ensembling: Results

Single non- | Single Robust ensemble
robust model | robust model | (20 models)

Natural test 93.2% 82.7% 86.1%

Adv. Test 0.0% 51.8% 58.0%

(e =0.031, k=14)

_ 086 Different models may mispredict on same
Be instances, but require different perturbations
E S 0.84-
= M

5 10 1|5- 20
— _ 0575 )
=4 Still, large gap between natural performance of
£ 3 03507 non-robust model and robust ensembles!
g ® : :
< 05257 | | | | How to bridge this gap?
5 10 15 20

Number of ensembled models
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Robust and non-robust features

* Images comprised of robust and non-robust features (llyas et al. 2019)

 Key insight: Robust features do not have enough info about particular instances
* Non-robust features contain remaining info

Robust + non-robust
Robust features Non-robust features features
Correlated with label Correlated with label on average,
even with adversary but can be flipped within £ ball

Robust features

Eyes Gills

Input (Engstrom et al. 2019)
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Robust and non-robust features

* Images comprised of robust and non-robust features (llyas et al. 2019)

 Key insight: Robust features do not have enough info about particular instances
* Non-robust features contain remaining info

* Objective: Augment non-robust features with robust features without losing robustness

Robust + non-robust
Robust features Non-robust features features
Correlated with label Correlated with label on average,
even with adversary but can be flipped within £ ball

Robust features

Eyes Gills

Input (Engstrom et al. 2019)
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Composite ensembling

Robust

Natural

Aditya Saligrama

output laye|

IRRR!
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Composite ensembling

Extract Last Layers

output laye|

Robust

IRRR!

Natural
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Composite ensembling

Replicate Last Robust Layer
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Composite ensembling

Replicate Last Robust Layer + Attach Natural Last Layer + Train Last Composite Layer Independently

anl o\
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Composite ensembling?

Replicate Last Robust Layer + Attach Natural Last Layer + Train Last Composite Layer Independently

Robust

Natural

Aditya Saligrama
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Composite prediction =
ensemble average

Composite acc. = single
robust model acc.

October 20, 2019




Composite ensembling: Results

1.0
= i _"--1—___‘___‘_____
E H 0.9
3 E 0.8 1
28 071 1-composite (naive
stacking) is a disaster!
D.E ! I I ! I
1.0 4 2 S 8 2-composite (random splitting
T = 0-9° and stacking independently) is
=8 optimal size for both naturaland
a5 07 \ adversarial
vy
2% 051
T
0.3 . . ; . .
4 5 6 7 8

Nu mber of composite models

Single non- Single Robust 2-Composite of
robust model | robust ensemble robust and non-
model (20 models) | robust features
Natural test 93.2% 82.7% 86.1% 94.2%
Adv. Test 0.0% 51.8% 58.0% 81.2%

(€ =0.031, k = 14)
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Meta-composite ensembling

Robust

Composite 1

Natural

Meta Composite prediction =
‘ ensemble of composites

Robust

Composite 2

Natural
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Meta-composite ensembling

* Combine M independently trained composite models

Single non- Single Robust 2-Composite | 5 meta 2-
robust model robust model | ensemble of robust and | composites
(20 models) non-robust
features
Natural test 93.2% 82.7% 86.1% 94.2% 94.9%
Adv. Test 0.0% 51.8% 58.0% 81.2% 83.5%

(e =0.031, k=14)

s
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Key insights and Conclusions

* Robust ensembling outperforms single models
* Choosing models randomly forces adversary to use average strategy

 Different models may mispredict the same way, but require different perturbations

* Proposed composite and meta-composite models
* Re-incorporate non-robust features
« Significantly improve natural and adversarial accuracy

* Adversary may be hamstrung trying to attack non-robust component only
(Robust natural approximately equal to meta-composite adversarial accuracy)

* Bridged natural and adversarial accuracy gap
* Appears to resolve tension between robustness and accuracy suggested by Tsipras et al. (2018)
* Non-robust features are an important component of achieving natural accuracy
* Meta-composites achieve SOTA natural accuracy compared to ResNet18-based architectures
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Future work

Tune ensemble weights (1) and composite parameters

PGD: Gradient ascent with projection onto ball

* Tuning parameters: learning rate (1), attack steps (k), random restarts

* Random restarts did not decrease performance

 Attack steps and learning rate changed performance but not significantly
» Tested along a 2D grid of attack steps and learning rate

Validation with other adversarial attacks such as Carlini-Wagner (Carlini and Wagner 2017)

Use meta-composite framework to improve natural accuracy outside adversarial context

5 = argmax L(6,x + §,y)
[16]]<e
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Questions?

Aditya Saligrama 9.5t Annual MIT PRIMES Conference October 20, 2019




