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Deep learning and 
adversarial examples
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• Has become ubiquitous in the last few years and can outperform humans on some tasks
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Deep learning

(DeepAI 2019)

(Ruizendaal 2017)

(Karpathy 2015)
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Adversarial attacks
• Modify image in a set S, such as L2-ball of size e, to maximize loss L

• Imperceptible to human observer

• Fools deep learning models
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(Mądry and Schmidt 2018)

መ𝛿 = argmax
| 𝛿 |<𝜖

𝐿 𝜃, 𝑥 + 𝛿, 𝑦

October 20, 2019



Adversarial attacks
• Modify image in a set S, such as L2-ball of size e, to maximize loss L

• Imperceptible to human observer

• Fools deep learning models

• Many ways of synthesizing adversarial examples:
• Such as PGD - projected gradient descent (Mądry et al. 2017)
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(Mądry and Schmidt 2018)

መ𝛿 = argmax
| 𝛿 |<𝜖

𝐿 𝜃, 𝑥 + 𝛿, 𝑦

e
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• Train robust model q on dataset D:
• Resistant to adversarial attacks

• Robust training via PGD (Mądry et al. 2017)
• Many other ways…

Robust training
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Training dataset

Adversary

Neural network

Model parametersPerturbation

New training data

Diagram adapted from Bhat (2018)
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• Train robust model q on dataset D:
• Resistant to adversarial attacks

• Robust training via PGD (Mądry et al. 2017)
• Many other ways…

Robust training
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Training dataset

Adversary

Neural network

Model parametersPerturbation

New training data

Diagram adapted from Bhat (2018)
Natural train Robust train

(e=0.031)

Natural test

Adv. test (e=0.031)

ResNet18 models (He et al. 2015) 
trained on CIFAR10
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• Train robust model q on dataset D:
• Resistant to adversarial attacks

• Robust training via PGD (Mądry et al. 2017)
• Many other ways…

Robust training
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Training dataset

Adversary

Neural network

Model parametersPerturbation

New training data

Diagram adapted from Bhat (2018)
Natural train Robust train

(e=0.031)

Natural test 93% 83%

Adv. test (e=0.031) 0% 51%

ResNet18 models (He et al. 2015) 
trained on CIFAR10

Our goal: 
Robust train on natural test → natural train on natural test

Robust train on adv. test → natural test
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Ensembling schemes
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Adversarial ensembling
Using ensembling for training (lots of prior work, different from previous slide):

• Vanilla ensembling (baseline for this talk)
• Random initializations, train M standard models

• Ensemble Adversarial Training (Tramèr et al. 2017)
• Collect adversarial examples from multiple models

• Transfer examples to train single model

• Ensemble diversity (Pang et al. 2019)
• Coupled training of all M models to promote diversity
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Robust training 
(Mądry et al. 2017)

Vanilla ensembling Ensemble diversity (Pang et al. 2019)

Natural test 83% 94% 93%

Adv. test 51% (e=0.03) 0% 30% (e=0.02)
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Our proposed methods
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• Train M independent models robustly
• i’th model with seed i

Robust ensembling

Aditya Saligrama 9.5th Annual MIT PRIMES Conference

.

.
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p1

p2

pM

෡𝜃i = argmin
𝜃

𝐸 𝑥,𝑦 ~𝐷 [ max
𝛿 ≤𝜖

𝐿 𝜃, 𝑥 + 𝛿, 𝑦 ]

Robust training with initialization seed i
Robust 
model 
q1

Robust 
model 
q2

Robust 
model 
qM

𝑐 𝑥, 𝜽, 𝝅 = max
𝑦

෍

𝑖=1

𝑀

𝜋𝑖𝜃𝑖(𝑥, 𝑦)

𝜃𝑖 𝑥, 𝑦 : model i’s probability 
of class y on instance x
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How to understand ensembles?

𝜽𝟏 𝜽𝟐 𝜽𝟑

𝛿1 Loss

𝛿2

𝛿3

Adversary 
strategy

Player strategy

Value of the game (discrete):
• Player: random strategy over M models

• Probability 𝜋1…𝜋𝑀
• Adversary: perturbation 𝛿1…𝛿𝑆 (𝑆 → ∞) with probability 𝑞1…𝑞𝑆

Key point: Adversary plays against ensemble rather than single 
model for each instance

max
𝛿∈𝑆

𝐿 𝜃, 𝑥 + 𝛿, 𝑦
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vs.

robust ensemble loss ≤ single robust model loss
Why? Choose q to focus on single model



Robust ensembling: Results
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Single non-
robust model

Single
robust model

Robust ensemble 
(20 models)

Natural test 93.2% 82.7% 86.1%

Adv. Test 
(e = 0.031, k = 14)

0.0% 51.8% 58.0%

Different models may mispredict on same 
instances, but require different perturbations

Still, large gap between natural performance of 
non-robust model and robust ensembles!

How to bridge this gap?
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Robust and non-robust features
• Images comprised of robust and non-robust features (Ilyas et al. 2019)

• Key insight: Robust features do not have enough info about particular instances
• Non-robust features contain remaining info
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(Engstrom et al.  2019)
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Robust features

Eyes Gills

Robust + non-robust 
features



Robust and non-robust features
• Images comprised of robust and non-robust features (Ilyas et al. 2019)

• Key insight: Robust features do not have enough info about particular instances
• Non-robust features contain remaining info

• Objective: Augment non-robust features with robust features without losing robustness
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(Engstrom et al.  2019)
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Robust features

Eyes Gills

Robust + non-robust 
features



Composite ensembling
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Robust

Natural
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Composite ensembling
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Robust

Natural

Extract Last Layers
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Composite ensembling
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Robust

Natural

Replicate Last Robust Layer
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Composite ensembling
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Robust

Natural

Replicate Last Robust Layer + Attach Natural Last Layer + Train Last Composite Layer Independently
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Composite ensembling?
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Robust

Natural

Replicate Last Robust Layer + Attach Natural Last Layer + Train Last Composite Layer Independently

p1

p2

Composite prediction = 
ensemble average

Composite acc. ≥ single 
robust model acc.

October 20, 2019



Composite ensembling: Results

Single non-
robust model

Single
robust 
model

Robust 
ensemble 
(20 models)

2-Composite of 
robust and non-
robust features

Natural test 93.2% 82.7% 86.1% 94.2%

Adv. Test 
(e = 0.031, k = 14)

0.0% 51.8% 58.0% 81.2%

1-composite (naïve 
stacking) is a disaster!

2-composite (random splitting 
and stacking independently) is 
optimal size for both natural and   
adversarial
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Meta-composite ensembling
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Robust

Natural

p1

p2

Take many composite 
ensembles
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Meta-composite ensembling
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p1

p2

Meta Composite prediction = 
ensemble of composites

Composite 1

Composite 2
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Meta-composite ensembling
• Combine M independently trained composite models
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Single non-
robust model

Single
robust model

Robust 
ensemble 
(20 models)

2-Composite 
of robust and 
non-robust 
features

5 meta 2-
composites

Natural test 93.2% 82.7% 86.1% 94.2% 94.9%

Adv. Test 
(e = 0.031, k = 14)

0.0% 51.8% 58.0% 81.2% 83.5%
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Key insights and Conclusions
• Robust ensembling outperforms single models

• Choosing models randomly forces adversary to use average strategy

• Different models may mispredict the same way, but require different perturbations

• Proposed composite and meta-composite models
• Re-incorporate non-robust features

• Significantly improve natural and adversarial accuracy

• Adversary may be hamstrung trying to attack non-robust component only
• (Robust natural approximately equal to meta-composite adversarial accuracy)

• Bridged natural and adversarial accuracy gap
• Appears to resolve tension between robustness and accuracy suggested by Tsipras et al. (2018)

• Non-robust features are an important component of achieving natural accuracy

• Meta-composites achieve SOTA natural accuracy compared to ResNet18-based architectures
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Future work
• Tune ensemble weights (p) and composite parameters

• PGD: Gradient ascent with projection onto ball
• Tuning parameters: learning rate (h), attack steps (k), random restarts

• Random restarts did not decrease performance

• Attack steps and learning rate changed performance but not significantly

• Tested along a 2D grid of attack steps and learning rate

• Validation with other adversarial attacks such as Carlini-Wagner (Carlini and Wagner 2017)

• Use meta-composite framework to improve natural accuracy outside adversarial context
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Questions?
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