
Andrew Shen

Mentored by Anish Athalye

Towards verifying application
isolation for cryptocurrency

hardware wallets

What do you do when your computer is not secure?

2

- Users perform cryptocurrency transactions on personal computer
(PC).

- Security relies on PC being secure.
- Modern PC are full of security vulnerabilities.

Hardware wallets provide security when PC is
compromised

3

- Separate the confirmation and the transaction.
- The hardware wallet connects to the computer through USB and

provides a display and buttons to verify the transaction.
- They can reduce the size of the Trusted Computing Base (TCB) from

a personal computer.

Ledger: A Common
Cryptocurrency
Hardware Wallet

Hardware wallets have isolation bugs

- Each wallet should be able to run numerous cryptocurrency
applications (ex. Bitcoin, Ethereum, etc).

- The wallet operating system code base is still complex.
- Each of these applications should be isolated.
- This complexity has led to bugs and issues in security in past

real-world wallets.
- Can we do better? Increase confidence that our programs cannot

interfere or corrupt data in other programs or in the kernel?

4

How do we increase our confidence in our code?

- Add test cases, we can formulate examples to check the expected
outcome against the actual outcome.

- Test cases can’t encompass all edge cases.

Wouldn’t it be nice if we could test against all possible inputs?

- We describe the expected outcome of our code and check that the
code always matches our expectation, regardless of the input.

- This is known as verification.

5

Goal: Apply verification to prove security properties
of a hardware wallet kernel.

6

Simple Kernel Design

Our kernel has the following features:

- Small code base.
- Install applications.
- Loads and launches application.

Implemented for a RISC-V processor.

7

A deeper look into verification

Implementation - our running code that is untrusted.

Specification - our description of how the code should behave. It is
trusted.

- If the “implementation satisfies the specification”, this means that for
any input, it correctly executes as the specification states.

8

Implementation (merge sort) Specification

forall list i j,
i < j -> sort(list)[i] < sort(list)[j]

- If the implementation satisfies the
specification, then we know that the
implementation works for all possible
values.

- This gives us confidence that our
implementation function works, without
having to trust that we wrote it correctly.

A simple verification example: sorting

9

SAT and SMT Solvers: How do we do this proof?

How do we reason about every possible input?

- Use an SAT or SMT solver.
- SAT Solvers (SATisfiable) solve boolean satisfiability problems.
- These are identical to regular equations except the SAT solver tries to

assign values to each variable to make the equation true.

Example 1: a and not b. If a = True and b = False. This equation is SAT.

Example 2: a and not a. This is equation is UNSAT.

- SMT solvers are more powerful e.g. can solve linear arithmetic.
10

Powerful Tools: Z3 and Rosette

11

Z3

- Z3 is an SMT solver that we will use to prove our properties.

Rosette

- Rosette is a library in the Racket language which provides us with a
nice interface to “lift” or automatically port our implementation code to
a format that can be understood by our SMT solver.

Specification (written in Racket)

(define sign (cond
[(positive? a0) 1]
[(negative? a0) -1]

 [else 0]))

Rosette Example: sign function in ARM

12

Implementation (written ARM)

 cmp R0, #0
 ble 4
 mov R0, #1
 ret
4:
 cmp R0, #0
 bge 8
 mov R0, #-1
 ret
8:
 mov R0, #0
 ret

Rosette Example: How do we lift our function?

Rosette Interpreter for ARM

(define (execute c opcode Rd Rn Op2
addr Rm Rs)
 (define pc (cpu-pc c))
 (case opcode
 [(ret)
 (set-cpu-pc! c 0)]
 [(mov)
 (set-cpu-pc! c (+ 1 pc))
 (set-cpu-reg! c Rd Op2)]
 # more interpreted instructions
))

- We wrote an interpreter for a
small subset of ARM
instructions.

- Emulates an ARM CPU.

13

Current Results (verification)

14

Goal Recap: Formulating and proving properties about our simple kernel.

Isolation Property: Loading and launching a program a does not depend
on nor affect the contents of program b.

What does the implementation and specification look like?

- Implementation: Our prebuilt kernel.
- Specification: Regardless of the application, we would like our

sensitive data for the kernel and each application to be unchanged.

Acknowledgements

Anish Athalye

PRIMES

My family

15

