Privacy-Preserving Similarity Search Using Learned Indexes

MIT PRIMES Computer Science Conference October 20, 2019

> By: Patrick Zhang Mentor: Kyle Hogan

Similarity Search

- matches *items* with similar *features* to the same user *profile*
 - each *item* has a *feature vector* a vector of numbers determining certain qualities



Similarity Search

- Often used for online sites (e-commerce)
 - spotify
 - netflix
 - o amazon

Examples of feature vectors for songs:

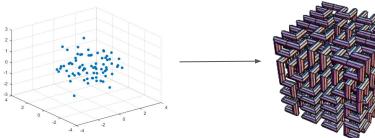
	Year	ls pop (genre)	ls jazz (genre)	length (seconds)
Song 1	2000	1 (yes)	0 (yes)	120
Song 2	2010	0 (no)	1 (yes)	200

Why make it private?

- Scenario
 - Client wants to get k song recommendations from Server, to match his profile
 - Both the Client and Server want privacy
 - Client doesn't want the Server to know the profile (can contain very personal information)
 - Server doesn't want the Client to learn the model that gives the song recommendations

Similarity Search Algorithm

- Each *feature vector* is a point on d-dimensional space where d is the size of a vector
 - Feature vector of song 1: <2000,1,0,120> has 4 dimensions
- k-nearest neighbors = k closest points to a single point
- Higher dimensions make it harder!
 - Map the points of d-dimensions to a 1 dimension using a Hilbert curve
 - Hilbert curve a single space-filling line through d-dimensions that guarantees that if 2 points are close in 1 dimension, they will be close in d dimensions



Similarity Search Algorithm

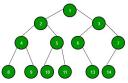
- All the items are on a single "sorted" array
 - <Song 1 (10 units), Song 3 (100 units), Song 5 (101 units),>

• How can we find the index (location) of an item in the sorted vector privately?

What are Learned Index Structures

- Data structures to query information
 - we want to find the index of an item in an array

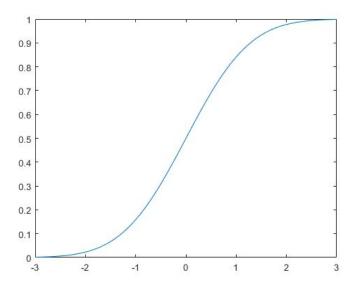
- How are these different from traditional index structures (i.e. Binary Trees)
 - they utilize the patterns in the data for an APPROXIMATE search that is more efficient in terms speed and memory



Creating a Learned Index Structure

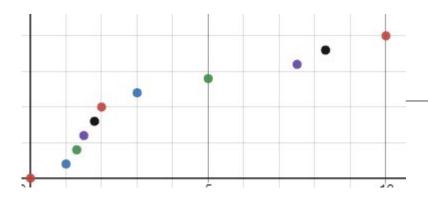
- want to approximate the position of a key in a sorted array
 - equivalent to approximating the CDF (cumulative distribution function (CDF)

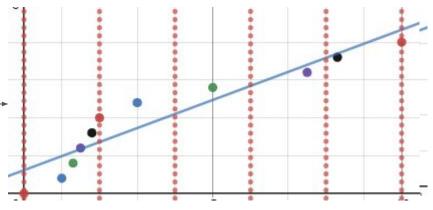
- x axis = distance
- \circ y axis = index



Creating a Learned Index Structure

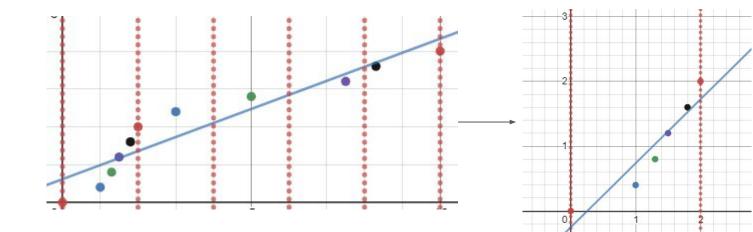
- use linear regression
 - find a line of best fit, x axis is the distance, y value is the position
 - \circ however, there could be too much error
 - the result gives you a bin instead



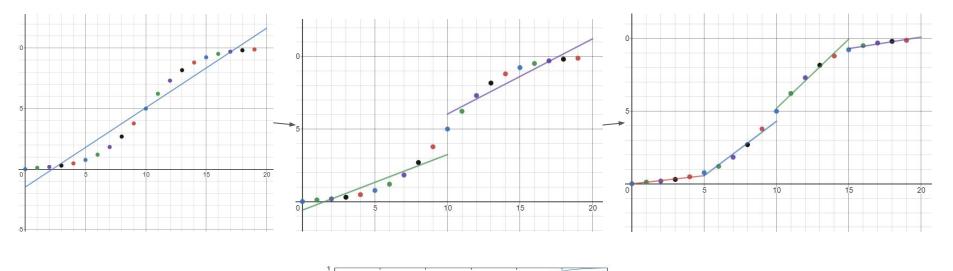


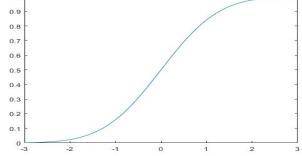
Creating a Learned Index Structure

- within each bin, you find another line of best fit to find the approximate index
- each set of bins is a *layer*, each bin is represented by the equation of a line: y=mx+b



More layers = more bins = more accurate!

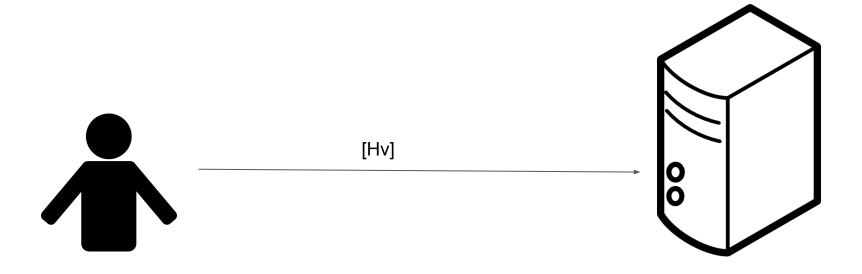




Client computes and encrypts Hilbert distance for profile [Hv] =

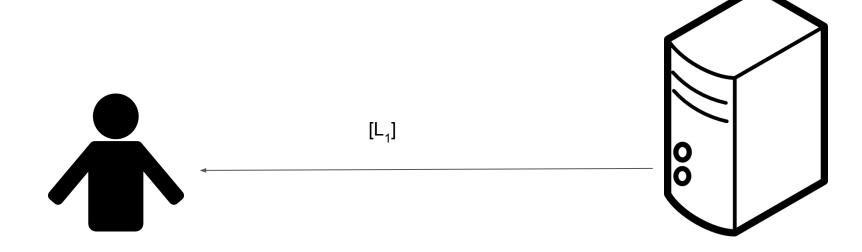
*[] means encrypted

using somewhat homomorphic encryption (+ and * work under encryption i.e [x]*[y]=[xy])



Server uses line in layer 1 to get $[L_1]$, the encrypted result

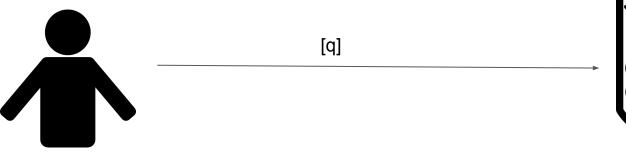
m[Hv]+b=[L₁]

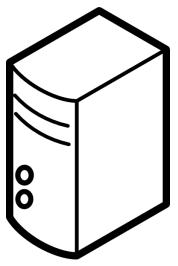


Client decrypts $[L_1]$ to get L_1 , the index of the bin of layer 2

Finds vector [q] = ([0], ..., [1], ..., [0]), array of [0]'s except for a [1] at index L₁

*all the [0] look different so the server can't tell which is the [1]





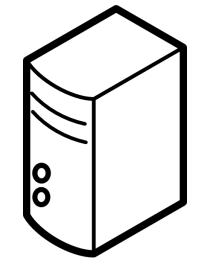
[q'] = ([1],...,[1])-[q] = ([1],...,[0],...,[1])

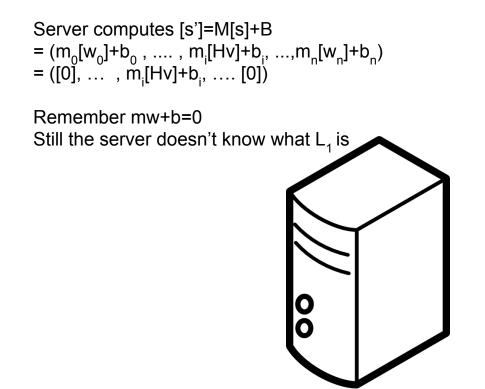
W = vector of x intercepts for next set of bins $(w_0, w_1, ...)$ M = vector of slopes for next set of bins $(m_0, m_1, ...)$ B = vector of y intercepts for next set of bins $(b_0, b_1, ...)$

*lines for bins are represented as y=mx+b and mw+b=0

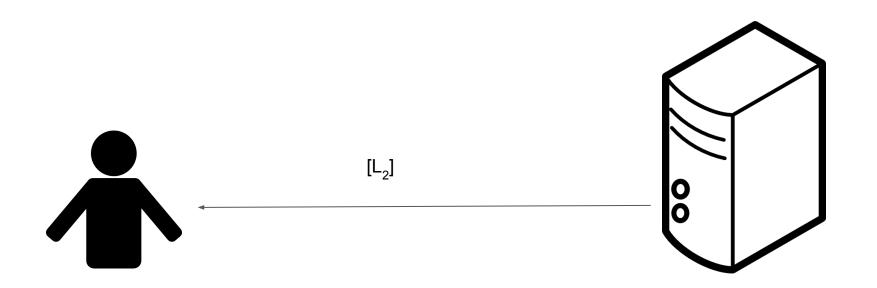
Server computes [s]=[q][Hv]+[q']W = ($[w_0]$, $[w_1]$, ..., $[w_{i-1}]$, [Hv], $[w_{i+1}]$,....)

An array of the x intercepts except for [Hv] at L_1 (location of the bin we want)





Server computes $[L_2]$ = sum of [s'] = $m_i[Hv]$ +b



- Process is repeated until all layers in the model are processed (the last layer gives the final approximate index)
 - In the second layer, L_2 is used instead of L_1

Imminent Work (Adding Server Privacy)

Server adds random number *r* to every L value (L₁,L₂..)
The Client doesn't know the actual index of the bins or the final index

• When the Server receives <...>, it rotates the values by *r*

Example:

L₁=1

r = 1

Client get L_1 + r =2 and sends:

<[0], [0], [1]...>

Server rotates the values left by 1: <[0], [1], [0]...>

Future work

- Avoid making the Client compute the feature vector
 - the feature vector is also something that the Server often spends time making
 - we don't know what features in songs spotify uses to determine similarity
- Decreasing bandwidth
 - the size of [q] can be big since it is equal to the number of bins in each layer, however in practice it's usually around 10 which is not so bad
- A problem to look into only finds the index on a sorted array quickly, finding the k nearest neighbors requires PIR (Private Information Retrieval) - a really slow process for large databases (grows in speed proportionally to the size of the database)

Other Uses

• Even though similarity search may still be slow overall, privately querying indices of sorted arrays can be used for other things such as range queries

Acknowledgements

• MIT PRIMES

• My mentor: Kyle Hogan

• Assistance from: Sasha Servan-Schreiber and Hanshen Xiao

• My parents