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Abstract  

The   organization   of   DNA   throughout   the   genome   is   a   complex   process   to   study.   Analysis  

reveals   a   checker-board   pattern   of   separation   at   a   megabase-pair   scale,   called   compartments,  

which   are   captured   well   by   the   largest   eigenvector   of   the   Hi-C   contact   matrix.   The   sign   of   the  

eigenvector   correlates   with   active   and   repressed   areas   of   the   genome.   These   compartments   have  

been   characterized   into   two   categories,   called   A   and   B   compartments,   which   are   hypothesized   to  

be   spatially   separated   based   upon   the   protein   occupancy   in   the   region.   This   project   explores   the  

factors   that   govern   DNA   compartmentalization,   including   the   relationship   between  

compartments   and   protein   occupancy.   In   order   to   analyze   contacts   within   the   genome,   Hi-C   data  

was   loaded   and   the   eigenvectors   of   the   contact   matrix   were   computed.   Protein   occupancy   in  

murine   cortical   neurons   and   neural   progenitor   cells   was   measured   via   ChIP-Seq.   Using   this   data,  

we   calculated   the   influence   of   several   proteins   on   the   sign   of   the   Hi-C   eigenvector   via   regression  

and   Support   Vector   Machines   (SVMs).   Based   on   our   findings,   we   tried   to   develop   a   simple  

model   for   compartments   and   explored   this   via   simulations.   We   developed   simple   simulations   of  

compartments   based   on   ChIP-Seq   data,   and   compared   the   results   to   compartments   identified   in  

experimental   Hi-C   maps.   The   results   demonstrate   a   high   correlation   between   the   eigenvectors   of  

the   simulated   and   experimental   Hi-C   maps.   In   conclusion,   the   computational   methods   are  

effective   at   determining   the   proteins   which   most   significantly   contribute   to  

compartmentalization.   

 

 



Introduction  

Every   cell   has   a   nucleus   that   contains   DNA.   DNA   is   a   long   strand   with   three   billion   base  

pairs   and   fits   into   the   nucleus   of   every   cell,   which   is   only   six   microns   across.   Different   forces   act  

on   DNA   within   the   nucleus,   which   allows   it   to   take   different   shapes   and   structures.  

Understanding   of   how   three   billion   base   pairs   fold   in   space   and   undergo   cell   division   has   long  

been   believed   to   be   extremely   relevant   to   reveal   biological   functions   at   the   gene   level   as   well   as  

the   global   nuclear   level,   including   gene   regulation,   the   control   of   chromatin   interactions,   the  

maintenance   of   genetic   information   and   the   safe   transfer   of   chromosomes   from   generation   to  

generation   (Belton   et   al.,   2002).   

There   are   many   layers   of   organization   of   chromatin,   which   occur   on   different   scales.   On  

a   smaller   scale,   DNA   forms   Topologically   Associated   Domains,   caused   by   the   formation   of  

small   loops.   On   the   larger   megabase   scale,   analysis   reveals   an   organizational   layer   of   chromatin  

called   compartments.   These   compartments   have   been   characterized   into   two   categories,   called   A  

and   B   compartments,   which   are   correlated   to   active   and   repressed   regions   of   the   genome.  

Chromatin   loci   in   the   A   compartment   clusters   with   other   A   compartment   chromatin   loci,   and   the  

opposite   is   true   for   chromatin   in   the   B   compartment.   An   open   question   in   the   field   is   the  

identification   of   molecular   agents   that   lead   to   the   physical   separation   of   A   and   B   compartments.  

Prior   research   has   found   certain   proteins   to   be   associated   with   active   and   repressed  

DNA(Vermeulen   et   al.,   2010;   Soldi   et   al.,   2013;   Ji   et   al.,   2015).   Our   project’s   initial   goal   was   to  

build   predictive   models   of   genome   compartmentalization   based   on   protein   occupancy   data.  

Before   discussing   our   results,   we   outline   relevant   methods.   

 

Methods   Overview  

Many   experimental   techniques   have   been   developed   to   explore   the   spatial   organization   of  

chromatin.   Some   of   these   methods   use   fluorescent   (light)   microscopy   to   measure   the   shape   and  

distribution   of   chromosomes   with   a   fine   resolution   (Dehghani   et   al.,   2005),   while   others   such   as  

Fluorescent   In   Situ   Hybridization   (FISH)   use   probes   that   bind   to   a   particular   DNA   sequence   to  

investigate   the   relationship   between   the   structure   and   sequence   of   the   genome   (Solovei   et   al,  

 



2004).   Another   method,   Chromosome   Conformation   Capture   (3C),   relies   on   molecular   assays   to  

relate   nuclear   architecture   with   the   DNA   sequence   (Belton   et   al.,   2002;   Fullwood   et   al.,   2009;  

Horike   et   al.,   2005).   Most   3C   based   methods   only   focus   on   interactions   between   certain   loci,   but  

Hi-C   is   a   more   comprehensive   technique   that   allows   “all-versus-all   profiling”.   This   is   done   by  

crosslinking   chromatin   with   formaldehyde,   fragmenting   it,   and   then   religating   only   DNA  

fragments   that   are   covalently   linked   together,   which   then   creates   a   library   with   all   possible  

pairwise   interactions   between   fragments.   For   visualization,   Hi-C   displays   a   heat   map   to   indicate  

the   probability   of   different   interactions.   This   visualization   allows   the   identification   of   A   and   B  

compartments,   whose   spatial   separation   manifests   as   a   checkerboard   pattern   in   the   Hi-C   heat  

map.   

 

Figure   1:   Experimental   Hi-C   Contact   Map  

Figure   1   Caption:   Hi-C   contact   map   for   CN   (cortical   neuron)   cells,   where  
axes   are   in   units   are   in   units   of   100   kilobases.   The   distinct   rectangles   are  

examples   of   compartments.   Darker   regions   correspond   to   more   interactions   and  
lighter   regions   correspond   to   less   interactions.  

 



 

One   disadvantage   with   the   Hi-C   matrix   is   that   it   contains   too   much   data   which   makes   it  

difficult   to   be   analyzed   efficiently.   In   this   project,    we   utilize   a   Principal   Component  

Analysis(PCA)    method   that   uses   eigenvectors   that   summarize   the   behavior   of   the   Hi-C   matrix   to  

dramatically   reduce   the   computational   burden.   The   sign   of   the   largest   resulting   eigenvector   has  

been   shown   to   indicate   compartments   (Imakaev   et   al,   2012).  

Proteins   bind   to   DNA   at   various   locations.   ChIP-Seq   (Barski   et   al.,   2007)   measures   how  

likely   it   is   for   a   protein   to   bind   to   DNA   at   a   particular   location,   which   is   known   as   the   protein  

occupancy.   We   downloaded   Hi-C   and   ChIP-Seq   data   from   Bonev   et   al.   (Bonev   et   al.,   2017)   for  

cortical   neurons   (CN)   and   neural   progenitor   cells   (NPC).   The   eigenvector   with   the   largest  

eigenvalue   was   calculated   from   the   Hi-C   matrix,   and   ChIP-Seq   tracks,   also   from   the   Bonev  

dataset,   were   loaded   from   bigwig   files.  

With   this   data,   our   goal   was   to   identify   proteins   whose   occupancy   (as   measured   by  

ChIP-Seq)   could   predict   compartmentalization   (as   measured   by   the   largest   eigenvector   of   the  

Hi-C   matrix)   in   both   CNs   and   NPCs.  

Results  

After   downloading   ChIP-Seq   and   Hi-C   data   from   Bonev   et   al.,   we   retained   only   the   data  

from   Chromosome   1,   to   minimize   computation   time.   Outliers   in   the   ChIP-Seq   that   had   an  

(absolute   value)   z-score   of   more   than   3   were   removed.   Next,   the   ChIP-Seq   tracks   were   centered  

around   the   mean,   and   the   variance   inflation   factor   (VIF)   of   each   protein   was   calculated.   The  

protein   with   the   highest   VIF   was   removed   since   a   high   VIF   indicates   a   strong   correlation   with  

other   proteins.   After   that,   the   VIFs   were   recalculated   for   the   remaining   proteins   until   all   VIFs   are  

less   than   five.   At   that   point,   there   was   minimal   multicollinearity   between   the   remaining   proteins.  

Then,   all   ChIP   Seq   tracks   were   normalized   between   0   and   1   so   that   they   had   the   same   range.  

After   that,   two   different   methods   were   utilized   to   determine   the   most   influential   proteins  

on   the   eigenvector   of   the   Hi-C   matrix.   First,   linear   regression   was   conducted,   with   the   7   proteins  

as   the   independent   variables   and   the   eigenvector   as   the   dependent   variable.   The   importance   of   a  

protein   was   evaluated   based   on   the   coefficients   of   the   linear   model.   The   protein   with   the   smallest  

 



(absolute   value)   coefficient   was   removed,   and   the   coefficients   were   recalculated   using   an  

updated   regression   model   with   the   remaining   proteins.   This   process   was   repeated   until   there  

were   only   three   proteins   left.   A   linear   SVM   (Boser   et   al.,   1992)   was   then   used   to   classify   the   data  

based   on   the   positivity   of   the   eigenvector.   This   method   attempted   to   determine   the   influence   of  

each   protein   on   the   sign   of   eigenvector   rather   than   the   value   itself.   The   importance   of   a   protein  

was   based   on   the   coefficients   of   the   decision   boundary.   Similar   to   the   previous   method,   the  

protein   with   the   smallest   (absolute   value)   coefficient   was   removed   after   each   iteration   until   there  

were   only   three   proteins   left.   

Seven   proteins   identified   in   previous   studies   to   be   associated   with   active   and   inactive  

regions   of   the   genome   (Vermeulen   et   al.,   2010;   Soldi   et   al.,   2013;   Ji   et   al.,   2015)   were   fitted   into  

the   linear   regression   model .   For   CN   cells,   the   only   protein   that   was   highly   correlated   with   the  1

others   was   H3K27ac   as   indicated   by   it's   high   VIF   value   of   10.287,   so   it   was   eliminated .   The   rest  2

of   the   proteins   all   had   VIF   values   below   five   (Table   1).   Using   the   regression   method,   CTCF,  

H3K4me3,   and   H3K27me3   were   eliminated   sequentially   (Table   2).   Out   of   the   three   remaining  

proteins,   H3K9me3   had   the   greatest   (absolute   value)   coefficient   of   -1.36   and   was   considered   the  

most   influential   protein.   Using   the   classification   approach,   the   same   set   of   proteins   were  

eliminated,   although   H3K27me3   was   eliminated   before   H3K4me3.   H3K9me3   was   still   the   most  

influential   protein   with   the   largest   coefficient   of   -11220.823   (Table   3).   

For   NPC   cells,   H3K27ac   was   also   the   only   protein   with   a   VIF   above   5   which   suggested  

that   it   was   highly   correlated   with   others   (Table   4).   CTCF,   H3K27me3,   and   H3K36me3   were  

eliminated   in   the   same   order   using   both   regression   (Table   5)   and   classification   (Table   6).  

H3K4me3   was   the   most   influential   protein   in   both   methods.   The   tables   below   show   the   VIFs   and  

coefficients   for   each   protein.    

1  The   seven   proteins   that   were   used   are   CTCF,   H3K27ac,   H3K27me3,   H3K36me3,   H3K4me1,   H3K4me3,   and  
H3K9me3.  
2  Cells   are   shaded   gray   after   the   protein   was   eliminated.  

 



Table   1:   Variance   Inflation   Factors   for   CN   Proteins   

 

 

Table   2:   Regression   Coefficients   for   CN   Proteins   

 

 

Table   3:   Classification   Coefficients   for   CN   Proteins   

 

  

 



Table   4:   Variance   Inflation   Factors   for   NPC   Proteins   

 

 

Table   5:   Regression   Coefficients   for   NPC   Proteins  

 

 

Table   6:   Classification   Coefficients   for   NPC   Proteins   

 

 

  

 



In   summary,   H3K9me3   was   indicated   as   the   protein   most   predictive   of  

compartmentalization   in   CNs,   while   H3K4me3   was   the   most   predictive   in   NPCs.   Furthermore,  

for   both   methods   and   both   cell   types,   prediction   accuracy   did   not   suffer   much   when   using   just  

the   top   three   most   influential   proteins   versus   the   seven   initial   proteins.With   all   seven   proteins,  

the   regression   score   for   both   cell   types   was   around   0.6,   while   the   score   only   dropped   by   0.01  

when   the   top   three   were   used.   When   trained   with   seven   proteins,   our   SVM’s   test   accuracy   was  

0.839,   with   293   points   classified   incorrectly   out   of   1817   for   the   CN   datasets.   Using   only   the  

three   most   influential   proteins,   the   score   slightly   decreased,   dropping   to   0.824,   with   326   wrong  

out   of   1852.   There   was   a   similar   trend   in   the   NPC   proteins.   With   all   seven,   the   SVM   test  

accuracy   was   0.878,   with   only   221   incorrect   out   of   1812.   The   accuracy   score   barely   changed  

when   only   the   three   most   influential   proteins   were   used,   dropping   to   0.874,   with   237   wrong   out  

of   1882.   

The   results   of   the   SVM   were   cross-validated   in   two   different   ways.   We   first  

cross-validated   by   varying   the   percentage   of   data   withheld   for   testing   our   SVM   between   20%  

and   40%.   With   this   method,   the   accuracy   score   only   differed   by   at   most   0.02   in   both   cell   types.  

The   other   method   used   the   KFold   approach,   which   evenly   divided   the   data   set   into   K   subsets.   In  

each   split,   K-1   subsets   were   selected   to   be   the   training   set   and   the   remaining   subset   served   as   the  

testing   set.   The   number   of   splits   for   KFold   were   between   2   and   10.   There   was   occasionally   an  

unusual   score   at   a   particular   iteration,   but   the   average   SVM   accuracy   never   changed   by   more  

than   0.01,   for   both   cell   types.  

 

Using   the   data   from   the   regression   and   classification   models,   a   simulation   was   conducted  

to   confirm   the   influence   of   the   top   proteins.   The   complexity   of   the   DNA   molecule   was   simplified  

by   modeling   it   as   a   polymer.   The   simulation   included   some   generic   forces   for   a   polymer:   a  

random   thermal   force,   a   harmonic   bond   force,   and   repulsive   forces   between   monomers.   Data  

from   the   simulation   was   used   to   compute   the   contact   matrix.   The   eigenvector   of   the   simulated  

contact   map   was   compared   against   the   experiment   eigenvector   to   determine   how   realistic   the  

simulation   was   in   modeling   the   nucleus.   

 



There   were   two   main   simulation   models:   variable   stickiness   and   stochastic   stickiness.   In  

each   simulation,   the   main   force   that   was   modified   was   the   attraction   between   monomers,  

referred   to   as   the   “stickiness”,   and   was   based   on   the   ChIP-Seq   track.   This   was   based   on   the  

assumption   that   regions   which   interact   more   with   proteins   should   interact   more   with   other  

monomers.   In   the   first   model,   the   “stickiness”   was   a   continuous   variable   based   on   the   value   of  

the   CN   H3K9me3   ChIP-Seq   track,   transformed   by   various   functions.   In   the   second   model,   the  

“stickiness”   was   binary,   where   monomers   were   assigned   to   be   either   “sticky”   or   “non   sticky”  

with   a   random   probability   based   on   the   ChIP-Seq   track.   

 

 

Figure   2:   Variable   Stickiness   Model  
Simulated   Contact   Map  

Figure   3:   Stochastic   Stickiness   Model  
Simulated   Contact   Map  

  

Figures   2   and   3   Caption:   Simulated   Hi-C   contact   map   for   variable   (Figure  
2)   and   stochastic   (Figure   3)   stickiness   models,   where   axes   are   in   units   are   in   units  
of   100   kilobases.   The   colorbar   shows   ln(number   of   contacts).   Maps   are   created   by  
averaging   contacts   over   100   different   simulations   with   5000   (Figure   2)   and   2500  

(Figure   3)   configurations   per   simulation.   Compartments   are   visible   for   the  
variable   stickiness   model,   but   not   obviously   present   in   the   stochastic   stickiness  

model.  
 
 

 

 



The   contact   map   of   the   variable   stickiness   model   was   similar   to   the   experimental   contact  

map,   and   there   were   visible   compartments   (Figure   2).   On   the   other   hand,   the   contact   map   for   the  

stochastic   stickiness   model   did   not   have   a   clear   separation   between   any   DNA   regions   (Figure   3).  

One   potential   cause   is   that   the   stochastic   simulations   need   to   be   run   longer   in   order   to   see   a  

pattern.  

 

Discussion   and   Conclusion  

In   this   project,   we   used   protein   occupancy   data   to   predict   the   compartment   eigenvector   in  

Hi-C   experiments   in   murine   neural   progenitor   cells   (NPCs)   and   cortical   neurons   (CNs).   We  

analyzed   Hi-C   data   from   Bonev   et   al.   and   computed   eigenvectors   for   both   cell   types.   Protein  

occupancies   in   both   cell   types   were   measured   via   ChIP-Seq.   

Using   regression   and   SVMs,   we   found   that   H3K9me3   was   the   most   effective   protein   at  

predicting   compartment   eigenvectors   in   CNs   and   H3K4me3   was   the   most   useful   factor   for  

NPCs.   Based   on   our   findings,   we   then   used   the   protein   occupancy   data   from   these   important  

proteins   to   run   two   different   types   of   polymer   simulations.   We   found   that   one   model,   the  

stochastic   stickiness   model,   was   not   good   at   reproducing   the   experimental   data.   This   suggests  

that   proteins   are   consistently   present   at   varying   levels   in   every   cell,   and   not   on   or   off   in   an  

individual   cell.   However,   this   may   have   been   the   result   of   insufficient   simulation   time.  

Additionally,   depending   on   the   cell,   we   found   that   different   proteins   were   more   important   in  

predicting   compartment   eigenvectors.   This   suggests   that   future   work   should   consider   more   cell  

types   in   a   similar   analysis.  
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