
Analysis of the One Line Factoring Algorithm

Tejas Gopalakrishna and Yichi Zhang

Abstract

For integers that fit within 42 bits, a competitive factoring algorithm is the so-called One Line Factoring

Algorithm proposed by William B. Hart. We analyze this algorithm in special cases, in particular, for

semiprimes N = pq, and look for optimizations. We first observe the cases in which the larger or smaller

prime is returned. We then show that when p and q are sufficiently close, we always finish on the first itera-

tion. An upper bound can be found for the first iteration that successfully factors an odd semiprime. Using

this upper bound, we demonstrate some simplifications to the algorithm for odd semiprimes in particular.

One of our observations is that we only need to iterate numbers {0,1,3,5,7}modulo 8, as the other iterators

are very rarely the first that successfully factor the semiprime. Finally, we inspect the performance of the

optimized algorithm.

1 INTRODUCTION

1 Introduction

It is well known that the optimal algorithm for factoring large numbers greater than 10100 is the general

number field sieve, and for numbers less than 10100, the quadratic sieve. However, for numbers that fit

within 42 bits, there are many other algorithms that are competitive. One of them is Fermat’s method which

searches for squares a and b such that N = a2− b2 = (a+ b)(a− b), hence finding factors. Some others

are Lehman’s algorithm [1] and Shanks’ Square Forms Factoring algorithm [2]. More recently, Hart [3]

revealed a competitive algorithm for integers of this size:

OLF(N) :

For k := 1, . . . ,N :

s := d
√

k ·Ne

m := s2 mod N

I f m i s s q u a r e :

t :=
√

m

Re tu rn GCD(N,s− t)

This algorithm gets its name from the fact that it can be implemented in one line of Pari/GP or Sage. It

is a variant of Lehman’s algorithm, but only requires one variable to be iterated instead of two.

The goal of this paper is to analyze runtime improvements upon changing the set of k that the algorithm

iterates over, and explore ways to optimize the algorithm, in particular, for odd semiprimes N = p ·q.

In Section 2, we observe some cases when the smaller or larger prime is returned by the algorithm, we

look at the set of semiprimes that are factored in the first iteration, and conjecture a bound on the number of

iterations required to factor odd semiprimes.

In Section 3, we use this conjecture to reduce the modulus operation in the algorithm to a subtraction

operation, and we propose an improvement to the algorithm.

In Section 4, we observe the practical runtime of the algorithm on semiprimes, and compare our pro-

posed algorithm to demonstrate the speedup.

1

2 OBSERVATIONS

2 Observations

2.1 Notation

We use the nonstandard notation a mod N to represent a unique number x ∈ {0,1, . . . ,N−1} such that a≡ x

(mod N).

We also refer to the algorithm described by Hart as OLF(N). We refer to our modified version of the

algorithm (for semiprimes) as OLF MOD(N).

2.2 Result of factoring semiprimes

Consider the graph in Figure 1. We let the y-axis coordinate represent the index of prime p (with y = π(p)),

and the x-axis coordinate represent the index of prime q (with x = π(q)), where π is the prime-counting

function. Each point in this graph represents a semiprime N = pq. A point is colored green if the smaller

factor is returned by the algorithm, and colored blue if the larger factor is returned.

Note that the diagonal ”band“ from the bottom left to top right is solid green. This suggests that where

p,q are close, the algorithm returns the lower number. In particular, we claim:

Proposition 1. When p and q are odd primes, and q− p < 2
√

2p+ 2, the algorithm always returns the

smaller prime.

Proof. Without loss of generality, let q > p > 2. In the iteration k = 1, s in the algorithm is p+q
2 , and m in

the algorithm is (q−p)2

4 , as in the proof of Proposition 2. Here, m is a perfect square.

t in the algorithm is
√

m = q−p
2 . The factor is GCD(N,s−t) = GCD(pq, p+q

2 −
q−p

2) = GCD(pq, p) = p.

Therefore, the smaller factor, p, is returned.

2.3 Numbers factored in the first iteration

In Figure 2, we visualize the relative number of iterations required to factor a semiprime. Each point

represents a semiprime, as in Figure 1. A semiprime point is colored more black if it is factored in fewer

iterations, and more white if it needs more iterations.

Let 2 < p < q, where p,q are primes. We consider semiprime N = pq. From the algorithm, if m =

d
√

iNe2 mod N is a square, then the number can be factored on the i-th iteration. We look the case i = 1, the

numbers that may be factored within one iteration.

At iteration i = 1, we check if (d
√

Ne2 mod N) = (d√pqe2 mod N) is a square.

Lemma 1. d√pqe2 = (p+q)2

4 when q− p < 2
√

2p+2.

2

2.3 Numbers factored in the first iteration 2 OBSERVATIONS

Figure 1: Number returned by OLF(pq): The point is green when factoring the corresponding semiprime
returns the smaller prime, and the blue when factoring it returns the larger prime.

3

2.3 Numbers factored in the first iteration 2 OBSERVATIONS

Figure 2: The number of iterations required by OLF(pq) to complete. The point is colored more black when
fewer iterations are required, and more white when more iterations are required.

4

2.3 Numbers factored in the first iteration 2 OBSERVATIONS

Proof. The expression d√pqe2 can be interpreted as the next perfect square after pq.

Let a = q− p. Then N = pq = p(p + a). Note that (p + a
2)

2 = p2 + pa + a2

4 and (p + a
2 − 1)2 =

p2 + a2

4 + 1 + pa− 2p− a, and that a
2 must be an integer (since a is even, the difference between odd

primes).

Clearly, pq = p(p+a) = p2 + pa≤ p2 + pa+ a2

4 = (p+ a
2)

2, since a2

4 ≥ 0 (a = q− p, and q > p). So,

N = pq≤ (p+ a
2)

2.

(p+ a
2−1)2 < pq follows from q− p< 2

√
2p+2. Since (p+ a

2−1)2 < pq≤ (p+ a
2)

2, and since d√pqe2

is the next perfect square after pq, d√pqe2 = (p+ a
2)

2. Since a = q− p, this can be further simplified to

(p+ q−p
2)2 = (p+q

2)2 = (p+q)2

4 .

Lemma 2. pq < (p+q)2

4 < 2pq when q− p < 2
√

2p+2.

Proof. Let a= q− p, so pq= p2+ pa. Then, p2+q2

2 = p2+(p+a)2

2 = 2p2+2pa+a2

2 = p2+ pa+ a2

2 > p2+ pa= pq

(since a2

2 > 0).

From here we show the lower bound: (p+q)2

4 = p2+2pq+q2

4 = p2+q2

4 + pq
2 = 1

2(
p2+q2

2 + pq)> 1
2(2pq) = pq.

The upper bound is also easy to derive. It can be shown from q− p < 2
√

2p+ 2 that p2 + q2 < 8p+

2pq+2.

Since q > p > 2, it is always true that 1 < p(2q−4), so 2+8p < 4pq. This yields p2+q2 < 8p+2pq+

2 < 6pq. Since (p+q)2 = p2 +q2 +2pq < 8pq, the upper bound is (p+q)2

4 < 2pq.

Proposition 2. N = pq can be factored in the first iteration i = 1 when q− p < 2
√

2p+2.

Proof. We must check if d
√

Ne2 mod N = d√pqe2 mod pq is a square. By Lemma 1, this is the same

as (p+q)2

4 mod pq. By Lemma 2, 0 < (p+q)2

4 − pq < pq, so (p+q)2

4 mod pq = (p+q)2

4 − pq. From this, it is

clear that d
√

Ne2 mod N = (p+q)2

4 − pq = (q−p)2

4 . Since p and q are odd primes, their difference is even, so

(q− p)2 contains a factor of 4. Therefore, (q−p)2

4 is a perfect square, and d
√

Ne2 mod N is a perfect square,

so such numbers can be factored on the first iteration.

In Figure 3, we see the region q− p < 2
√

2p+2 that may be factored in one iteration highlighted in red.

Note that this is the same as the diagonal black “band” region in Figure 2.

An interesting point we observed is that each of the black “bands” (that start at the bottom left of the

figure) consist of points that may be factored in the same iteration. In other words, we observed that in the

ranges we manually checked, given a point in a band, all other points in the same band can be factored in

the same iteration.

5

2.3 Numbers factored in the first iteration 2 OBSERVATIONS

Figure 3: The number of iteration required by OLF(pq) to complete. The points are colored as in Figure 2.
The region q− p < 2

√
2p+2, where one iteration is sufficient, is highlighted in red.

6

2.4 Bound on the number of iterations 3 OPTIMIZATIONS

2.4 Bound on the number of iterations

In Figure 4, we plot semiprimes N = pq against their first successful iteration k. We note that the approx-

imate line of points formed outside the region k < (N−2)2

4N consist of only even semiprimes, which leads to

the following conjecture.

Conjecture 1. For all odd semiprimes N, the first successful iteration k satisfies k < (N−2)2

4N .

This conjecture has been verified experimentally for the first 1015 semiprimes.

Another interesting observation is that similar to the line of even semiprimes, semiprimes divisible by 3

form an approximate line. The same can be observed for semiprimes divisible by other primes, although it

is not as clear in the figure.

3 Optimizations

In this section, we look at methods to reduce the runtime of the algorithm for odd semiprimes. This opti-

mized algorithm follows from the conjecture in the previous section.

3.1 The modulus operation

Using Conjecture 1, we can eliminate the modulus operation from the algorithm.

Proposition 3. If k < (N−2)2

4N , where N = pq is an odd semiprime, then d
√

kNe2 mod N = d
√

kNe2− kN.

Proof. Since k < (N−2)2

4N , we see that 4kN < (N−2)2, and 2
√

kN < N−2. This can be rewritten as 2(
√

kN+

1)< N.

Clearly, d
√

kNe ≤
√

kN +1. It follows that 2d
√

kNe ≤ 2(
√

kN +1)< N.

In the algorithm, s = d
√

kNe. This means the next square after kN is s2. More formally, (s−1)2 < kN ≤

s2. It follows that s2− (s−1)2 > s2− kN ≥ s2− s2. This, of course, is 2s−1 > s2− kN ≥ 0.

As we found, 2d
√

kNe< N, so, 2s < N. Hence, N > 2s > 2s−1 > s2− kN ≥ 0.

Since 0≤ d
√

kNe2− kN < N, d
√

kNe2 mod N = d
√

kNe2− kN.

3.2 Iterations 2 modulo 4

We may now optimize the algorithm by removing particular iterations.

7

3.2 Iterations 2 modulo 4 3 OPTIMIZATIONS

Semiprime (N = pq)

M
in

im
um

nu
m

be
ro

fi
te

ra
tio

ns
(k

)

Figure 4: In this graph the points represent semiprimes factored by OLF(N). The graphed region is an
approximation of k < (N−2)2

4N .

8

3.3 Proposed algorithm 4 PERFORMANCE AND COMPARISON

Proposition 4. Let N = pq be an odd semiprime. Then, iterations i with only one factor of 2 never result in

a factor.

Proof. For an iteration to result in a factor, m in the algorithm must be a perfect square. Let that square be c2.

Then, since m = s2 mod N = s2− iN by Proposition 3, m = s2− iN = c2. It follows that (s+c)(s−c) = iN.

Clearly, since both s and c are integers, (s+ c) and (s− c) share the same parity. If i is even, then there

must be two factors of two in i, since (s+c) and (s−c) would both be even (recall that N is odd). Therefore,

it is impossible for i to have only one factor of 2.

3.3 Proposed algorithm

We have shown that if the conjecture in the previous section is true, we do not have to check iterations

that are equivalent to 2 mod 4. In addition, we also conjecture that for larger odd semiprimes, iterations

equivalent to 4 mod 8 are never the first iterations that result in m being a square. This conjecture has been

tested for the first 1015 semiprimes.

From these conjectures, we note that the iterations {2,4,6} mod 8 are not essential, as they never result

in m being a square. Our proposed optimization of the algorithm (for odd semiprimes) follows.

OLF MOD(N) :

For k := 1, . . . ,N :

I f k mod 8 ∈ {0,1,3,5,7} :

s := d
√

kNe

m := s2− kN

I f m i s s q u a r e :

t :=
√

m

Re tu rn GCD(N,s− t)

4 Performance and Comparison

In this section we summarize our results in comparing the performance of the algorithms.

Our implementations were written in the Pascal language using the GNU Multiple Precision Arithmetic

Library [4] and compiled with the Free Pascal Compiler version 3.0.4 [5].

9

5 SUMMARY

Figure 5 compares the runtime, given various sizes of factors in the input semiprime. We note, as in the

initial paper by Hart, that semiprimes whose factors are close together are factored quickly.

In Figure 6, we show the average runtimes of the algorithms. Since both algorithms finish quickly when

the factors are close, we show an example when the factors are 20 bits apart. Our algorithm has a runtime

that is approximately 37.5% faster than the original algorithm, due to the iterators {2,4,6} mod 8 being

skipped.

22 25 28 31 34 37 40 43
22 <0.05ms <0.05ms <0.05ms 0.3ms 9.1ms 15.0ms 23.5ms 46.9ms
25 <0.05ms <0.05ms <0.05ms <0.05ms 0.4ms 53.1ms 26.1ms 12.8ms
28 <0.05ms <0.05ms <0.05ms <0.05ms <0.05ms 0.3ms 1.2ms 9.8ms
31 0.3ms <0.05ms <0.05ms <0.05ms <0.05ms <0.05ms 0.4ms 1.2ms
34 9.1ms 0.4ms <0.05ms <0.05ms <0.05ms <0.05ms <0.05ms 0.4ms
37 15.0ms 53.1ms 0.3ms <0.05ms <0.05ms <0.05ms <0.05ms <0.05ms
40 23.5ms 26.1ms 1.2ms 0.4ms <0.05ms <0.05ms <0.05ms <0.05ms
43 46.9ms 12.8ms 9.8ms 1.2ms 0.4ms <0.05ms <0.05ms <0.05ms

Figure 5: Average performance on different semiprime sizes. The top and side headers of the table specify
the number of binary bits of p and q, respectively.

Bits of N OLF(N) OLF MOD(N)
5+25 = 30 1ms 0.9ms
10+30 = 40 1.1ms 0.9ms
15+35 = 50 5.6ms 3.9ms
20+40 = 60 12.8ms 8.1ms
25+45 = 70 13ms 8.2ms
30+50 = 80 325ms 209.8ms
35+55 = 90 337ms 210.4ms
40+60 = 100 315ms 199.2ms

Figure 6: Comparison of the algorithms when N = pq, and p and q are 20 bits apart.

5 Summary

We have analyzed particular cases of the One Line Factoring Algorithm, showing areas for which the algo-

rithm is optimal, and we have conjectured a bound for the number of iterations. Using this bound, we have

proposed an easily implemented optimization for odd semiprimes that results in a speedup of rougly 37.5%.

10

REFERENCES

6 Acknowledgements

This project was part of the PRIMES program. We are very grateful to the program for the support.

We would like to thank Dr. Tanya Khovanova for her useful suggestions, and Yongyi Chen, for the

comments.

We also thank Dr. Stefan Wehmeir from MathWorks for suggesting the project, and for his feedback.

References

[1] R. S. Lehman, Factoring Large Integers, Math. Comp. 28 (1974), 637-646

[2] D. Shanks, On Gauss and Composition II, Number Theory and Applications (Banff, AB, 1988), NATO

Adv. Sci. Inst. Ser. C Math. Phys. Sci., 265 (ed. R. A. Mollin) (Kluwer, Dordrecht, 1989), pp. 179-204.

[3] W. B. Hart, A One Line Factoring Algorithm, J. Aust. Math. Soc. 92 (2012), 61-69

[4] Torbjörn Granlund and the GMP development team, GNU MP: The GNU Multiple Precision Arithmetic

Library, https://gmplib.org

[5] Florian Klaempfl et al., The Free Pascal Compiler, https://www.freepascal.org

11

https://gmplib.org
https://www.freepascal.org

	Introduction
	Observations
	Notation
	Result of factoring semiprimes
	Numbers factored in the first iteration
	Bound on the number of iterations

	Optimizations
	The modulus operation
	Iterations TEXT modulo TEXT
	Proposed algorithm

	Performance and Comparison
	Summary
	Acknowledgements

