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Introduction



The Pell’s Equation

Definition of Pell’s Equation
The Pell equation is the equation of the form x2 − Dy2 = 1 for
positive integer pairs (x, y) and positive integers D.

Sidenote
We will refer to D as a positive integer that is not a square of an
integer.

• If D is a square number, the equation has no solutions except
(x, y) = (±1, 0)
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History

Brief History
• The equation was studied extensively by Joseph-Louis Lagrange
and John Wallis in the 1700s.

• However, it was named Pell’s equation after John Pell because
Euler miscredited who discovered them first.
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Natural Questions

Natural Questions
1. Is it always possible to find a solution (x, y) given any D?
2. If so, how can we describe all such solutions?
3. What if the right hand side is -1 instead of 1?
4. Given D, how do we obtain a solution such that x2 − Dy2 = 1?
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Theorem 1

Theorem 1
There always exists a pair of integers (x, y) such that x2 − Dy2 = 1.
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Theorem 2

Theorem 2
When (x1, y1) are the positive integer solutions with smallest x1
such that x2 − Dy2 = 1, every subsequent solutions (xk, yk) can be
obtained through

xk + yk
√
D = (x1 + y1

√
D)k.
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Theorem 3

Theorem 3
For a given D, there does not always exist a pair of integers (x, y)
such that x2 − Dy2 = −1.
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Theorem 4

Theorem 4
When the continued fraction

√
D = [a1,a2,a3, ...,an−1,an], let p and

q be co-prime integers such that pq = [a1,a2,a3, ...an−1]. Then, an
integer solution (x, y) to Pell’s equation x2 − Dy2 = 1 is given by

(x, y) = (p,q) when n is odd

(x, y) = (p2 + q2D, 2pq) when n is even.
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Nuts and Bolts



Auxiliary Lemma 1

Note
x2 − Dy2 = (x− y

√
D)(x+ y

√
D)

Lemma 1
For m that is a given positive number and a fixed D, there exists a
pair of integers (x, y) such that 0 < y ≤ m, and

| x− y
√
D |< 1

m .
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Proof Sketch of Lemma 1

Set up
• We will be proving this by contradiction and using pigeon-hole
principle

• Set the pigeons as the solutions (xk, yk) = (⌈k
√
D⌉, k)

• Set the holes as the intervals the solutions fall into

Concluding Step
Since there are m pairs of (xk, yk) but only m− 1 intervals, there is
an interval that contains two pairs.
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Auxiliary Lemma 2

Lemma 2
For any given D, there are infinitely many pairs of positive integers
(x, y) such that

| x− y
√
D |< 1

y .

11



Proof of Lemma 2

Set Up
• Select arbitrary positive integer m to be m1

• There exists some integer pair (x1, y1) such that | x1 − y1
√
D |< 1

m
(lemma 1)

Next Steps

• | x− y
√
D |< 1

m ̸= 0 because
√
D is an irrational number

• There exists m2 such that | x1 − y1
√
D |> 1

m2

• Repeat the same process with m2 instead of m1

• There are infinite pairs of (x, y) such that | x− y
√
D |< 1

y
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Auxiliary Lemma 3

Lemma 3
For any given D, there exists infinite number of pairs of positive
integers (x, y) such that

| x2 − Dy2 |< 3
√
D.
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Proof of Lemma 3

Set Up

• x2 − Dy2 = (x+
√
Dy)(x−

√
Dy)

• There are infinitely many pairs of integers (x, y) such that
| x− y

√
D |< 1

y (Lemma 2)

Next Steps

• For pairs (x, y), (x+
√
Dy)(x−

√
Dy) < x+

√
Dy

y = x
y +

√
D.

• x < y
√
D+ 1 since | x− y

√
D |< 1

y ≤ 1

• Simplify to x
y <

√
D+ 1

y <
√
D+

√
D

• x2 − Dy2 = (x+
√
Dy)(x−

√
Dy) < 3

√
D
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Auxiliary Lemma 4

Lemma 4
For some non-negative integer k, there exists infinitely many pairs
of positive integer pairs (x, y) such that

x2 − Dy2 = k.
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Proof of Lemma 4

Set Up
There exists infinite number of pairs of positive integers (x, y) such
that | x2 − Dy2 |< 3

√
D (Lemma 3)

Next Steps
• Only a finite number of integers whose absolute value is less
than 3

√
D

• Some integer in this interval, k, should have infinite number of
integers that satisfy x2 − Dy2 = k.
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Proof of Lemma 4
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Introduction to Auxiliary Lemmas for Theorem 4

• First we will introduce continued fractions
• Then we will prove lemmas that lead up to Theorem 4:

Theorem 4
When the continued fraction

√
D = [a1,a2,a3, ...,an−1,an], let p and

q be co-prime integers such that pq = [a1,a2,a3, ...an−1]. Then, an
integer solution (x, y) to Pell’s equation x2 − Dy2 = 1 is given by

(x, y) = (p,q) when n is odd

(x, y) = (p2 + q2D, 2pq) when n is even.

17



Introduction to Auxiliary Lemmas for Theorem 4

• First we will introduce continued fractions
• Then we will prove lemmas that lead up to Theorem 4:

Theorem 4
When the continued fraction

√
D = [a1,a2,a3, ...,an−1,an], let p and

q be co-prime integers such that pq = [a1,a2,a3, ...an−1]. Then, an
integer solution (x, y) to Pell’s equation x2 − Dy2 = 1 is given by

(x, y) = (p,q) when n is odd

(x, y) = (p2 + q2D, 2pq) when n is even.

17



What is a Continued Fraction?

Definition
A continued fraction for a real number x is formed by

x1 = x,an = ⌊xn⌋ , xn+1 =
1

xn − an

for n ∈ N. Following the conventional notation, we write
x = [a1,a2, ....].
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Continued Fractions

Example
Construct the continued fraction for

√
2.

First Term
1 <

√
2 < 2, so taking the floor, a1 = 1

Recursion

• x2 = 1√
2−1 =

√
2+ 1, so a2 = 2.

• Also, x3 = 1√
2−1 =

√
2+ 1

• Then xi =
√
2+ 1 for i > 1, so

√
2 = [1, 2, 2, ., , , ] = [1, 2]

√
2 = 1+ 1

2+ 1
2+ 1

2+ 1
2+...
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Proof Sketch of Lemma 5

Lemma 5
The continued fraction expansion of a real number x is periodic if
and only if x is quadratic irrational.

Definition
A real number is quadratic irrational if it is the solution to some
integer-coefficient quadratic equation, i.e., the number can be
expressed as P±

√
D

Q for some integers P,Q and positive integer D.
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Proof Sketch of Lemma 5

Lemma 5
The continued fraction expansion of a real number x is periodic if
and only if x is quadratic irrational.

Forward Direction

• Must show that real number A = [a1, ..aℓ,b1, ...,bn] can be
expressed as

A =
P±

√
D

Q
• Let B = [b1,b2, ...,bn]
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Proof Sketch of Lemma 5

Deal with B
•

B = b1 +
1

b2 + 1
b3+...+ 1

bn+ 1
B

• Then B = uB+v
wB+z for u, v,w, z integers

• Cross multiply, solve for B using quadratic formula
• B = i+j

√
D

k quadratic irrational

Substitution

A = a1 +
1

a2 + 1
...aℓ+ 1

i+j
√
D

k

A =
e+ f

√
D

g+ h
√
D
for e, f,g,h integers

Rationalizing, A = r+s
√
D

t for integers r, s, t as desired
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Proof Sketch of Lemma 5

Reverse Direction
• Must show only finitely many xi given x1
• Let x1 = P+

√
D

Q

• Suffices to show that such xi are periodic
• The following lemma completes proof
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Proof Sketch of Lemma 6

Lemma 6
A reduced quadratic irrational number is purely periodic.
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Additional Definitions

Definition
A continued fraction is purely periodic if x = [a1,a2, ..an] for some n.

Definition
A quadratic irrational number is reduced if it is greater than 1 and
its conjugate is between 0 and −1.

Note
• every irrational quadratic number can be reduced by adding or
subtracting an integer

• suffices to prove for reduced quadratic irrationals
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Proof Sketch of Lemma 6

Lemma 6
A reduced quadratic irrational number is purely periodic.

Set Up

• x1 = x = P+
√
D

Q reduced quadratic irrational, x′ = P−
√
D

Q conjugate
• From definitions, bound P+

√
D

x = P+
√
D

Q > 1, so Q < P+
√
D < 2

√
D

• Only finitely many (P,Q) such that P+
√
D

Q reduced quadratic
irrational
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Proof Sketch of Lemma 6

Recursive Step

• Use recursive formula, plug in x1 = P+
√
D

Q ,

x2 =
P1 +

√
D

Q1

• Using x′ = a1 + 1
x′2
, show x2 reduced quadratic irrational, holds

for all xi

Periodic

• Finitely many (P,Q) such that P+
√
D

Q reduced quadratic irrational
• xi = xj for some i ̸= j
• By recursion, x1 = xj−i+1, x2 = xi+j+2, ... xi = xj, xi+1 = xj+1,
xi+2 = xi+3, ...

• Sequence periodic with first term x1, thus continued fraction x
purely periodic
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Corollary of Lemma 6

Corollary 1
For some sequence of integers ai,

√
D = [a1,a2,a3, ..an].

Proof

•
√
D quadratic irrational, solution to x2 − D = 0

•
√
D+

⌊√
D
⌋
purely periodic

• Thus
√
D periodic from second term from Lemma 6
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Recursive Sequence

Definition
We define a recursive sequence pn and qn for continued fraction
[a1,a2, ...,an]. Note that ai here are not specific numbers, but
variables.

pn
qn

= [a1, ...an].

Example
We list the first two terms of pi and qi. p1 = a1, p2 = a1a2 + 1.
q1 = 1,q2 = a2.
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Auxiliary Lemmas

Lemma 7
Let

√
D = [a1,a2,a3, ..an] and pn and qn as defined above. Then,

1. For n ≥ 2, pn = anpn−1 + pn−2.
2. For n ≥ 2, qn = anqn−1 + qn−2.
3. For n ≥ 1, pn−1qn − pnqn−1 = (−1)n.
4. For n ≥ 2, x = xn+1Pn+Pn−1

xn+1Qn+Qn−1
.

• Use induction to verify
• Important for the following lemma
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Proof Sketch of Lemma 8

Lemma 8
Let

√
D = [a1,a2,a3, ...an] and let pq = [a1, ..an−1]. Then, (p,q) is a

solution to the equation x2 − Dy2 = (−1)n−1.

From Lemma 7 #4
√
D =

xn+1Pn + Pn−1
xn+1Qn + Qn−1

Substitution

Substitute xn+1 =
√
D+

⌊√
D
⌋
, get

√
D(

√
D+

⌊√
D
⌋
)Qn +

√
DQn−1 = (

√
D+

⌊√
D
⌋
)Pn + Pn−1
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Proof Sketch of Lemma 8

Since
√
D is Irrational

Pn−1 = DQn −
⌊√

D
⌋
Pn

Qn−1 = Pn −
⌊√

D
⌋
Qn

From Lemma 7 #3

• Pn(Pn −
⌊√

D
⌋
Qn)− Qn(DQn −

⌊√
D
⌋
Pn) = (−1)n−1

• Simplifies to (Pn)2 − D(Qn)2 = (−1)n−1

• So p2 − Dq2 = (−1)n−1 as desired
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Proofs



Proof of Theorem 1

Theorem 1
There always exists a pair of integers (x, y) such that x2 − Dy2 = 1.

Lemma 8
For some non-negative integer k, there exists infinitely many pairs
of positive integer pairs (x, y) such that

x2 − Dy2 = k.

From Lemma 8
For some i and j, there is an infinite number of solutions (x, y) such
that x2 − Dy2 = k while x ≡ i (mod k), and y ≡ j (mod k).
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Proof of Theorem 1

Set up
Let (x1, y1) and (x2, y2) be such solutions.

• x21 − Dy21 = k, x22 − Dy22 = k,
• x1 ≡ x2 (mod k),
• y1 ≡ y2 (mod k).

Division
x21 − Dy21
x22 − Dy22

=
(x1 +

√
Dy1)(x1 −

√
Dy1)

(x2 +
√
Dy2)(x2 −

√
Dy2)

= 1.
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Proof of Theorem 1

Simplification

x1 ±
√
Dy1

x2 ±
√
Dy2

=
(x1 ±

√
Dy1)(x2 ∓

√
Dy2)

(x2 ±
√
Dy2)(x2 ∓

√
Dy2)

=
(x1x2 − Dy1y2)± (x2y1 − x1y2)

√
D

x22 − Dy22

=
(x1x2 − Dy1y2)± (x2y1 − x1y2)

√
D

k .

Solution to x2 − Dy2 = 1

(x, y) = (
x1x2 − Dy1y2

k ,
x2y1 − x1y2

k )

35



Proof of Theorem 1

Simplification

x1 ±
√
Dy1

x2 ±
√
Dy2

=
(x1 ±

√
Dy1)(x2 ∓

√
Dy2)

(x2 ±
√
Dy2)(x2 ∓

√
Dy2)

=
(x1x2 − Dy1y2)± (x2y1 − x1y2)

√
D

x22 − Dy22

=
(x1x2 − Dy1y2)± (x2y1 − x1y2)

√
D

k .

Solution to x2 − Dy2 = 1

(x, y) = (
x1x2 − Dy1y2

k ,
x2y1 − x1y2

k )

35



Proof of Theorem 1

Integers?
y = x2y1−x1y2

k .

x1 ≡ x2 (mod k), y1 ≡ y2 (mod k). So, x2y1 ≡ x1y2 (mod k).
Therefore, y and thus x are integers.
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Proof of Theorem 2

Theorem 2
When (x1, y1) are the positive integer solutions with smallest x1
such that x2 − Dy2 = 1, every subsequent solutions (xk, yk) can be
obtained through

xk + yk
√
D = (x1 + y1

√
D)k.

Part 1
(xk, yk) are solutions to x2 − Dy2 = 1.

Part 2
(xk, yk) are all the solutions to x2 − Dy2 = 1.
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Proof of Theorem 2

Part 1 - Base Case
(x1, y1) are solutions to x2 − Dy2 = 1 by set-up.

Part 1 - Inductive Step: k to k+ 1
(xk + yk

√
D)(x1 + y1

√
D) = (x1xk + Dy1yk) + (x1yk + xky1)

√
D =

xk+1 + yk+1
√
D.

(xk+1, yk+1) = (x1xk + Dy1yk, x1yk + xky1)
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Proof of Theorem 2

Part 1- Inductive Step: k to k+ 1

1 = (x21 − Dy21)(x2k − Dy2k)

= (x1 + y1
√
D)(xk + yk

√
D)(x1 − y1

√
D)(xk − yk

√
D)

= [(x1xk + Dy1yk) + (x1yk + xky1)
√
D][(x1xk + Dy1yk)− (x1yk + xky1)

√
D]

= (x1xk + Dy1yk)2 − D(x1yk + xky1)2

= x2k+1 − Dy2k+1
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Proof of Theorem 2

Part 2- Assume Contrary
Let (X, Y) be the smallest solution to X2 − DY2 = 1 that cannot be
described as in theorem statement.

Part 2- Building down

1 = (X2 − DY2)(x1 − Dy21) = (X+ Y
√
D)(x1 − y1

√
D)(X− Y

√
D)(x1 + y1

√
D)

= [(Xx1 − Yy1D) + (Yx1 − Xy1)
√
D][(Xx1 − Yy1D)− (Yx1 − Xy1)

√
D]

= (Xx1 − Yy1D)2 − D(Yx1 − Xy1)2.

So, (Xx1 − Yy1D, Yx1 − Xy1) are solutions.
By assumption, (Xx1 − Yy1D, Yx1 − Xy1) should be larger than (X, Y).
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Proof of Theorem 2

Part 2- Minimality
By minimality assumption, Xx1 − Yy1 ≥ X. So, XY ≥ y1

x1−1 .

X2 − DY2 = 1. So, XY =
√
D+ 1

Y2 .
As Y increases, XY decreases.
Even when (x, y) = (x1, y1), the minimal solution, Dy1

x1−1 >
x1
y1 .

Contradiction.
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Proof of Theorem 3

Theorem 3
For a given D, there does not always exist a pair of integers (x, y)
such that x2 − Dy2 = −1.

Counterexample
D = 4. x2 − 4y2 = −1. Therefore, X2 = 4y2 − 1.
x2 ≡ 3 (mod 4). Contradiction.
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Proof of Theorem 4

Theorem 4
When the continued fraction

√
D = [a1,a2,a3, ...,an−1,an], let p and

q be co-prime integers such that pq = [a1,a2,a3, ...an−1]. Then, an
integer solution (x, y) to Pell’s equation x2 − Dy2 = 1 is given by

(x, y) = (p,q) when n is odd

(x, y) = (p2 + q2D, 2pq) when n is even.
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Proof of Theorem 4

Lemma 8
Let

√
D = [a1,a2,a3, ...an] and let pq = [a1, ..an−1]. Then, (p,q) is a

solution to the equation x2 − Dy2 = (−1)n−1.

Solutions

• n ≡ 1 (mod 2): p2 − Dq2 = 1.
• n ≡ 0 (mod 2): p2 − Dq2 = −1. Squaring each side,
(p2 − Dq2)2 = (p2 + Dq2)2 − D(2pq)2 = 1.
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Summary



Summary

Question
For every D that is not a perfect square, is there always a nontrivial
solution?

Theorem 1
There always exists a pair of integers (x, y) such that x2 − Dy2 = 1.
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Summary

Question
How do we generate all such solutions?

Theorem 2
When (x1, y1) are the positive integer solutions with smallest x1
such that x2 − Dy2 = 1, every subsequent solutions (xk, yk) can be
obtained through

xk + yk
√
D = (x1 + y1

√
D)k.
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Summary

Question
What if the right hand side is -1?

Theorem 3
For a given D, there does not always exist a pair of integers (x, y)
such that x2 − Dy2 = −1.
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Summary

Question
How do we find a solution?

Theorem 4
When the continued fraction

√
D = [a1,a2,a3, ...,an−1,an], let p and

q be co-prime integers such that pq = [a1,a2,a3, ...an−1]. Then, an
integer solution (x, y) to Pell’s equation x2 − Dy2 = 1 is given by
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