Pell's Equation and Diophantine Approximation

Yunseo Choi, Aneesha Manne, Poonam Sahoo December 10, 2019

MIT Primes Program

- 1. Introduction
- 2. Nuts and Bolts
- 3. Proofs
- 4. Summary

Introduction

Definition of Pell's Equation

The Pell equation is the equation of the form $x^2 - Dy^2 = 1$ for positive integer pairs (x, y) and positive integers D.

Definition of Pell's Equation

The Pell equation is the equation of the form $x^2 - Dy^2 = 1$ for positive integer pairs (x, y) and positive integers D.

Sidenote

We will refer to *D* as a positive integer that is not a square of an integer.

• If D is a square number, the equation has no solutions except $(x, y) = (\pm 1, 0)$

Brief History

- The equation was studied extensively by Joseph-Louis Lagrange and John Wallis in the 1700s.
- However, it was named Pell's equation after John Pell because Euler miscredited who discovered them first.

Natural Questions

- 1. Is it always possible to find a solution (x, y) given any D?
- 2. If so, how can we describe all such solutions?
- 3. What if the right hand side is -1 instead of 1?
- 4. Given D, how do we obtain a solution such that $x^2 Dy^2 = 1$?

There always exists a pair of integers (x, y) such that $x^2 - Dy^2 = 1$.

When (x_1, y_1) are the positive integer solutions with smallest x_1 such that $x^2 - Dy^2 = 1$, every subsequent solutions (x_k, y_k) can be obtained through

$$x_k + y_k \sqrt{D} = (x_1 + y_1 \sqrt{D})^k.$$

For a given D, there does not always exist a pair of integers (x, y) such that $x^2 - Dy^2 = -1$.

When the continued fraction $\sqrt{D} = [a_1, \overline{a_2, a_3, ..., a_{n-1}, a_n}]$, let p and q be co-prime integers such that $\frac{p}{q} = [a_1, a_2, a_3, ..., a_{n-1}]$. Then, an integer solution (x, y) to Pell's equation $x^2 - Dy^2 = 1$ is given by

(x, y) = (p, q) when n is odd

 $(x, y) = (p^2 + q^2 D, 2pq)$ when *n* is even.

Nuts and Bolts

Note

$$x^2 - Dy^2 = (x - y\sqrt{D})(x + y\sqrt{D})$$

Note

$$x^2 - Dy^2 = (x - y\sqrt{D})(x + y\sqrt{D})$$

Lemma 1

For *m* that is a given positive number and a fixed *D*, there exists a pair of integers (x, y) such that $0 < y \le m$, and

$$|x-y\sqrt{D}| < \frac{1}{m}.$$

Set up

- We will be proving this by contradiction and using pigeon-hole principle
- Set the pigeons as the solutions $(x_k, y_k) = (\lceil k \sqrt{D} \rceil, k)$
- \cdot Set the holes as the intervals the solutions fall into

Set up

- We will be proving this by contradiction and using pigeon-hole principle
- Set the pigeons as the solutions $(x_k, y_k) = (\lceil k \sqrt{D} \rceil, k)$
- \cdot Set the holes as the intervals the solutions fall into

Concluding Step

Since there are *m* pairs of (x_k, y_k) but only m - 1 intervals, there is an interval that contains two pairs.

For any given D, there are infinitely many pairs of positive integers (x, y) such that

$$|x-y\sqrt{D}| < \frac{1}{y}.$$

Set Up

- Select arbitrary positive integer m to be m_1
- There exists some integer pair (x_1, y_1) such that $|x_1 y_1\sqrt{D}| < \frac{1}{m}$ (lemma 1)

Set Up

- Select arbitrary positive integer m to be m_1
- There exists some integer pair (x_1, y_1) such that $|x_1 y_1\sqrt{D}| < \frac{1}{m}$ (lemma 1)

Next Steps

- $\cdot | x y\sqrt{D} | < \frac{1}{m} \neq 0$ because \sqrt{D} is an irrational number
- There exists m_2 such that $|x_1 y_1\sqrt{D}| > \frac{1}{m_2}$
- Repeat the same process with m_2 instead of m_1
- There are infinite pairs of (x, y) such that $|x y\sqrt{D}| < \frac{1}{y}$

For any given D, there exists infinite number of pairs of positive integers (x, y) such that

$$|x^2 - Dy^2| < 3\sqrt{D}.$$

Proof of Lemma 3

Set Up

$$\cdot x^2 - Dy^2 = (x + \sqrt{D}y)(x - \sqrt{D}y)$$

• There are infinitely many pairs of integers (x, y) such that $|x - y\sqrt{D}| < \frac{1}{y}$ (Lemma 2)

Proof of Lemma 3

Set Up

$$\cdot x^2 - Dy^2 = (x + \sqrt{D}y)(x - \sqrt{D}y)$$

• There are infinitely many pairs of integers (x, y) such that $|x - y\sqrt{D}| < \frac{1}{y}$ (Lemma 2)

Next Steps

- For pairs (x, y), $(x + \sqrt{D}y)(x \sqrt{D}y) < \frac{x + \sqrt{D}y}{y} = \frac{x}{y} + \sqrt{D}$.
- $x < y\sqrt{D} + 1$ since $|x y\sqrt{D}| < \frac{1}{y} \le 1$
- Simplify to $\frac{x}{y} < \sqrt{D} + \frac{1}{y} < \sqrt{D} + \sqrt{D}$
- $\cdot x^2 Dy^2 = (x + \sqrt{D}y)(x \sqrt{D}y) < 3\sqrt{D}$

For some non-negative integer k, there exists infinitely many pairs of positive integer pairs (x, y) such that

$$x^2 - Dy^2 = k.$$

Set Up

There exists infinite number of pairs of positive integers (x, y) such that $|x^2 - Dy^2| < 3\sqrt{D}$ (Lemma 3)

Set Up

There exists infinite number of pairs of positive integers (x, y) such that $|x^2 - Dy^2| < 3\sqrt{D}$ (Lemma 3)

Next Steps

- + Only a finite number of integers whose absolute value is less than $3\sqrt{D}$
- Some integer in this interval, k, should have infinite number of integers that satisfy $x^2 Dy^2 = k$.

Introduction to Auxiliary Lemmas for Theorem 4

- First we will introduce continued fractions
- Then we will prove lemmas that lead up to Theorem 4:

Introduction to Auxiliary Lemmas for Theorem 4

- First we will introduce continued fractions
- Then we will prove lemmas that lead up to Theorem 4:

Theorem 4

When the continued fraction $\sqrt{D} = [a_1, \overline{a_2, a_3, ..., a_{n-1}, a_n}]$, let p and q be co-prime integers such that $\frac{p}{q} = [a_1, a_2, a_3, ..., a_{n-1}]$. Then, an integer solution (x, y) to Pell's equation $x^2 - Dy^2 = 1$ is given by

(x,y) = (p,q) when n is odd

 $(x, y) = (p^2 + q^2 D, 2pq)$ when *n* is even.

Definition

A continued fraction for a real number x is formed by

$$x_1 = x, a_n = \lfloor x_n \rfloor, x_{n+1} = \frac{1}{x_n - a_n}$$

for $n \in \mathbb{N}$. Following the conventional notation, we write $x = [a_1, a_2,]$.

Continued Fractions

Example

Construct the continued fraction for $\sqrt{2}$.

Continued Fractions

Example

Construct the continued fraction for $\sqrt{2}$.

First Term

 $1 < \sqrt{2} < 2$, so taking the floor, $a_1 = 1$

Continued Fractions

Example

Construct the continued fraction for $\sqrt{2}$.

First Term

$$1 < \sqrt{2} < 2$$
, so taking the floor, $a_1 = 1$

Recursion

•
$$x_2 = \frac{1}{\sqrt{2}-1} = \sqrt{2} + 1$$
, so $a_2 = 2$.

• Also,
$$x_3 = \frac{1}{\sqrt{2}-1} = \sqrt{2} + 1$$

• Then $x_i = \sqrt{2} + 1$ for i > 1, so $\sqrt{2} = [1, 2, 2, .., .] = [1, \overline{2}]$

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}}}$$

The continued fraction expansion of a real number *x* is periodic if and only if *x* is quadratic irrational.

The continued fraction expansion of a real number *x* is periodic if and only if *x* is quadratic irrational.

Definition

A real number is **quadratic irrational** if it is the solution to some integer-coefficient quadratic equation, i.e., the number can be expressed as $\frac{P \pm \sqrt{D}}{Q}$ for some integers *P*, *Q* and positive integer *D*.

The continued fraction expansion of a real number *x* is periodic if and only if *x* is quadratic irrational.

Forward Direction

• Must show that real number $A = [a_1, ..., a_\ell, \overline{b_1, ..., b_n}]$ can be expressed as

$$A = \frac{P \pm \sqrt{D}}{Q}$$

• Let $B = [\overline{b_1, b_2, \dots, b_n}]$

Proof Sketch of Lemma 5

Deal with B

٠

$$B = b_1 + \frac{1}{b_2 + \frac{1}{b_3 + \ldots + \frac{1}{b_n + \frac{1}{B}}}}$$

• Then
$$B = \frac{uB+v}{wB+z}$$
 for u, v, w, z integers

- Cross multiply, solve for *B* using quadratic formula
- $B = \frac{i+j\sqrt{D}}{k}$ quadratic irrational

Proof Sketch of Lemma 5

Deal with B

٠

$$B = b_1 + \frac{1}{b_2 + \frac{1}{b_3 + \ldots + \frac{1}{b_n + \frac{1}{B}}}}$$

• Then
$$B = \frac{uB+v}{wB+z}$$
 for u, v, w, z integers

• Cross multiply, solve for B using quadratic formula

•
$$B = \frac{i+j\sqrt{D}}{k}$$
 quadratic irrational

Substitution

$$A = a_1 + \frac{1}{a_2 + \frac{1}{\dots a_\ell + \frac{1}{\frac{1}{i + j\sqrt{D}}}}}$$
$$A = \frac{e + f\sqrt{D}}{g + h\sqrt{D}} \text{ for } e, f, g, h \text{ integers}$$

Rationalizing, $A = \frac{r+s\sqrt{D}}{t}$ for integers r, s, t as desired
Reverse Direction

- Must show only finitely many x_i given x_1
- Let $x_1 = \frac{P + \sqrt{D}}{Q}$
- Suffices to show that such x_i are periodic
- The following lemma completes proof

Lemma 6

A reduced quadratic irrational number is purely periodic.

A continued fraction is **purely periodic** if $x = [\overline{a_1, a_2, ...a_n}]$ for some *n*.

A continued fraction is **purely periodic** if $x = [\overline{a_1, a_2, ...a_n}]$ for some *n*.

Definition

A quadratic irrational number is **reduced** if it is greater than 1 and its conjugate is between 0 and -1.

A continued fraction is **purely periodic** if $x = [\overline{a_1, a_2, ...a_n}]$ for some *n*.

Definition

A quadratic irrational number is **reduced** if it is greater than 1 and its conjugate is between 0 and -1.

Note

- every irrational quadratic number can be reduced by adding or subtracting an integer
- suffices to prove for reduced quadratic irrationals

Lemma 6

A reduced quadratic irrational number is purely periodic.

Set Up

- $x_1 = x = \frac{P + \sqrt{D}}{Q}$ reduced quadratic irrational, $x' = \frac{P \sqrt{D}}{Q}$ conjugate
- From definitions, bound $P + \sqrt{D}$

$$x = \frac{P + \sqrt{D}}{Q} > 1$$
, so $Q < P + \sqrt{D} < 2\sqrt{D}$

• Only finitely many (P, Q) such that $\frac{P+\sqrt{D}}{Q}$ reduced quadratic irrational

Recursive Step

• Use recursive formula, plug in $x_1 = \frac{P + \sqrt{D}}{Q}$,

$$X_2 = \frac{P_1 + \sqrt{D}}{Q_1}$$

• Using $x' = a_1 + \frac{1}{x'_2}$, show x_2 reduced quadratic irrational, holds for all x_i

Recursive Step

• Use recursive formula, plug in $x_1 = \frac{P + \sqrt{D}}{O}$,

$$X_2 = \frac{P_1 + \sqrt{D}}{Q_1}$$

• Using $x' = a_1 + \frac{1}{x'_2}$, show x_2 reduced quadratic irrational, holds for all x_i

Periodic

- Finitely many (P,Q) such that $\frac{P+\sqrt{D}}{Q}$ reduced quadratic irrational
- $x_i = x_j$ for some $i \neq j$
- By recursion, $x_1 = x_{j-i+1}$, $x_2 = x_{i+j+2}$, ... $x_i = x_j$, $x_{i+1} = x_{j+1}$, $x_{i+2} = x_{i+3}$, ...
- Sequence periodic with first term *x*₁, thus continued fraction *x* purely periodic

Corollary 1

For some sequence of integers a_i , $\sqrt{D} = [a_1, \overline{a_2, a_3, ...a_n}]$.

Corollary 1

For some sequence of integers a_i , $\sqrt{D} = [a_1, \overline{a_2, a_3, ... a_n}]$.

Proof

- \sqrt{D} quadratic irrational, solution to $x^2 D = 0$
- $\cdot \sqrt{D} + \left| \sqrt{D} \right|$ purely periodic
- Thus \sqrt{D} periodic from second term from Lemma 6

We define a recursive sequence p_n and q_n for continued fraction $[a_1, a_2, ..., a_n]$. Note that a_i here are not specific numbers, but variables.

$$\frac{p_n}{q_n} = [a_1, \dots a_n].$$

We define a recursive sequence p_n and q_n for continued fraction $[a_1, a_2, ..., a_n]$. Note that a_i here are not specific numbers, but variables.

$$\frac{p_n}{q_n} = [a_1, \dots a_n].$$

Example

We list the first two terms of p_i and q_i . $p_1 = a_1$, $p_2 = a_1a_2 + 1$. $q_1 = 1$, $q_2 = a_2$.

Lemma 7

Let $\sqrt{D} = [a_1, \overline{a_2, a_3, ..., a_n}]$ and p_n and q_n as defined above. Then,

1. For
$$n \ge 2$$
, $p_n = a_n p_{n-1} + p_{n-2}$.

2. For
$$n \ge 2$$
, $q_n = a_n q_{n-1} + q_{n-2}$.

3. For
$$n \ge 1$$
, $p_{n-1}q_n - p_nq_{n-1} = (-1)^n$.

4. For
$$n \ge 2$$
, $x = \frac{x_{n+1}n + n - 1}{x_{n+1}Q_n + Q_{n-1}}$

Lemma 7

Let $\sqrt{D} = [a_1, \overline{a_2, a_3, ..., a_n}]$ and p_n and q_n as defined above. Then,

1. For
$$n \ge 2$$
, $p_n = a_n p_{n-1} + p_{n-2}$.

2. For
$$n \ge 2$$
, $q_n = a_n q_{n-1} + q_{n-2}$.

3. For
$$n \ge 1$$
, $p_{n-1}q_n - p_nq_{n-1} = (-1)^n$.

4. For
$$n \ge 2$$
, $x = \frac{x_{n+1}P_n + P_{n-1}}{x_{n+1}Q_n + Q_{n-1}}$.

- Use induction to verify
- Important for the following lemma

Lemma 8

Let $\sqrt{D} = [a_1, \overline{a_2, a_3, \dots a_n}]$ and let $\frac{p}{q} = [a_1, \dots a_{n-1}]$. Then, (p, q) is a solution to the equation $x^2 - Dy^2 = (-1)^{n-1}$.

Lemma 8

Let $\sqrt{D} = [a_1, \overline{a_2, a_3, \dots a_n}]$ and let $\frac{p}{q} = [a_1, \dots a_{n-1}]$. Then, (p, q) is a solution to the equation $x^2 - Dy^2 = (-1)^{n-1}$.

From Lemma 7 #4

$$\sqrt{D} = \frac{X_{n+1}P_n + P_{n-1}}{X_{n+1}Q_n + Q_{n-1}}$$

Lemma 8

Let $\sqrt{D} = [a_1, \overline{a_2, a_3, \dots a_n}]$ and let $\frac{p}{q} = [a_1, \dots a_{n-1}]$. Then, (p, q) is a solution to the equation $x^2 - Dy^2 = (-1)^{n-1}$.

From Lemma 7 #4

$$\sqrt{D} = \frac{x_{n+1}P_n + P_{n-1}}{x_{n+1}Q_n + Q_{n-1}}$$

Substitution

Substitute $x_{n+1} = \sqrt{D} + \lfloor \sqrt{D} \rfloor$, get

$$\sqrt{D}(\sqrt{D} + \lfloor \sqrt{D} \rfloor)Q_n + \sqrt{D}Q_{n-1} = (\sqrt{D} + \lfloor \sqrt{D} \rfloor)P_n + P_{n-1}$$

Since \sqrt{D} is Irrational

$$P_{n-1} = DQ_n - \left\lfloor \sqrt{D} \right\rfloor P_n$$
$$Q_{n-1} = P_n - \left\lfloor \sqrt{D} \right\rfloor Q_n$$

Since \sqrt{D} is Irrational

$$P_{n-1} = DQ_n - \left\lfloor \sqrt{D} \right\rfloor P_n$$
$$Q_{n-1} = P_n - \left\lfloor \sqrt{D} \right\rfloor Q_n$$

From Lemma 7 #3

•
$$P_n(P_n - \lfloor \sqrt{D} \rfloor Q_n) - Q_n(DQ_n - \lfloor \sqrt{D} \rfloor P_n) = (-1)^{n-1}$$

• Simplifies to $(P_n)^2 - D(Q_n)^2 = (-1)^{n-1}$

• So
$$p^2 - Dq^2 = (-1)^{n-1}$$
 as desired

Proofs

Theorem 1

There always exists a pair of integers (x, y) such that $x^2 - Dy^2 = 1$.

Theorem 1

There always exists a pair of integers (x, y) such that $x^2 - Dy^2 = 1$.

Lemma 8

For some non-negative integer k, there exists infinitely many pairs of positive integer pairs (x, y) such that

$$x^2 - Dy^2 = k.$$

Theorem 1

There always exists a pair of integers (x, y) such that $x^2 - Dy^2 = 1$.

Lemma 8

For some non-negative integer k, there exists infinitely many pairs of positive integer pairs (x, y) such that

$$x^2 - Dy^2 = k.$$

From Lemma 8

For some *i* and *j*, there is an infinite number of solutions (x, y) such that $x^2 - Dy^2 = k$ while $x \equiv i \pmod{k}$, and $y \equiv j \pmod{k}$.

Set up

Let (x_1, y_1) and (x_2, y_2) be such solutions.

•
$$x_1^2 - Dy_1^2 = k, x_2^2 - Dy_2^2 = k,$$

•
$$x_1 \equiv x_2 \pmod{k}$$
,

•
$$y_1 \equiv y_2 \pmod{k}$$
.

Division

$$\frac{x_1^2 - Dy_1^2}{x_2^2 - Dy_2^2} = \frac{(x_1 + \sqrt{D}y_1)(x_1 - \sqrt{D}y_1)}{(x_2 + \sqrt{D}y_2)(x_2 - \sqrt{D}y_2)} = 1.$$

Simplification

$$\frac{x_1 \pm \sqrt{D}y_1}{x_2 \pm \sqrt{D}y_2} = \frac{(x_1 \pm \sqrt{D}y_1)(x_2 \mp \sqrt{D}y_2)}{(x_2 \pm \sqrt{D}y_2)(x_2 \mp \sqrt{D}y_2)}$$
$$= \frac{(x_1x_2 - Dy_1y_2) \pm (x_2y_1 - x_1y_2)\sqrt{D}}{x_2^2 - Dy_2^2}$$
$$= \frac{(x_1x_2 - Dy_1y_2) \pm (x_2y_1 - x_1y_2)\sqrt{D}}{k}.$$

Simplification

$$\frac{x_1 \pm \sqrt{D}y_1}{x_2 \pm \sqrt{D}y_2} = \frac{(x_1 \pm \sqrt{D}y_1)(x_2 \mp \sqrt{D}y_2)}{(x_2 \pm \sqrt{D}y_2)(x_2 \mp \sqrt{D}y_2)}$$
$$= \frac{(x_1x_2 - Dy_1y_2) \pm (x_2y_1 - x_1y_2)\sqrt{D}}{x_2^2 - Dy_2^2}$$
$$= \frac{(x_1x_2 - Dy_1y_2) \pm (x_2y_1 - x_1y_2)\sqrt{D}}{k}.$$

Solution to $x^2 - Dy^2 = 1$ $(x, y) = (\frac{x_1x_2 - Dy_1y_2}{k}, \frac{x_2y_1 - x_1y_2}{k})$

Integers?
$$y = \frac{x_2 y_1 - x_1 y_2}{k}.$$

Integers? $y = \frac{x_2y_1 - x_1y_2}{k}.$ $x_1 \equiv x_2 \pmod{k}, y_1 \equiv y_2 \pmod{k}.$ So, $x_2y_1 \equiv x_1y_2 \pmod{k}.$ Therefore, y and thus x are integers.

Theorem 2

When (x_1, y_1) are the positive integer solutions with smallest x_1 such that $x^2 - Dy^2 = 1$, every subsequent solutions (x_k, y_k) can be obtained through

$$x_k + y_k \sqrt{D} = (x_1 + y_1 \sqrt{D})^k.$$

Theorem 2

When (x_1, y_1) are the positive integer solutions with smallest x_1 such that $x^2 - Dy^2 = 1$, every subsequent solutions (x_k, y_k) can be obtained through

$$x_k + y_k \sqrt{D} = (x_1 + y_1 \sqrt{D})^k.$$

Part 1

$$(x_k, y_k)$$
 are solutions to $x^2 - Dy^2 = 1$.

Theorem 2

When (x_1, y_1) are the positive integer solutions with smallest x_1 such that $x^2 - Dy^2 = 1$, every subsequent solutions (x_k, y_k) can be obtained through

$$x_k + y_k \sqrt{D} = (x_1 + y_1 \sqrt{D})^k.$$

Part 1

 (x_k, y_k) are solutions to $x^2 - Dy^2 = 1$.

Part 2

 (x_k, y_k) are **all** the solutions to $x^2 - Dy^2 = 1$.

Part 1 - Base Case (x_1, y_1) are solutions to $x^2 - Dy^2 = 1$ by set-up.

Part 1 - Base Case

 (x_1, y_1) are solutions to $x^2 - Dy^2 = 1$ by set-up.

Part 1 - Inductive Step: *k* to *k* + 1 $(x_k + y_k \sqrt{D})(x_1 + y_1 \sqrt{D}) = (x_1 x_k + D y_1 y_k) + (x_1 y_k + x_k y_1) \sqrt{D} = x_{k+1} + y_{k+1} \sqrt{D}.$

Part 1 - Base Case

 (x_1, y_1) are solutions to $x^2 - Dy^2 = 1$ by set-up.

Part 1 - Inductive Step: *k* to *k* + 1 $(x_k + y_k \sqrt{D})(x_1 + y_1 \sqrt{D}) = (x_1 x_k + D y_1 y_k) + (x_1 y_k + x_k y_1) \sqrt{D} = x_{k+1} + y_{k+1} \sqrt{D}.$

 $(x_{k+1}, y_{k+1}) = (x_1 x_k + D y_1 y_k, x_1 y_k + x_k y_1)$

Part 1- Inductive Step: k to k + 1

$$1 = (x_1^2 - Dy_1^2)(x_k^2 - Dy_k^2)$$

= $(x_1 + y_1\sqrt{D})(x_k + y_k\sqrt{D})(x_1 - y_1\sqrt{D})(x_k - y_k\sqrt{D})$
= $[(x_1x_k + Dy_1y_k) + (x_1y_k + x_ky_1)\sqrt{D}][(x_1x_k + Dy_1y_k) - (x_1y_k + x_ky_1)\sqrt{D}]$
= $(x_1x_k + Dy_1y_k)^2 - D(x_1y_k + x_ky_1)^2$
= $x_{k+1}^2 - Dy_{k+1}^2$
Proof of Theorem 2

Part 2- Assume Contrary

Let (X, Y) be the smallest solution to $X^2 - DY^2 = 1$ that cannot be described as in theorem statement.

Part 2- Assume Contrary

Let (X, Y) be the smallest solution to $X^2 - DY^2 = 1$ that cannot be described as in theorem statement.

Part 2- Building down

$$1 = (X^{2} - DY^{2})(x_{1} - Dy_{1}^{2}) = (X + Y\sqrt{D})(x_{1} - y_{1}\sqrt{D})(X - Y\sqrt{D})(x_{1} + y_{1}\sqrt{D})$$

= $[(Xx_{1} - Yy_{1}D) + (Yx_{1} - Xy_{1})\sqrt{D}][(Xx_{1} - Yy_{1}D) - (Yx_{1} - Xy_{1})\sqrt{D}]$
= $(Xx_{1} - Yy_{1}D)^{2} - D(Yx_{1} - Xy_{1})^{2}$.

Part 2- Assume Contrary

Let (X, Y) be the smallest solution to $X^2 - DY^2 = 1$ that cannot be described as in theorem statement.

Part 2- Building down

$$1 = (X^{2} - DY^{2})(x_{1} - Dy_{1}^{2}) = (X + Y\sqrt{D})(x_{1} - y_{1}\sqrt{D})(X - Y\sqrt{D})(x_{1} + y_{1}\sqrt{D})$$

= $[(Xx_{1} - Yy_{1}D) + (Yx_{1} - Xy_{1})\sqrt{D}][(Xx_{1} - Yy_{1}D) - (Yx_{1} - Xy_{1})\sqrt{D}]$
= $(Xx_{1} - Yy_{1}D)^{2} - D(Yx_{1} - Xy_{1})^{2}$.

So, $(Xx_1 - Yy_1D, Yx_1 - Xy_1)$ are solutions.

Part 2- Assume Contrary

Let (X, Y) be the smallest solution to $X^2 - DY^2 = 1$ that cannot be described as in theorem statement.

Part 2- Building down

$$1 = (X^{2} - DY^{2})(x_{1} - Dy_{1}^{2}) = (X + Y\sqrt{D})(x_{1} - y_{1}\sqrt{D})(X - Y\sqrt{D})(x_{1} + y_{1}\sqrt{D})$$

= $[(Xx_{1} - Yy_{1}D) + (Yx_{1} - Xy_{1})\sqrt{D}][(Xx_{1} - Yy_{1}D) - (Yx_{1} - Xy_{1})\sqrt{D}]$
= $(Xx_{1} - Yy_{1}D)^{2} - D(Yx_{1} - Xy_{1})^{2}$.

So, $(Xx_1 - Yy_1D, Yx_1 - Xy_1)$ are solutions. By assumption, $(Xx_1 - Yy_1D, Yx_1 - Xy_1)$ should be larger than (X, Y).

$$X^2 - DY^2 = 1$$
. So, $\frac{X}{Y} = \sqrt{D + \frac{1}{Y^2}}$.

$$X^2 - DY^2 = 1$$
. So, $\frac{X}{Y} = \sqrt{D + \frac{1}{Y^2}}$.
As Y increases, $\frac{X}{Y}$ decreases.

$$X^2 - DY^2 = 1$$
. So, $\frac{X}{Y} = \sqrt{D + \frac{1}{Y^2}}$.
As Y increases, $\frac{X}{Y}$ decreases.
Even when $(x, y) = (x_1, y_1)$, the minimal solution, $\frac{Dy_1}{x_1 - 1} > \frac{x_1}{y_1}$.
Contradiction.

Theorem 3

For a given D, there does not always exist a pair of integers (x, y) such that $x^2 - Dy^2 = -1$.

Counterexample

$$D = 4$$
. $x^2 - 4y^2 = -1$. Therefore, $X^2 = 4y^2 - 1$
 $x^2 \equiv 3 \pmod{4}$. Contradiction.

Theorem 4

When the continued fraction $\sqrt{D} = [a_1, \overline{a_2, a_3, ..., a_{n-1}, a_n}]$, let p and q be co-prime integers such that $\frac{p}{q} = [a_1, a_2, a_3, ..., a_{n-1}]$. Then, an integer solution (x, y) to Pell's equation $x^2 - Dy^2 = 1$ is given by

(x,y) = (p,q) when n is odd

 $(x, y) = (p^2 + q^2 D, 2pq)$ when *n* is even.

Lemma 8

Let $\sqrt{D} = [a_1, \overline{a_2, a_3, \dots a_n}]$ and let $\frac{p}{q} = [a_1, \dots a_{n-1}]$. Then, (p, q) is a solution to the equation $x^2 - Dy^2 = (-1)^{n-1}$.

Solutions

•
$$n \equiv 1 \pmod{2}$$
: $p^2 - Dq^2 = 1$.

• $n \equiv 0 \pmod{2}$: $p^2 - Dq^2 = -1$. Squaring each side, $(p^2 - Dq^2)^2 = (p^2 + Dq^2)^2 - D(2pq)^2 = 1$. Summary

For every *D* that is not a perfect square, is there always a nontrivial solution?

For every *D* that is not a perfect square, is there always a nontrivial solution?

Theorem 1

There always exists a pair of integers (x, y) such that $x^2 - Dy^2 = 1$.

How do we generate all such solutions?

How do we generate all such solutions?

Theorem 2

When (x_1, y_1) are the positive integer solutions with smallest x_1 such that $x^2 - Dy^2 = 1$, every subsequent solutions (x_k, y_k) can be obtained through

$$x_k + y_k \sqrt{D} = (x_1 + y_1 \sqrt{D})^k.$$

What if the right hand side is -1?

What if the right hand side is -1?

Theorem 3

For a given D, there does not always exist a pair of integers (x, y) such that $x^2 - Dy^2 = -1$.

How do we find a solution?

How do we find a solution?

Theorem 4

When the continued fraction $\sqrt{D} = [a_1, \overline{a_2, a_3, ..., a_{n-1}, a_n}]$, let p and q be co-prime integers such that $\frac{p}{q} = [a_1, a_2, a_3, ..., a_{n-1}]$. Then, an integer solution (x, y) to Pell's equation $x^2 - Dy^2 = 1$ is given by

(x, y) = (p, q) when n is odd

 $(x, y) = (p^2 + q^2 D, 2pq)$ when *n* is even.

We would like to thank:

- \cdot Zhulin Li, our mentor
- The MIT PRIMES program
- Our parents