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Definition of p(n)

Definition

A partition of a nonnegative integer n is a non-increasing sequence of
positive integers that sum to n.

p(n) := # partitions of n.

Example (p(4) = 5)

4 = 1 + 1 + 1 + 1

= 2 + 1 + 1

= 2 + 2

= 3 + 1

= 4.
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Generating function for p(n)

Lemma (Euler)

The generating function for p(n) is

∞∑
n=0

p(n)qn =

∞∏
n=1

1

1− qn
.

We define

(q; q)∞ :=

∞∏
n=1

(1− qn).
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Ramanujan’s congruences

Theorem (Ramanujan (1915))

For every nonnegative integer n, we have

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

Theorem (Watson (1938), Atkin (1967))

For prime ` ≥ 5 and positive integer r, define 0 ≤ c`,r < `r such that
24c`,r ≡ 1 (mod `r). Then for every nonnegative integer n, we have

p(5rn+ c5,r) ≡ 0 (mod 5r),

p(7rn+ c7,r) ≡ 0 (mod 7br/2c+1),

p(11rn+ c11,r) ≡ 0 (mod 11r).
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A general theory of congruences

Theorem (Ahlgren, Ono (2000))

For every modulus L coprime to 6, there exist integers A 6= 0 and B
such that for all n, we have

p(An+B) ≡ 0 (mod L).

Example

For all n, we have

p(4063467631n+ 30064597) ≡ 0 (mod 31).
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`r-balanced congruences

Definition

A congruence is `r-balanced if it is the form

p(`rn+ c) ≡ 0 (mod `r)

for all n, where c, r are integers and r ≥ 1.

Remark

The Ramanujan congruences and their generalizations to higher powers
for ` = 5, 11 are `r-balanced.
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Questions inspired by the Ramanujan congruences

1. Why do we have 24c ≡ 1 (mod `) for all congruences?

2. How many `-balanced congruences are there for p(n)?

3. Is this a glimpse of a general theory of congruences?
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Necessary condition for `-balanced congruences

Question

Why do we have 24c ≡ 1 (mod `) for all congruences?

Theorem (Kiming-Olsson (1992))

Let ` > 5 be a prime. If

p(`n+ c) ≡ 0 (mod `)

for all n, then 24c ≡ 1 (mod `).
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Finiteness for p(n)

Question

How many `-balanced congruences are there for p(n)?

Theorem (Ahlgren-Boylan (2001))

Let ` be prime. Then

p(`n+ c) ≡ 0 (mod `)

for all n if and only if (`, c) ∈ {(5, 4), (7, 5), (11, 6)}.
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Fractional partition functions

Definition (Chan-Wang (2018))

The fractional partition functions pα(n) are defined for rational
α = a/b by

∞∑
n=0

pα(n)qn := (q; q)α∞.

Remark

α = −1 corresponds to usual partition function.

α = −k ∈ Z− corresponds to k-colored partition function.
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Denominators of pα(n)

Theorem (Chan-Wang 2018)

The denominator of pα(n) when written in lowest terms is given by

denom(pα(n)) = bn
∏
p|b

pordp(n!).
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Congruences for fractional partition functions

Theorem (Chan-Wang (2018))

For all n, we have
pα(`n+ c) ≡ 0 (mod `),

if 24c ≡ −α (mod `) and any of the following conditions hold:

1. α ≡ 4, 8, 14 (mod `) and ` ≡ 5 (mod 6);

2. α ≡ 6, 10 (mod `) and ` ≡ 3 (mod 4) and ` ≥ 5;

3. α ≡ 26 (mod `) and ` ≡ 11 (mod 12).

Remark

Shortly, we will emphasize the special role of the list of α.

Fractional partition congruences Classical results
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Examples from Chan-Wang

Example

1 p− 3
4
(43n+ 39) ≡ 0 (mod 43)

2 p 1
3
(41n+ 37) ≡ 0 (mod 41)

Remark

These congruences are `-balanced.

Fractional partition congruences Classical results
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Natural questions for rational α

1. Is there a Kiming-Olsson analog (necessary condition) for α?

2. Are the congruences in Chan-Wang exhaustive?

3. Is there a general theory that produces congruences for pα(n)?

4. Is there an Ahlgren-Boylan analog (finiteness) for given α?
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Necessary conditions

Question

Is there a Kiming-Olsson analog (necessary condition) for α?

Theorem 1 (BCC)

Let α = a/b, and let ` ≥ 5 be a prime not dividing b such that α 6≡ 1, 3
(mod `). If

pα(`n+ c) ≡ 0 (mod `)

for all n, then 24c ≡ −α (mod `).

Fractional partition congruences Our results
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Lacunary powers of the eta-function

Question

Are the congruences in Chan-Wang exhaustive?

Theorem (Serre 1985)

Let r be a positive even integer. Let

η := q1/24(q; q)∞.

Then, ηr is lacunary if and only if

r ∈ {2, 4, 6, 8, 10, 14, 26}.

Remark

The work of Chan and Wang relies on the identities that Serre proves
to establish this theorem.

Fractional partition congruences Our results
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A theoretical framework of congruences

Question

Is there a general theory that produces congruences for pα(n)?

Definition

We say that a prime ` is good for α = a/b with parameter k if ` - b and
k is a positive integer such that

1. ` | (24k − α),

2. (`− 1) | (12k −m) for some m ∈ {4, 6, 8, 10, 14},
3. ` - N12k(D12k), where D12k is the Hecke determinant for S12k.

Theorem 2 (BCC)

If ` is good for α with parameter k and v ≤ ord`(24k − α) is a positive
integer, then for all n, we have

pα(`vn− k) ≡ 0 (mod `v).

Fractional partition congruences Our results



A theoretical framework of congruences

Question

Is there a general theory that produces congruences for pα(n)?

Definition

We say that a prime ` is good for α = a/b with parameter k if ` - b and
k is a positive integer such that

1. ` | (24k − α),

2. (`− 1) | (12k −m) for some m ∈ {4, 6, 8, 10, 14},
3. ` - N12k(D12k), where D12k is the Hecke determinant for S12k.

Theorem 2 (BCC)

If ` is good for α with parameter k and v ≤ ord`(24k − α) is a positive
integer, then for all n, we have

pα(`vn− k) ≡ 0 (mod `v).

Fractional partition congruences Our results



A theoretical framework of congruences

Question

Is there a general theory that produces congruences for pα(n)?

Definition

We say that a prime ` is good for α = a/b with parameter k if ` - b and
k is a positive integer such that

1. ` | (24k − α),

2. (`− 1) | (12k −m) for some m ∈ {4, 6, 8, 10, 14},
3. ` - N12k(D12k), where D12k is the Hecke determinant for S12k.

Theorem 2 (BCC)

If ` is good for α with parameter k and v ≤ ord`(24k − α) is a positive
integer, then for all n, we have

pα(`vn− k) ≡ 0 (mod `v).

Fractional partition congruences Our results



A theoretical framework of congruences

Question

Is there a general theory that produces congruences for pα(n)?

Definition

We say that a prime ` is good for α = a/b with parameter k if ` - b and
k is a positive integer such that

1. ` | (24k − α),

2. (`− 1) | (12k −m) for some m ∈ {4, 6, 8, 10, 14},

3. ` - N12k(D12k), where D12k is the Hecke determinant for S12k.

Theorem 2 (BCC)

If ` is good for α with parameter k and v ≤ ord`(24k − α) is a positive
integer, then for all n, we have

pα(`vn− k) ≡ 0 (mod `v).

Fractional partition congruences Our results



A theoretical framework of congruences

Question

Is there a general theory that produces congruences for pα(n)?

Definition

We say that a prime ` is good for α = a/b with parameter k if ` - b and
k is a positive integer such that

1. ` | (24k − α),

2. (`− 1) | (12k −m) for some m ∈ {4, 6, 8, 10, 14},
3. ` - N12k(D12k), where D12k is the Hecke determinant for S12k.

Theorem 2 (BCC)

If ` is good for α with parameter k and v ≤ ord`(24k − α) is a positive
integer, then for all n, we have

pα(`vn− k) ≡ 0 (mod `v).

Fractional partition congruences Our results



A theoretical framework of congruences

Question

Is there a general theory that produces congruences for pα(n)?

Definition

We say that a prime ` is good for α = a/b with parameter k if ` - b and
k is a positive integer such that

1. ` | (24k − α),

2. (`− 1) | (12k −m) for some m ∈ {4, 6, 8, 10, 14},
3. ` - N12k(D12k), where D12k is the Hecke determinant for S12k.

Theorem 2 (BCC)

If ` is good for α with parameter k and v ≤ ord`(24k − α) is a positive
integer, then for all n, we have

pα(`vn− k) ≡ 0 (mod `v).

Fractional partition congruences Our results



Finiteness for integral α

Question

Is there an Ahlgren-Boylan analog (finiteness) for given α?

Theorem 3 (BCC)

Let α be an integer that is either even and < 0 or odd and > 3. If

pα(`n− δ`) ≡ 0 (mod `)

for all n, then ` ≤ |α|+ 4. In particular, pα admits finitely many
`-balanced congruences.

Fractional partition congruences Our results
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Limiting residue classes of primes mod 2b

Definition

For m ∈ Z+ and β ∈ Q with gcd(denom(β),m) = 1, define Ψm(β):

Ψm(β) ∈ {0, 1, . . . ,m− 1},
Ψm(β) ≡ β (mod m).

Theorem 4 (BCC)

Let α = a/b ∈ Q− 2Z. If ` ≥ |a|+ 5b is a prime for which pα admits an
`-balanced congruence, then

Ψ2b

(a
`

)
≥ b.

Fractional partition congruences Our results
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Modular forms and Hecke operators

Definition (Space of Modular Forms)

For k ∈ 2Z, we let

Mk := space of weight k modular forms on SL2(Z),

Sk := space of weight k cusp forms on SL2(Z).

Definition (Hecke Operators)

Let f(z) =
∑∞

n=0 anq
n ∈Mk, where q := e2πiz. The Hecke operator T`

acts via

(f | T`)(z) =

∞∑
n=0

(
a(`n) + `k−1a(n/`)

)
qn.

Fractional partition congruences Non-ordinary primes and Hecke eigenforms
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Definition of Hecke eigenform

Definition

Let f(z) = q +
∑∞

n=2 a(n)qn ∈ Sk. We call f(z) a normalized Hecke
eigenform if for all m there exists λ(m) ∈ C such that

f(z) | Tm = λ(m)f(z).

Remark

There is a canonical basis of normalized Hecke eigenforms for Sk.

Fractional partition congruences Non-ordinary primes and Hecke eigenforms



Definition of Hecke eigenform

Definition

Let f(z) = q +
∑∞

n=2 a(n)qn ∈ Sk. We call f(z) a normalized Hecke
eigenform if for all m there exists λ(m) ∈ C such that

f(z) | Tm = λ(m)f(z).

Remark

There is a canonical basis of normalized Hecke eigenforms for Sk.

Fractional partition congruences Non-ordinary primes and Hecke eigenforms



`-non-ordinary primes

Definition

Let f(z) =
∑∞

n=0 a(n)qn ∈Mk ∩ OL[[q]]. We say that f(z) is
`-non-ordinary if

a(`) ≡ 0 (mod `OL).

Remark

If f(z) is a normalized Hecke eigenform, then

a(`n) = a(`)a(n)− `k−1a(n/`).

Thus, `-non-ordinarity is equivalent to

f(z) | T` ≡ 0 (mod `OL).

Fractional partition congruences Non-ordinary primes and Hecke eigenforms
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Extend powers of `-non-ordinarity

Lemma (BCC)

Suppose f(z) =
∑∞

n=0 a(n)qn ∈Mk ∩ OL[[q]] is an `-non-ordinary
normalized Hecke eigenform. Then for all r, n ≥ 1,

a(`rn) ≡ 0 (mod `rOL).

Fractional partition congruences Non-ordinary primes and Hecke eigenforms



Hecke eigenforms `-non-ordinary

Definition (` good for α)

We say that a prime ` is good for α = a/b with parameter k if ` - b and
k is a positive integer such that

1. ` | (24k − α),

2. (`− 1) | (12k −m) for some m ∈ {4, 6, 8, 10, 14}, and

3. ` - N12k(D12k), where D12k is the Hecke determinant for S12k.

Theorem (Jin, Ma, Ono 2016)

Let f be normalized Hecke eigenform of even weight k ≥ 12. If
(`− 1) | (k −m) for some m ∈ {4, 6, 8, 10, 14}, then f is `-non-ordinary.

Fractional partition congruences Non-ordinary primes and Hecke eigenforms
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Definition of Hecke Determinant

Definition (Hecke Determinant)

Dk := the weight k Hecke determinant for Sk

Remark

Let f1, . . . , fd be the basis of normalized Hecke eigenforms for Sk. For
a cusp form f(z) ∈ Sk ∩ OL[[q]], we can write

f(z) =

d∑
i=1

βifi.

By Cramer’s rule, βi = γi/Dk where γi ∈ OL.

Fractional partition congruences Non-ordinary primes and Hecke eigenforms
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`-non-ordinarity extends to Sk

Lemma (BCC)

Let k ≥ 12 be even and let ` be a prime such that

(`− 1) | (k −m) for some m ∈ {4, 6, 8, 10, 14},
` - Nk(Dk).

Then for all g(z) =
∑∞

n=1 ag(n)qn ∈ Sk ∩ OL[[q]], we have

ag(`
rn) ≡ 0 (mod `rOL).

Remark

When ` - Nk(Dk) holds (condition 3 of ` being good for α), the
`-non-ordinarity of normalized eigenforms extends through linearity.
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Proof of Theorem 2

Theorem 2 (BCC)

If ` is good for α with parameter k and v ≤ ord`(24k − α) is a positive
integer, then for all n, we have

pα(`vn− k) ≡ 0 (mod `v).

Ideas of Proof

Technical lemma of Chan and Wang

Expression of `r-balanced congruences in terms of powers of
Ramanujan’s Delta-function ∆ := q(q; q)24

∞ ∈ S12

`-non-ordinarity of ∆k ∈ S12k implied by ` good for α with
parameter k
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Proof of Theorem 2

Lemma (Chan-Wang)

Let α = a/b. Let ` be a prime not dividing b. Then for any r ≥ 1,

(q; q)`
rα
∞ ≡ (q`; q`)`

r−1α
∞ (mod `r).

Rewrite in terms of Ramanujan ∆-function

Write r := ord`(24k − α) and ∆k =:
∑∞

n=0 τk(n)qn. Then,

∞∑
n=0

pα(n)qn+k = qk(q; q)24k+`ru
∞ ≡ ∆k(q`; q`)`

r−1u
∞ (mod `r).

Extract terms of form q`n and replace q` by q:

∞∑
n=0

pα(`n− k)qn ≡ (q; q)`
r−1u
∞

∞∑
n=0

τk(`n)qn (mod `r).
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Proof of Theorem 2 (cont.)

Induction
∞∑
n=0

pα(`in− k)qn ≡ (q; q)`
r−iu
∞

∞∑
n=0

τk(`
in)qn (mod `r).

`-non-ordinarity extends

Normalized eigenforms in S12k are `-non-ordinary, hence ∆k as well

=⇒ τk(`
vn) ≡ 0 (mod `v)

=⇒
∞∑
n=0

pα(`vn− k)qn ≡ 0 (mod `v).
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Example of Theorem 2

Congruences for powers of primes

` = 17 is good for α = 57/61 with parameter k = 3 because

17 | (24 · 3− 57/61),

16 | (12 · 3− 4),

17 - N36(D36).

Check ord17(24 · 3− 57
61) = 2, so our theorem gives that for all n,

p 57
61

(17n− 3) ≡ 0 (mod 17),

p 57
61

(172n− 3) ≡ 0 (mod 172),

p 57
61

(173n− 3) 6≡ 0 (mod 173).
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Ramanujan’s Θ-operator

Definition

We collect all modular forms modulo ` of weight k into the space

Mk,` := {f (mod `) : f ∈Mk ∩ Z[[q]]}.

Definition

Ramanujan’s Theta-operator is defined on power series f =
∑

n anq
n by

Θ(f) :=
∑
n

nanq
n.

Example (Repeated applications of the Θ-operator)

Let f =
∑

n anq
n ∈ Z[[q]]. By Fermat’s Little Theorem, we have

Θ`(f) =
∑
n

n`anq
n ≡

∑
n

nanq
n = Θ(f) (mod `).
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Serre filtration

Definition

For f ∈Mk ∩ Z[[q]], define the filtration of f modulo ` by

ω`(f) := inf{k ∈ Z : f (mod `) ∈Mk,`}.

Example (Filtration of Eisenstein series)

The normalized Eisenstein series of weight `− 1 has Fourier expansion

E`−1(z) = 1− 2(`− 1)

B`−1

∞∑
n=1

σ`−2(n)qn ≡ 1 (mod `)

by the Von Staudt-Clausen theorem on divisibility of Bernoulli
numbers. Therefore, ω`(E`−1) = 0.
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Filtration and the Θ-operator

Filtration Lemma

If ` ≥ 5 and f ∈Mk ∩ Z[[q]], then Θ(f) (mod `) is the reduction of a
modular form modulo `. Moreover,

ω`(Θf) = ω`(f) + (`+ 1)− s(`− 1)

for some integer s ≥ 0, with equality if and only if ` - ω`(f).

Example

Let ` = 5 and repeatedly apply the Θ-operator to the Delta-function.

Form ∆ Θ(∆) Θ2(∆) Θ3(∆) Θ4(∆) Θ5(∆)

ω` 12 18 24 30 12 18
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Which arithmetic progressions have congruences?

Theorem 1 (BCC)

Let α = a/b. Let ` ≥ 5 not divide b such that α 6≡ 1, 3 (mod `). If

pα(`n+ c) ≡ 0 (mod `)

for all n, then 24c ≡ −α (mod `).

“Key Ingredient” (Kiming-Olsson, 1992)

Let ` ≥ 5 and let k ≥ 1 such that 24k 6≡ 1, 3 (mod `). If

Θ`−1(q−s∆k) ≡ q−s∆k (mod `)

for some integer s, then s ≡ 0 (mod `).

Fractional partition congruences Modular forms modulo `



Which arithmetic progressions have congruences?

Theorem 1 (BCC)

Let α = a/b. Let ` ≥ 5 not divide b such that α 6≡ 1, 3 (mod `). If

pα(`n+ c) ≡ 0 (mod `)

for all n, then 24c ≡ −α (mod `).

“Key Ingredient” (Kiming-Olsson, 1992)

Let ` ≥ 5 and let k ≥ 1 such that 24k 6≡ 1, 3 (mod `). If

Θ`−1(q−s∆k) ≡ q−s∆k (mod `)

for some integer s, then s ≡ 0 (mod `).

Fractional partition congruences Modular forms modulo `



Proof of Theorem 1

Rewrite in terms of Ramanujan ∆-function.

Write α = 24k + `u for some k ≥ 1 and u ∈ Z(`). Then
∞∑
n=0

pα(n)qn+k = qk(q; q)24k+`u
∞ ≡ ∆k(q`; q`)u∞ (mod `).

Introduce Θ-operator.

Write ∆k =:
∑∞

n=0 τk(n)qn and extract terms of the form q`n+c+k:

τk(`n+ c+ k) ≡ 0 (mod `)

for all n. By Fermat’s little theorem, we find

Θ`−1
(
q−(c+k)∆k

)
≡ q−(c+k)∆k (mod `)

“key ingredient” =⇒ 0 ≡ c+ k ≡ 1
24(24c+ α) (mod `).

Fractional partition congruences Modular forms modulo `



Proof of Theorem 1

Rewrite in terms of Ramanujan ∆-function.

Write α = 24k + `u for some k ≥ 1 and u ∈ Z(`). Then
∞∑
n=0

pα(n)qn+k = qk(q; q)24k+`u
∞ ≡ ∆k(q`; q`)u∞ (mod `).

Introduce Θ-operator.

Write ∆k =:
∑∞

n=0 τk(n)qn and extract terms of the form q`n+c+k:

τk(`n+ c+ k) ≡ 0 (mod `)

for all n.

By Fermat’s little theorem, we find

Θ`−1
(
q−(c+k)∆k

)
≡ q−(c+k)∆k (mod `)

“key ingredient” =⇒ 0 ≡ c+ k ≡ 1
24(24c+ α) (mod `).

Fractional partition congruences Modular forms modulo `



Proof of Theorem 1

Rewrite in terms of Ramanujan ∆-function.

Write α = 24k + `u for some k ≥ 1 and u ∈ Z(`). Then
∞∑
n=0

pα(n)qn+k = qk(q; q)24k+`u
∞ ≡ ∆k(q`; q`)u∞ (mod `).

Introduce Θ-operator.

Write ∆k =:
∑∞

n=0 τk(n)qn and extract terms of the form q`n+c+k:

τk(`n+ c+ k) ≡ 0 (mod `)

for all n. By Fermat’s little theorem, we find

Θ`−1
(
q−(c+k)∆k

)
≡ q−(c+k)∆k (mod `)

“key ingredient” =⇒ 0 ≡ c+ k ≡ 1
24(24c+ α) (mod `).

Fractional partition congruences Modular forms modulo `



Proof of Theorem 1

Rewrite in terms of Ramanujan ∆-function.

Write α = 24k + `u for some k ≥ 1 and u ∈ Z(`). Then
∞∑
n=0

pα(n)qn+k = qk(q; q)24k+`u
∞ ≡ ∆k(q`; q`)u∞ (mod `).

Introduce Θ-operator.

Write ∆k =:
∑∞

n=0 τk(n)qn and extract terms of the form q`n+c+k:

τk(`n+ c+ k) ≡ 0 (mod `)

for all n. By Fermat’s little theorem, we find

Θ`−1
(
q−(c+k)∆k

)
≡ q−(c+k)∆k (mod `)

“key ingredient” =⇒ 0 ≡ c+ k ≡ 1
24(24c+ α) (mod `).

Fractional partition congruences Modular forms modulo `



Which primes ` give a congruence?

Theorem 3 (BCC)

Let α be an even integer < 0 or an odd integer > 3. If

pα(`n− δ`) ≡ 0 (mod `)

for all n, then ` ≤ |α|+ 4. In particular, pα admits finitely many
`-balanced congruences.

“Preparation”

If ` ≥ 5 and δ` is a positive integer, then for any m ≥ 0 we have

ω`(Θ
m∆δ`) ≥ ω`(∆δ`) = 12δ`.
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Proof of Theorem 3

Rewrite in terms of Θ-operator.

Suppose for contradiction that for some ` > |α|+ 4, we have

pα(`n− δ`) ≡ 0 (mod `)

for all n.

By Theorem 1, write 24δ` = α+ `u for some u ∈ Z(`). Then

∆δ` = qδ`(q; q)α+`u
∞ ≡ (q`; q`)u∞

∞∑
n=0

pα(n− δ`)qn (mod `).

By Fermat’s little theorem, we conclude that

Θ`−1(∆δ`) ≡ ∆δ` (mod `).
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Proof of Theorem 3 (cont.)

Study the sequence of filtrations ω`(Θ
i(∆δ`))

If 0 ≤ c < ` satisfies c ≡ −12δ` (mod `), then

ω`(Θ
c(∆δ`)) ≡ 0 (mod `),

ω`(Θ
c+1(∆δ`)) = 12δ`︸︷︷︸

ω`(∆
δ` )

+(2c− `+ 3).

Applying the “preparation”

Because α is an even integer < 0 or an odd integer > 3, we know that

2c− `+ 3 < 0.

Therefore ω`(Θ
c+1(∆δ`)) < ω`(∆

δ`), contradicting the “preparation”.
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Extension of Theorem 3 to rational α?

Theorem 4 (BCC)

Suppose α is not an even integer ≥ 0. If pα admits an `-balanced
congruence for ` ≥ |a|+ 5b, then

Ψ2b

(a
`

)
≥ b.
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Illustration of Theorem 4

Example with a = −1, b = 3.

Let ` ≥ 17. Choose 0 ≤ c < ` such that c ≡ −α/2 (mod `).

` = 6k + 1 : c = 5k + 1 =⇒ 2c− `+ 3 > 0,

` = 6k + 5 : c = k + 1 =⇒ 2c− `+ 3 < 0.

By the proof of Theorem 3, pα does not admit an `-balanced
congruence for ` = 6k + 5.

` = 6k + 1 : Ψ2b(a/`) = Ψ6(−1/1) = 5 ≥ b,
` = 6k + 5 : Ψ2b(a/`) = Ψ6(−1/5) = 1 < b.
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` = 6k + 5 : Ψ2b(a/`) = Ψ6(−1/5) = 1 < b.

Fractional partition congruences Modular forms modulo `



Illustration of Theorem 4

Example with a = −1, b = 3.

Let ` ≥ 17. Choose 0 ≤ c < ` such that c ≡ −α/2 (mod `).

` = 6k + 1 : c = 5k + 1 =⇒ 2c− `+ 3 > 0,

` = 6k + 5 : c = k + 1 =⇒ 2c− `+ 3 < 0.

By the proof of Theorem 3, pα does not admit an `-balanced
congruence for ` = 6k + 5.

` = 6k + 1 : Ψ2b(a/`) = Ψ6(−1/1) = 5 ≥ b,
` = 6k + 5 : Ψ2b(a/`) = Ψ6(−1/5) = 1 < b.

Fractional partition congruences Modular forms modulo `



Illustration of Theorem 4

Example with a = −1, b = 3.

Let ` ≥ 17. Choose 0 ≤ c < ` such that c ≡ −α/2 (mod `).

` = 6k + 1 : c = 5k + 1 =⇒ 2c− `+ 3 > 0,

` = 6k + 5 : c = k + 1 =⇒ 2c− `+ 3 < 0.

By the proof of Theorem 3, pα does not admit an `-balanced
congruence for ` = 6k + 5.

` = 6k + 1 : Ψ2b(a/`) = Ψ6(−1/1) = 5 ≥ b,
` = 6k + 5 : Ψ2b(a/`) = Ψ6(−1/5) = 1 < b.

Fractional partition congruences Modular forms modulo `



Illustration of Theorem 4

Example with a = −1, b = 3.

Let ` ≥ 17. Choose 0 ≤ c < ` such that c ≡ −α/2 (mod `).

` = 6k + 1 : c = 5k + 1 =⇒ 2c− `+ 3 > 0,

` = 6k + 5 : c = k + 1 =⇒ 2c− `+ 3 < 0.

By the proof of Theorem 3, pα does not admit an `-balanced
congruence for ` = 6k + 5.

` = 6k + 1 : Ψ2b(a/`) = Ψ6(−1/1) = 5 ≥ b,

` = 6k + 5 : Ψ2b(a/`) = Ψ6(−1/5) = 1 < b.

Fractional partition congruences Modular forms modulo `



Illustration of Theorem 4

Example with a = −1, b = 3.

Let ` ≥ 17. Choose 0 ≤ c < ` such that c ≡ −α/2 (mod `).

` = 6k + 1 : c = 5k + 1 =⇒ 2c− `+ 3 > 0,

` = 6k + 5 : c = k + 1 =⇒ 2c− `+ 3 < 0.

By the proof of Theorem 3, pα does not admit an `-balanced
congruence for ` = 6k + 5.

` = 6k + 1 : Ψ2b(a/`) = Ψ6(−1/1) = 5 ≥ b,
` = 6k + 5 : Ψ2b(a/`) = Ψ6(−1/5) = 1 < b.

Fractional partition congruences Modular forms modulo `



Which arithmetic progressions can have congruences?

Question

Given `, are there restrictions that govern `-balanced congruences?

Theorem 1 (BCC)

Let ` ≥ 5 not divide b such that α 6≡ 1, 3 (mod `). If

pα(`n+ c) ≡ 0 (mod `)

for all n, then 24c ≡ −α (mod `).
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A general framework

Question

How can we use modular forms to study `r-balanced congruences?

Theorem 2 (BCC)

If ` is good for α with parameter k and v ≤ ord`(24k − α) is a positive
integer, then for all n, we have

pα(`vn− k) ≡ 0 (mod `v).
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How rare are `-balanced congruences?

Question

Can we classify ` for which pα admits `-balanced congruences?

Theorem 3 (BCC)

Let α be an even integer < 0 or an odd integer > 3. If

pα(`n− δ`) ≡ 0 (mod `)

for all n, then ` ≤ |α|+ 4. In particular, pα admits finitely many
`-balanced congruences.
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Can we extend to rational α?

Question

Given rational α, can we find restrictions on the ` for which pα admits
an `-balanced congruence?

Theorem 4 (BCC)

Suppose α is not an even integer ≥ 0. If pα admits an `-balanced
congruence for ` ≥ |a|+ 5b, then

Ψ2b

(a
`

)
≥ b.

Remark

Half of primes cannot be the modulus of a balanced congruence for pα.
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