Ramanujan Congruences for Fractional Partition Functions

Erin Bevilacqua, Kapil Chandran, and Yunseo Choi

December 2, 2019

Overview

(1) Classical results
(2) Our results
(3) Non-ordinary primes and Hecke eigenforms
(4) Modular forms modulo ℓ
(5) Summary

Definition of $p(n)$

Definition

A partition of a nonnegative integer n is a non-increasing sequence of positive integers that sum to n.

Definition of $p(n)$

Definition

A partition of a nonnegative integer n is a non-increasing sequence of positive integers that sum to n.

$$
p(n):=\# \text { partitions of } n .
$$

Definition of $p(n)$

Definition

A partition of a nonnegative integer n is a non-increasing sequence of positive integers that sum to n.

$$
p(n):=\# \text { partitions of } n .
$$

Example $(p(4)=5)$

$$
\begin{aligned}
4 & =1+1+1+1 \\
& =2+1+1 \\
& =2+2 \\
& =3+1 \\
& =4 .
\end{aligned}
$$

Generating function for $p(n)$

Lemma (Euler)

The generating function for $p(n)$ is

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}} .
$$

Generating function for $p(n)$

Lemma (Euler)

The generating function for $p(n)$ is

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}
$$

We define

$$
(q ; q)_{\infty}:=\prod_{n=1}^{\infty}\left(1-q^{n}\right) .
$$

Ramanujan's congruences

Theorem (Ramanujan (1915))

For every nonnegative integer n, we have

$$
\begin{aligned}
p(5 n+4) & \equiv 0 \quad(\bmod 5) \\
p(7 n+5) & \equiv 0 \quad(\bmod 7) \\
p(11 n+6) & \equiv 0 \quad(\bmod 11)
\end{aligned}
$$

Ramanujan's congruences

Theorem (Ramanujan (1915))

For every nonnegative integer n, we have

$$
\begin{aligned}
p(5 n+4) & \equiv 0 \quad(\bmod 5) \\
p(7 n+5) & \equiv 0 \quad(\bmod 7) \\
p(11 n+6) & \equiv 0 \quad(\bmod 11)
\end{aligned}
$$

Theorem (Watson (1938), Atkin (1967))

For prime $\ell \geq 5$ and positive integer r, define $0 \leq c_{\ell, r}<\ell^{r}$ such that $24 c_{\ell, r} \equiv 1\left(\bmod \ell^{r}\right)$. Then for every nonnegative integer n, we have

$$
\begin{aligned}
p\left(5^{r} n+c_{5, r}\right) & \equiv 0 \quad\left(\bmod 5^{r}\right) \\
p\left(7^{r} n+c_{7, r}\right) & \equiv 0 \quad\left(\bmod 7^{\lfloor r / 2\rfloor+1}\right) \\
p\left(11^{r} n+c_{11, r}\right) & \equiv 0 \quad\left(\bmod 11^{r}\right)
\end{aligned}
$$

A general theory of congruences

Theorem (Ahlgren, Ono (2000))
For every modulus L coprime to 6 , there exist integers $A \neq 0$ and B such that for all n, we have

$$
p(A n+B) \equiv 0 \quad(\bmod L) .
$$

A general theory of congruences

Theorem (Ahlgren, Ono (2000))

For every modulus L coprime to 6 , there exist integers $A \neq 0$ and B such that for all n, we have

$$
p(A n+B) \equiv 0 \quad(\bmod L) .
$$

Example

For all n, we have

$$
p(4063467631 n+30064597) \equiv 0 \quad(\bmod 31)
$$

ℓ^{r}-balanced congruences

Definition

A congruence is ℓ^{r}-balanced if it is the form

$$
p\left(\ell^{r} n+c\right) \equiv 0 \quad\left(\bmod \ell^{r}\right)
$$

for all n, where c, r are integers and $r \geq 1$.

ℓ^{r}-balanced congruences

Definition

A congruence is ℓ^{r}-balanced if it is the form

$$
p\left(\ell^{r} n+c\right) \equiv 0 \quad\left(\bmod \ell^{r}\right)
$$

for all n, where c, r are integers and $r \geq 1$.

Remark

The Ramanujan congruences and their generalizations to higher powers for $\ell=5,11$ are ℓ^{r}-balanced.

Questions inspired by the Ramanujan congruences

Questions inspired by the Ramanujan congruences

1. Why do we have $24 c \equiv 1(\bmod \ell)$ for all congruences?

Questions inspired by the Ramanujan congruences

1. Why do we have $24 c \equiv 1(\bmod \ell)$ for all congruences?
2. How many ℓ-balanced congruences are there for $p(n)$?

Questions inspired by the Ramanujan congruences

1. Why do we have $24 c \equiv 1(\bmod \ell)$ for all congruences?
2. How many ℓ-balanced congruences are there for $p(n)$?
3. Is this a glimpse of a general theory of congruences?

Necessary condition for ℓ-balanced congruences

Question

Why do we have $24 c \equiv 1(\bmod \ell)$ for all congruences?

Necessary condition for ℓ-balanced congruences

Question

Why do we have $24 c \equiv 1(\bmod \ell)$ for all congruences?

Theorem (Kiming-Olsson (1992))
Let $\ell>5$ be a prime. If

$$
p(\ell n+c) \equiv 0 \quad(\bmod \ell)
$$

for all n, then $24 c \equiv 1(\bmod \ell)$.

Finiteness for $p(n)$

Question

How many ℓ-balanced congruences are there for $p(n)$?

Finiteness for $p(n)$

Question

How many ℓ-balanced congruences are there for $p(n)$?

Theorem (Ahlgren-Boylan (2001))
Let ℓ be prime. Then

$$
p(\ell n+c) \equiv 0 \quad(\bmod \ell)
$$

for all n if and only if $(\ell, c) \in\{(5,4),(7,5),(11,6)\}$.

Fractional partition functions

Definition (Chan-Wang (2018))

The fractional partition functions $p_{\alpha}(n)$ are defined for rational $\alpha=a / b$ by

$$
\sum_{n=0}^{\infty} p_{\alpha}(n) q^{n}:=(q ; q)_{\infty}^{\alpha}
$$

Fractional partition functions

Definition (Chan-Wang (2018))

The fractional partition functions $p_{\alpha}(n)$ are defined for rational $\alpha=a / b$ by

$$
\sum_{n=0}^{\infty} p_{\alpha}(n) q^{n}:=(q ; q)_{\infty}^{\alpha}
$$

Remark

- $\alpha=-1$ corresponds to usual partition function.

Fractional partition functions

Definition (Chan-Wang (2018))

The fractional partition functions $p_{\alpha}(n)$ are defined for rational $\alpha=a / b$ by

$$
\sum_{n=0}^{\infty} p_{\alpha}(n) q^{n}:=(q ; q)_{\infty}^{\alpha}
$$

Remark

- $\alpha=-1$ corresponds to usual partition function.
- $\alpha=-k \in \mathbb{Z}^{-}$corresponds to k-colored partition function.

Denominators of $p_{\alpha}(n)$

Theorem (Chan-Wang 2018)

The denominator of $p_{\alpha}(n)$ when written in lowest terms is given by

$$
\operatorname{denom}\left(p_{\alpha}(n)\right)=b^{n} \prod_{p \mid b} p^{\operatorname{ord}_{p}(n!)}
$$

Congruences for fractional partition functions

Theorem (Chan-Wang (2018))
For all n, we have

$$
p_{\alpha}(\ell n+c) \equiv 0 \quad(\bmod \ell)
$$

if $24 c \equiv-\alpha(\bmod \ell)$ and any of the following conditions hold:

Congruences for fractional partition functions

Theorem (Chan-Wang (2018))

For all n, we have

$$
p_{\alpha}(\ell n+c) \equiv 0 \quad(\bmod \ell)
$$

if $24 c \equiv-\alpha(\bmod \ell)$ and any of the following conditions hold:

1. $\alpha \equiv 4,8,14(\bmod \ell)$ and $\ell \equiv 5(\bmod 6)$;
2. $\alpha \equiv 6,10(\bmod \ell)$ and $\ell \equiv 3(\bmod 4)$ and $\ell \geq 5$;
3. $\alpha \equiv 26(\bmod \ell)$ and $\ell \equiv 11(\bmod 12)$.

Congruences for fractional partition functions

Theorem (Chan-Wang (2018))

For all n, we have

$$
p_{\alpha}(\ell n+c) \equiv 0 \quad(\bmod \ell)
$$

if $24 c \equiv-\alpha(\bmod \ell)$ and any of the following conditions hold:

1. $\alpha \equiv 4,8,14(\bmod \ell)$ and $\ell \equiv 5(\bmod 6)$;
2. $\alpha \equiv 6,10(\bmod \ell)$ and $\ell \equiv 3(\bmod 4)$ and $\ell \geq 5$;
3. $\alpha \equiv 26(\bmod \ell)$ and $\ell \equiv 11(\bmod 12)$.

Remark

Shortly, we will emphasize the special role of the list of α.

Examples from Chan-Wang

Example

- $p_{-\frac{3}{4}}(43 n+39) \equiv 0(\bmod 43)$

Examples from Chan-Wang

Example

- $p_{-\frac{3}{4}}(43 n+39) \equiv 0(\bmod 43)$
(-) $p_{\frac{1}{3}}(41 n+37) \equiv 0(\bmod 41)$

Examples from Chan-Wang

Example

- $p_{-\frac{3}{4}}(43 n+39) \equiv 0(\bmod 43)$
(-) $p_{\frac{1}{3}}(41 n+37) \equiv 0(\bmod 41)$

Remark

These congruences are ℓ-balanced.

Natural questions for rational α

1. Is there a Kiming-Olsson analog (necessary condition) for α ?

Natural questions for rational α

1. Is there a Kiming-Olsson analog (necessary condition) for α ?
2. Are the congruences in Chan-Wang exhaustive?

Natural questions for rational α

1. Is there a Kiming-Olsson analog (necessary condition) for α ?
2. Are the congruences in Chan-Wang exhaustive?
3. Is there a general theory that produces congruences for $p_{\alpha}(n)$?

Natural questions for rational α

1. Is there a Kiming-Olsson analog (necessary condition) for α ?
2. Are the congruences in Chan-Wang exhaustive?
3. Is there a general theory that produces congruences for $p_{\alpha}(n)$?
4. Is there an Ahlgren-Boylan analog (finiteness) for given α ?

Necessary conditions

Question

Is there a Kiming-Olsson analog (necessary condition) for α ?

Necessary conditions

Question

Is there a Kiming-Olsson analog (necessary condition) for α ?

Theorem 1 (BCC)

Let $\alpha=a / b$, and let $\ell \geq 5$ be a prime not dividing b such that $\alpha \not \equiv 1,3$ $(\bmod \ell)$. If

$$
p_{\alpha}(\ell n+c) \equiv 0 \quad(\bmod \ell)
$$

for all n, then $24 c \equiv-\alpha(\bmod \ell)$.

Lacunary powers of the eta-function

Question

Are the congruences in Chan-Wang exhaustive?

Lacunary powers of the eta-function

Question

Are the congruences in Chan-Wang exhaustive?

Theorem (Serre 1985)
Let r be a positive even integer. Let

$$
\eta:=q^{1 / 24}(q ; q)_{\infty}
$$

Then, η^{r} is lacunary if and only if

$$
r \in\{2,4,6,8,10,14,26\} .
$$

Lacunary powers of the eta-function

Question

Are the congruences in Chan-Wang exhaustive?

Theorem (Serre 1985)

Let r be a positive even integer. Let

$$
\eta:=q^{1 / 24}(q ; q)_{\infty} .
$$

Then, η^{r} is lacunary if and only if

$$
r \in\{2,4,6,8,10,14,26\} .
$$

Remark

The work of Chan and Wang relies on the identities that Serre proves to establish this theorem.

A theoretical framework of congruences

Question

Is there a general theory that produces congruences for $p_{\alpha}(n)$?

A theoretical framework of congruences

Question

Is there a general theory that produces congruences for $p_{\alpha}(n)$?

Definition

We say that a prime ℓ is good for $\alpha=a / b$ with parameter k if $\ell \nmid b$ and k is a positive integer such that

A theoretical framework of congruences

Question

Is there a general theory that produces congruences for $p_{\alpha}(n)$?

Definition

We say that a prime ℓ is good for $\alpha=a / b$ with parameter k if $\ell \nmid b$ and k is a positive integer such that

1. $\ell \mid(24 k-\alpha)$,

A theoretical framework of congruences

Question

Is there a general theory that produces congruences for $p_{\alpha}(n)$?

Definition

We say that a prime ℓ is good for $\alpha=a / b$ with parameter k if $\ell \nmid b$ and k is a positive integer such that

1. $\ell \mid(24 k-\alpha)$,
2. $(\ell-1) \mid(12 k-m)$ for some $m \in\{4,6,8,10,14\}$,

A theoretical framework of congruences

Question

Is there a general theory that produces congruences for $p_{\alpha}(n)$?

Definition

We say that a prime ℓ is good for $\alpha=a / b$ with parameter k if $\ell \nmid b$ and k is a positive integer such that

1. $\ell \mid(24 k-\alpha)$,
2. $(\ell-1) \mid(12 k-m)$ for some $m \in\{4,6,8,10,14\}$,
3. $\ell \nmid N_{12 k}\left(\mathcal{D}_{12 k}\right)$, where $\mathcal{D}_{12 k}$ is the Hecke determinant for $S_{12 k}$.

A theoretical framework of congruences

Question

Is there a general theory that produces congruences for $p_{\alpha}(n)$?

Definition

We say that a prime ℓ is good for $\alpha=a / b$ with parameter k if $\ell \nmid b$ and k is a positive integer such that

1. $\ell \mid(24 k-\alpha)$,
2. $(\ell-1) \mid(12 k-m)$ for some $m \in\{4,6,8,10,14\}$,
3. $\ell \nmid N_{12 k}\left(\mathcal{D}_{12 k}\right)$, where $\mathcal{D}_{12 k}$ is the Hecke determinant for $S_{12 k}$.

Theorem 2 (BCC)

If ℓ is good for α with parameter k and $v \leq \operatorname{ord}_{\ell}(24 k-\alpha)$ is a positive integer, then for all n, we have

$$
p_{\alpha}\left(\ell^{v} n-k\right) \equiv 0 \quad\left(\bmod \ell^{v}\right) .
$$

Finiteness for integral α

Question

Is there an Ahlgren-Boylan analog (finiteness) for given α ?

Finiteness for integral α

Question

Is there an Ahlgren-Boylan analog (finiteness) for given α ?
Theorem 3 (BCC)
Let α be an integer that is either even and <0 or odd and >3. If

$$
p_{\alpha}\left(\ell n-\delta_{\ell}\right) \equiv 0 \quad(\bmod \ell)
$$

for all n, then $\ell \leq|\alpha|+4$. In particular, p_{α} admits finitely many ℓ-balanced congruences.

Limiting residue classes of primes mod $2 b$

Definition

For $m \in \mathbb{Z}^{+}$and $\beta \in \mathbb{Q}$ with $\operatorname{gcd}(\operatorname{denom}(\beta), m)=1$, define $\Psi_{m}(\beta)$:

- $\Psi_{m}(\beta) \in\{0,1, \ldots, m-1\}$,
- $\Psi_{m}(\beta) \equiv \beta(\bmod m)$.

Limiting residue classes of primes mod $2 b$

Definition

For $m \in \mathbb{Z}^{+}$and $\beta \in \mathbb{Q}$ with $\operatorname{gcd}(\operatorname{denom}(\beta), m)=1$, define $\Psi_{m}(\beta)$:

- $\Psi_{m}(\beta) \in\{0,1, \ldots, m-1\}$,
- $\Psi_{m}(\beta) \equiv \beta(\bmod m)$.

Theorem 4 (BCC)
Let $\alpha=a / b \in \mathbb{Q}-2 \mathbb{Z}$. If $\ell \geq|a|+5 b$ is a prime for which p_{α} admits an ℓ-balanced congruence, then

$$
\Psi_{2 b}\left(\frac{a}{\ell}\right) \geq b .
$$

Modular forms and Hecke operators

Definition (Space of Modular Forms)

For $k \in 2 \mathbb{Z}$, we let

- $M_{k}:=$ space of weight k modular forms on $\mathrm{SL}_{2}(\mathbb{Z})$,
- $S_{k}:=$ space of weight k cusp forms on $\mathrm{SL}_{2}(\mathbb{Z})$.

Modular forms and Hecke operators

Definition (Space of Modular Forms)

For $k \in 2 \mathbb{Z}$, we let

- $M_{k}:=$ space of weight k modular forms on $\mathrm{SL}_{2}(\mathbb{Z})$,
- $S_{k}:=$ space of weight k cusp forms on $\mathrm{SL}_{2}(\mathbb{Z})$.

Definition (Hecke Operators)

Let $f(z)=\sum_{n=0}^{\infty} a_{n} q^{n} \in M_{k}$, where $q:=e^{2 \pi i z}$. The Hecke operator T_{ℓ} acts via

$$
\left(f \mid T_{\ell}\right)(z)=\sum_{n=0}^{\infty}\left(a(\ell n)+\ell^{k-1} a(n / \ell)\right) q^{n} .
$$

Definition of Hecke eigenform

Definition

Let $f(z)=q+\sum_{n=2}^{\infty} a(n) q^{n} \in S_{k}$. We call $f(z)$ a normalized Hecke eigenform if for all m there exists $\lambda(m) \in \mathbb{C}$ such that

$$
f(z) \mid T_{m}=\lambda(m) f(z) .
$$

Definition of Hecke eigenform

Definition

Let $f(z)=q+\sum_{n=2}^{\infty} a(n) q^{n} \in S_{k}$. We call $f(z)$ a normalized Hecke eigenform if for all m there exists $\lambda(m) \in \mathbb{C}$ such that

$$
f(z) \mid T_{m}=\lambda(m) f(z) .
$$

Remark

There is a canonical basis of normalized Hecke eigenforms for S_{k}.

ℓ-non-ordinary primes

Definition

Let $\left.f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \in M_{k} \cap \mathcal{O}_{L}[q]\right]$. We say that $f(z)$ is ℓ-non-ordinary if

$$
a(\ell) \equiv 0 \quad\left(\bmod \ell \mathcal{O}_{L}\right) .
$$

ℓ-non-ordinary primes

Definition

Let $\left.f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \in M_{k} \cap \mathcal{O}_{L}[q]\right]$. We say that $f(z)$ is ℓ-non-ordinary if

$$
a(\ell) \equiv 0 \quad\left(\bmod \ell \mathcal{O}_{L}\right) .
$$

Remark

If $f(z)$ is a normalized Hecke eigenform, then

$$
a(\ell n)=a(\ell) a(n)-\ell^{k-1} a(n / \ell) .
$$

ℓ-non-ordinary primes

Definition

Let $\left.f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \in M_{k} \cap \mathcal{O}_{L}[q]\right]$. We say that $f(z)$ is ℓ-non-ordinary if

$$
a(\ell) \equiv 0 \quad\left(\bmod \ell \mathcal{O}_{L}\right) .
$$

Remark

If $f(z)$ is a normalized Hecke eigenform, then

$$
a(\ell n)=a(\ell) a(n)-\ell^{k-1} a(n / \ell) .
$$

Thus, ℓ-non-ordinarity is equivalent to

$$
f(z) \mid T_{\ell} \equiv 0 \quad\left(\bmod \ell \mathcal{O}_{L}\right) .
$$

Extend powers of ℓ-non-ordinarity

Lemma (BCC)

Suppose $f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \in M_{k} \cap \mathcal{O}_{L}[[q]]$ is an ℓ-non-ordinary normalized Hecke eigenform. Then for all $r, n \geq 1$,

$$
a\left(\ell^{r} n\right) \equiv 0 \quad\left(\bmod \ell^{r} \mathcal{O}_{L}\right)
$$

Hecke eigenforms ℓ-non-ordinary

Definition (ℓ good for α)

We say that a prime ℓ is good for $\alpha=a / b$ with parameter k if $\ell \nmid b$ and k is a positive integer such that

1. $\ell \mid(24 k-\alpha)$,
2. $(\ell-1) \mid(12 k-m)$ for some $m \in\{4,6,8,10,14\}$, and
3. $\ell \nmid N_{12 k}\left(\mathcal{D}_{12 k}\right)$, where $\mathcal{D}_{12 k}$ is the Hecke determinant for $S_{12 k}$.

Hecke eigenforms ℓ-non-ordinary

Definition (ℓ good for α)

We say that a prime ℓ is good for $\alpha=a / b$ with parameter k if $\ell \nmid b$ and k is a positive integer such that

1. $\ell \mid(24 k-\alpha)$,
2. $(\ell-1) \mid(12 k-m)$ for some $m \in\{4,6,8,10,14\}$, and
3. $\ell \nmid N_{12 k}\left(\mathcal{D}_{12 k}\right)$, where $\mathcal{D}_{12 k}$ is the Hecke determinant for $S_{12 k}$.

Theorem (Jin, Ma, Ono 2016)

Let f be normalized Hecke eigenform of even weight $k \geq 12$. If $(\ell-1) \mid(k-m)$ for some $m \in\{4,6,8,10,14\}$, then f is ℓ-non-ordinary.

Definition of Hecke Determinant

Definition (Hecke Determinant)

$\mathcal{D}_{k}:=$ the weight k Hecke determinant for S_{k}

Definition of Hecke Determinant

Definition (Hecke Determinant)

$$
\mathcal{D}_{k}:=\text { the weight } k \text { Hecke determinant for } S_{k}
$$

Remark

Let f_{1}, \ldots, f_{d} be the basis of normalized Hecke eigenforms for S_{k}. For a cusp form $f(z) \in S_{k} \cap \mathcal{O}_{L}[[q]]$, we can write

$$
f(z)=\sum_{i=1}^{d} \beta_{i} f_{i}
$$

By Cramer's rule, $\beta_{i}=\gamma_{i} / \mathcal{D}_{k}$ where $\gamma_{i} \in \mathcal{O}_{L}$.

ℓ-non-ordinarity extends to S_{k}

Lemma (BCC)

Let $k \geq 12$ be even and let ℓ be a prime such that

- ($\ell-1) \mid(k-m)$ for some $m \in\{4,6,8,10,14\}$,
- $\ell \nmid N_{k}\left(\mathcal{D}_{k}\right)$.

Then for all $g(z)=\sum_{n=1}^{\infty} a_{g}(n) q^{n} \in S_{k} \cap \mathcal{O}_{L}[[q]]$, we have

$$
a_{g}\left(\ell^{r} n\right) \equiv 0 \quad\left(\bmod \ell^{r} \mathcal{O}_{L}\right)
$$

ℓ-non-ordinarity extends to S_{k}

Lemma (BCC)

Let $k \geq 12$ be even and let ℓ be a prime such that

- ($\ell-1) \mid(k-m)$ for some $m \in\{4,6,8,10,14\}$,
- $\ell \nmid N_{k}\left(\mathcal{D}_{k}\right)$.

Then for all $g(z)=\sum_{n=1}^{\infty} a_{g}(n) q^{n} \in S_{k} \cap \mathcal{O}_{L}[[q]]$, we have

$$
a_{g}\left(\ell^{r} n\right) \equiv 0 \quad\left(\bmod \ell^{r} \mathcal{O}_{L}\right)
$$

Remark

When $\ell \nmid N_{k}\left(\mathcal{D}_{k}\right)$ holds (condition 3 of ℓ being good for α), the ℓ-non-ordinarity of normalized eigenforms extends through linearity.

Proof of Theorem 2

Theorem 2 (BCC)

If ℓ is good for α with parameter k and $v \leq \operatorname{ord}_{\ell}(24 k-\alpha)$ is a positive integer, then for all n, we have

$$
p_{\alpha}\left(\ell^{v} n-k\right) \equiv 0 \quad\left(\bmod \ell^{v}\right)
$$

Proof of Theorem 2

Theorem 2 (BCC)

If ℓ is good for α with parameter k and $v \leq \operatorname{ord}_{\ell}(24 k-\alpha)$ is a positive integer, then for all n, we have

$$
p_{\alpha}\left(\ell^{v} n-k\right) \equiv 0 \quad\left(\bmod \ell^{v}\right)
$$

Ideas of Proof

- Technical lemma of Chan and Wang

Proof of Theorem 2

Theorem 2 (BCC)

If ℓ is good for α with parameter k and $v \leq \operatorname{ord}_{\ell}(24 k-\alpha)$ is a positive integer, then for all n, we have

$$
p_{\alpha}\left(\ell^{v} n-k\right) \equiv 0 \quad\left(\bmod \ell^{v}\right)
$$

Ideas of Proof

- Technical lemma of Chan and Wang
- Expression of ℓ^{r}-balanced congruences in terms of powers of Ramanujan's Delta-function $\Delta:=q(q ; q)_{\infty}^{24} \in S_{12}$

Proof of Theorem 2

Theorem 2 (BCC)

If ℓ is good for α with parameter k and $v \leq \operatorname{ord}_{\ell}(24 k-\alpha)$ is a positive integer, then for all n, we have

$$
p_{\alpha}\left(\ell^{v} n-k\right) \equiv 0 \quad\left(\bmod \ell^{v}\right)
$$

Ideas of Proof

- Technical lemma of Chan and Wang
- Expression of ℓ^{r}-balanced congruences in terms of powers of Ramanujan's Delta-function $\Delta:=q(q ; q)_{\infty}^{24} \in S_{12}$
- ℓ-non-ordinarity of $\Delta^{k} \in S_{12 k}$ implied by ℓ good for α with parameter k

Proof of Theorem 2

Lemma (Chan-Wang)
Let $\alpha=a / b$. Let ℓ be a prime not dividing b. Then for any $r \geq 1$,

$$
(q ; q)_{\infty}^{\ell^{r} \alpha} \equiv\left(q^{\ell} ; q^{\ell}\right)_{\infty}^{\ell^{r-1} \alpha} \quad\left(\bmod \ell^{r}\right) .
$$

Proof of Theorem 2

Lemma (Chan-Wang)

Let $\alpha=a / b$. Let ℓ be a prime not dividing b. Then for any $r \geq 1$,

$$
(q ; q)_{\infty}^{\ell^{r} \alpha} \equiv\left(q^{\ell} ; q^{\ell}\right)_{\infty}^{\ell^{r-1} \alpha} \quad\left(\bmod \ell^{r}\right)
$$

Rewrite in terms of Ramanujan Δ-function
Write $r:=\operatorname{ord}_{\ell}(24 k-\alpha)$ and $\Delta^{k}=: \sum_{n=0}^{\infty} \tau_{k}(n) q^{n}$. Then,

$$
\sum_{n=0}^{\infty} p_{\alpha}(n) q^{n+k}=q^{k}(q ; q)_{\infty}^{24 k+\ell^{r} u} \equiv \Delta^{k}\left(q^{\ell} ; q^{\ell}\right)_{\infty}^{\ell^{r-1} u} \quad\left(\bmod \ell^{r}\right)
$$

Proof of Theorem 2

Lemma (Chan-Wang)

Let $\alpha=a / b$. Let ℓ be a prime not dividing b. Then for any $r \geq 1$,

$$
(q ; q)_{\infty}^{\ell^{r} \alpha} \equiv\left(q^{\ell} ; q^{\ell}\right)_{\infty}^{\ell^{r-1} \alpha} \quad\left(\bmod \ell^{r}\right)
$$

Rewrite in terms of Ramanujan Δ-function
Write $r:=\operatorname{ord}_{\ell}(24 k-\alpha)$ and $\Delta^{k}=: \sum_{n=0}^{\infty} \tau_{k}(n) q^{n}$. Then,

$$
\sum_{n=0}^{\infty} p_{\alpha}(n) q^{n+k}=q^{k}(q ; q)_{\infty}^{24 k+\ell^{r} u} \equiv \Delta^{k}\left(q^{\ell} ; q^{\ell}\right)_{\infty}^{\ell^{r-1} u} \quad\left(\bmod \ell^{r}\right)
$$

Extract terms of form $q^{\ell n}$ and replace q^{ℓ} by q :

$$
\sum_{n=0}^{\infty} p_{\alpha}(\ell n-k) q^{n} \equiv(q ; q)_{\infty}^{\ell^{r-1} u} \sum_{n=0}^{\infty} \tau_{k}(\ell n) q^{n} \quad\left(\bmod \ell^{r}\right)
$$

Proof of Theorem 2 (cont.)

Induction

$$
\sum_{n=0}^{\infty} p_{\alpha}\left(\ell^{i} n-k\right) q^{n} \equiv(q ; q)_{\infty}^{\ell_{\infty}^{r-i} u} \sum_{n=0}^{\infty} \tau_{k}\left(\ell^{i} n\right) q^{n} \quad\left(\bmod \ell^{r}\right)
$$

Proof of Theorem 2 (cont.)

Induction

$$
\sum_{n=0}^{\infty} p_{\alpha}\left(\ell^{i} n-k\right) q^{n} \equiv(q ; q)_{\infty}^{\ell^{r-i} u} \sum_{n=0}^{\infty} \tau_{k}\left(\ell^{i} n\right) q^{n} \quad\left(\bmod \ell^{r}\right) .
$$

ℓ-non-ordinarity extends

Normalized eigenforms in $S_{12 k}$ are ℓ-non-ordinary, hence Δ^{k} as well

$$
\begin{aligned}
& \Longrightarrow \tau_{k}\left(\ell^{v} n\right) \equiv 0 \quad\left(\bmod \ell^{v}\right) \\
& \Longrightarrow \sum_{n=0}^{\infty} p_{\alpha}\left(\ell^{v} n-k\right) q^{n} \equiv 0 \quad\left(\bmod \ell^{v}\right) .
\end{aligned}
$$

Example of Theorem 2

Congruences for powers of primes

- $\ell=17$ is good for $\alpha=57 / 61$ with parameter $k=3$ because

$$
\begin{aligned}
& 17 \mid(24 \cdot 3-57 / 61), \\
& 16 \mid(12 \cdot 3-4), \\
& 17 \nmid N_{36}\left(\mathcal{D}_{36}\right) .
\end{aligned}
$$

Example of Theorem 2

Congruences for powers of primes

- $\ell=17$ is good for $\alpha=57 / 61$ with parameter $k=3$ because

$$
\begin{aligned}
& 17 \mid(24 \cdot 3-57 / 61), \\
& 16 \mid(12 \cdot 3-4), \\
& 17 \nmid N_{36}\left(\mathcal{D}_{36}\right) .
\end{aligned}
$$

- Check $\operatorname{ord}_{17}\left(24 \cdot 3-\frac{57}{61}\right)=2$, so our theorem gives that for all n,

$$
\begin{aligned}
p_{\frac{57}{61}}(17 n-3) & \equiv 0 \quad(\bmod 17), \\
p_{\frac{57}{61}}\left(17^{2} n-3\right) & \equiv 0 \quad\left(\bmod 17^{2}\right),
\end{aligned}
$$

Example of Theorem 2

Congruences for powers of primes

- $\ell=17$ is good for $\alpha=57 / 61$ with parameter $k=3$ because

$$
\begin{aligned}
& 17 \mid(24 \cdot 3-57 / 61), \\
& 16 \mid(12 \cdot 3-4), \\
& 17 \nmid N_{36}\left(\mathcal{D}_{36}\right) .
\end{aligned}
$$

- Check $\operatorname{ord}_{17}\left(24 \cdot 3-\frac{57}{61}\right)=2$, so our theorem gives that for all n,

$$
\begin{aligned}
& p_{\frac{57}{61}}(17 n-3) \equiv 0 \quad(\bmod 17), \\
& p_{\frac{57}{61}}\left(17^{2} n-3\right) \equiv 0 \quad\left(\bmod 17^{2}\right), \\
& p_{\frac{57}{61}}\left(17^{3} n-3\right) \not \equiv 0 \quad\left(\bmod 17^{3}\right) .
\end{aligned}
$$

Ramanujan's Θ-operator

Definition

We collect all modular forms modulo ℓ of weight k into the space

$$
M_{k, \ell}:=\left\{f(\bmod \ell): f \in M_{k} \cap \mathbb{Z}[[q]]\right\}
$$

Ramanujan's Θ-operator

Definition

We collect all modular forms modulo ℓ of weight k into the space

$$
M_{k, \ell}:=\left\{f(\bmod \ell): f \in M_{k} \cap \mathbb{Z}[[q]]\right\}
$$

Definition

Ramanujan's Theta-operator is defined on power series $f=\sum_{n} a_{n} q^{n}$ by

$$
\Theta(f):=\sum_{n} n a_{n} q^{n} .
$$

Ramanujan's Θ-operator

Definition

We collect all modular forms modulo ℓ of weight k into the space

$$
M_{k, \ell}:=\left\{f(\bmod \ell): f \in M_{k} \cap \mathbb{Z}[[q]]\right\}
$$

Definition

Ramanujan's Theta-operator is defined on power series $f=\sum_{n} a_{n} q^{n}$ by

$$
\Theta(f):=\sum_{n} n a_{n} q^{n} .
$$

Example (Repeated applications of the Θ-operator)
Let $f=\sum_{n} a_{n} q^{n} \in \mathbb{Z}[[q]]$. By Fermat's Little Theorem, we have

$$
\Theta^{\ell}(f)=\sum_{n} n^{\ell} a_{n} q^{n} \equiv \sum_{n} n a_{n} q^{n}=\Theta(f) \quad(\bmod \ell)
$$

Serre filtration

Definition

For $f \in M_{k} \cap \mathbb{Z}[[q]]$, define the filtration of f modulo ℓ by

$$
\omega_{\ell}(f):=\inf \left\{k \in \mathbb{Z}: f(\bmod \ell) \in M_{k, \ell}\right\}
$$

Serre filtration

Definition

For $f \in M_{k} \cap \mathbb{Z}[[q]]$, define the filtration of f modulo ℓ by

$$
\omega_{\ell}(f):=\inf \left\{k \in \mathbb{Z}: f(\bmod \ell) \in M_{k, \ell}\right\} .
$$

Example (Filtration of Eisenstein series)

The normalized Eisenstein series of weight $\ell-1$ has Fourier expansion

$$
E_{\ell-1}(z)=1-\frac{2(\ell-1)}{B_{\ell-1}} \sum_{n=1}^{\infty} \sigma_{\ell-2}(n) q^{n} \equiv 1 \quad(\bmod \ell)
$$

by the Von Staudt-Clausen theorem on divisibility of Bernoulli numbers. Therefore, $\omega_{\ell}\left(E_{\ell-1}\right)=0$.

Filtration and the Θ-operator

Filtration Lemma

If $\ell \geq 5$ and $f \in M_{k} \cap \mathbb{Z}[[q]]$, then $\Theta(f)(\bmod \ell)$ is the reduction of a modular form modulo ℓ. Moreover,

$$
\omega_{\ell}(\Theta f)=\omega_{\ell}(f)+(\ell+1)-s(\ell-1)
$$

for some integer $s \geq 0$, with equality if and only if $\ell \nmid \omega_{\ell}(f)$.

Filtration and the Θ-operator

Filtration Lemma

If $\ell \geq 5$ and $f \in M_{k} \cap \mathbb{Z}[[q]]$, then $\Theta(f)(\bmod \ell)$ is the reduction of a modular form modulo ℓ. Moreover,

$$
\omega_{\ell}(\Theta f)=\omega_{\ell}(f)+(\ell+1)-s(\ell-1)
$$

for some integer $s \geq 0$, with equality if and only if $\ell \nmid \omega_{\ell}(f)$.

Example

Let $\ell=5$ and repeatedly apply the Θ-operator to the Delta-function.

Form	Δ	$\Theta(\Delta)$	$\Theta^{2}(\Delta)$	$\Theta^{3}(\Delta)$	$\Theta^{4}(\Delta)$	$\Theta^{5}(\Delta)$
ω_{ℓ}	12	18	24	30	12	18

Which arithmetic progressions have congruences?

Theorem 1 (BCC)
Let $\alpha=a / b$. Let $\ell \geq 5$ not divide b such that $\alpha \not \equiv 1,3(\bmod \ell)$. If

$$
p_{\alpha}(\ell n+c) \equiv 0 \quad(\bmod \ell)
$$

for all n, then $24 c \equiv-\alpha(\bmod \ell)$.

Which arithmetic progressions have congruences?

Theorem 1 (BCC)
Let $\alpha=a / b$. Let $\ell \geq 5$ not divide b such that $\alpha \not \equiv 1,3(\bmod \ell)$. If

$$
p_{\alpha}(\ell n+c) \equiv 0 \quad(\bmod \ell)
$$

for all n, then $24 c \equiv-\alpha(\bmod \ell)$.

"Key Ingredient" (Kiming-Olsson, 1992)

Let $\ell \geq 5$ and let $k \geq 1$ such that $24 k \not \equiv 1,3(\bmod \ell)$. If

$$
\Theta^{\ell-1}\left(q^{-s} \Delta^{k}\right) \equiv q^{-s} \Delta^{k} \quad(\bmod \ell)
$$

for some integer s, then $s \equiv 0(\bmod \ell)$.

Proof of Theorem 1

Rewrite in terms of Ramanujan Δ-function.
Write $\alpha=24 k+\ell u$ for some $k \geq 1$ and $u \in \mathbb{Z}_{(\ell)}$. Then

$$
\sum_{n=0}^{\infty} p_{\alpha}(n) q^{n+k}=q^{k}(q ; q)_{\infty}^{24 k+\ell u} \equiv \Delta^{k}\left(q^{\ell} ; q^{\ell}\right)_{\infty}^{u} \quad(\bmod \ell)
$$

Proof of Theorem 1

Rewrite in terms of Ramanujan Δ-function.
Write $\alpha=24 k+\ell u$ for some $k \geq 1$ and $u \in \mathbb{Z}_{(\ell)}$. Then

$$
\sum_{n=0}^{\infty} p_{\alpha}(n) q^{n+k}=q^{k}(q ; q)_{\infty}^{24 k+\ell u} \equiv \Delta^{k}\left(q^{\ell} ; q^{\ell}\right)_{\infty}^{u} \quad(\bmod \ell) .
$$

Introduce Θ-operator.
Write $\Delta^{k}=: \sum_{n=0}^{\infty} \tau_{k}(n) q^{n}$ and extract terms of the form $q^{l n+c+k}$:

$$
\tau_{k}(\ell n+c+k) \equiv 0 \quad(\bmod \ell)
$$

for all n.

Proof of Theorem 1

Rewrite in terms of Ramanujan Δ-function.
Write $\alpha=24 k+\ell u$ for some $k \geq 1$ and $u \in \mathbb{Z}_{(\ell)}$. Then

$$
\sum_{n=0}^{\infty} p_{\alpha}(n) q^{n+k}=q^{k}(q ; q)_{\infty}^{24 k+\ell u} \equiv \Delta^{k}\left(q^{\ell} ; q^{\ell}\right)_{\infty}^{u} \quad(\bmod \ell) .
$$

Introduce Θ-operator.

Write $\Delta^{k}=: \sum_{n=0}^{\infty} \tau_{k}(n) q^{n}$ and extract terms of the form $q^{\ell n+c+k}$:

$$
\tau_{k}(\ell n+c+k) \equiv 0 \quad(\bmod \ell)
$$

for all n. By Fermat's little theorem, we find

$$
\Theta^{\ell-1}\left(q^{-(c+k)} \Delta^{k}\right) \equiv q^{-(c+k)} \Delta^{k} \quad(\bmod \ell)
$$

Proof of Theorem 1

Rewrite in terms of Ramanujan Δ-function.
Write $\alpha=24 k+\ell u$ for some $k \geq 1$ and $u \in \mathbb{Z}_{(\ell)}$. Then

$$
\sum_{n=0}^{\infty} p_{\alpha}(n) q^{n+k}=q^{k}(q ; q)_{\infty}^{24 k+\ell u} \equiv \Delta^{k}\left(q^{\ell} ; q^{\ell}\right)_{\infty}^{u} \quad(\bmod \ell) .
$$

Introduce Θ-operator.

Write $\Delta^{k}=: \sum_{n=0}^{\infty} \tau_{k}(n) q^{n}$ and extract terms of the form $q^{\ell n+c+k}$:

$$
\tau_{k}(\ell n+c+k) \equiv 0 \quad(\bmod \ell)
$$

for all n. By Fermat's little theorem, we find

$$
\Theta^{\ell-1}\left(q^{-(c+k)} \Delta^{k}\right) \equiv q^{-(c+k)} \Delta^{k} \quad(\bmod \ell)
$$

"key ingredient" $\Longrightarrow 0 \equiv c+k \equiv \frac{1}{24}(24 c+\alpha) \quad(\bmod \ell)$.

Which primes ℓ give a congruence?

Theorem 3 (BCC)

Let α be an even integer <0 or an odd integer >3. If

$$
p_{\alpha}\left(\ell n-\delta_{\ell}\right) \equiv 0 \quad(\bmod \ell)
$$

for all n, then $\ell \leq|\alpha|+4$. In particular, p_{α} admits finitely many ℓ-balanced congruences.

Which primes ℓ give a congruence?

Theorem 3 (BCC)

Let α be an even integer <0 or an odd integer >3. If

$$
p_{\alpha}\left(\ell n-\delta_{\ell}\right) \equiv 0 \quad(\bmod \ell)
$$

for all n, then $\ell \leq|\alpha|+4$. In particular, p_{α} admits finitely many ℓ-balanced congruences.

"Preparation"

If $\ell \geq 5$ and δ_{ℓ} is a positive integer, then for any $m \geq 0$ we have

$$
\omega_{\ell}\left(\Theta^{m} \Delta^{\delta_{\ell}}\right) \geq \omega_{\ell}\left(\Delta^{\delta_{\ell}}\right)=12 \delta_{\ell} .
$$

Proof of Theorem 3

Rewrite in terms of Θ-operator.
Suppose for contradiction that for some $\ell>|\alpha|+4$, we have

$$
p_{\alpha}\left(\ell n-\delta_{\ell}\right) \equiv 0 \quad(\bmod \ell)
$$

for all n.

Proof of Theorem 3

Rewrite in terms of Θ-operator.
Suppose for contradiction that for some $\ell>|\alpha|+4$, we have

$$
p_{\alpha}\left(\ell n-\delta_{\ell}\right) \equiv 0 \quad(\bmod \ell)
$$

for all n. By Theorem 1, write $24 \delta_{\ell}=\alpha+\ell u$ for some $u \in \mathbb{Z}_{(\ell)}$.

Proof of Theorem 3

Rewrite in terms of Θ-operator.
Suppose for contradiction that for some $\ell>|\alpha|+4$, we have

$$
p_{\alpha}\left(\ell n-\delta_{\ell}\right) \equiv 0 \quad(\bmod \ell)
$$

for all n. By Theorem 1, write $24 \delta_{\ell}=\alpha+\ell u$ for some $u \in \mathbb{Z}_{(\ell)}$. Then

$$
\Delta^{\delta_{\ell}}=q^{\delta_{\ell}}(q ; q)_{\infty}^{\alpha+\ell u} \equiv\left(q^{\ell} ; q^{\ell}\right)_{\infty}^{u} \sum_{n=0}^{\infty} p_{\alpha}\left(n-\delta_{\ell}\right) q^{n} \quad(\bmod \ell)
$$

Proof of Theorem 3

Rewrite in terms of Θ-operator.
Suppose for contradiction that for some $\ell>|\alpha|+4$, we have

$$
p_{\alpha}\left(\ell n-\delta_{\ell}\right) \equiv 0 \quad(\bmod \ell)
$$

for all n. By Theorem 1 , write $24 \delta_{\ell}=\alpha+\ell u$ for some $u \in \mathbb{Z}_{(\ell)}$. Then

$$
\Delta^{\delta_{\ell}}=q^{\delta_{\ell}}(q ; q)_{\infty}^{\alpha+\ell u} \equiv\left(q^{\ell} ; q^{\ell}\right)_{\infty}^{u} \sum_{n=0}^{\infty} p_{\alpha}\left(n-\delta_{\ell}\right) q^{n} \quad(\bmod \ell)
$$

By Fermat's little theorem, we conclude that

$$
\Theta^{\ell-1}\left(\Delta^{\delta_{\ell}}\right) \equiv \Delta^{\delta_{\ell}} \quad(\bmod \ell)
$$

Proof of Theorem 3 (cont.)

Study the sequence of filtrations $\omega_{\ell}\left(\Theta^{i}\left(\Delta^{\delta_{\ell}}\right)\right)$

If $0 \leq c<\ell$ satisfies $c \equiv-12 \delta_{\ell}(\bmod \ell)$, then

$$
\omega_{\ell}\left(\Theta^{c}\left(\Delta^{\delta_{\ell}}\right)\right) \equiv 0 \quad(\bmod \ell)
$$

Proof of Theorem 3 (cont.)

Study the sequence of filtrations $\omega_{\ell}\left(\Theta^{i}\left(\Delta^{\delta_{\ell}}\right)\right)$

If $0 \leq c<\ell$ satisfies $c \equiv-12 \delta_{\ell}(\bmod \ell)$, then

$$
\begin{aligned}
\omega_{\ell}\left(\Theta^{c}\left(\Delta^{\delta_{\ell}}\right)\right) & \equiv 0 \quad(\bmod \ell), \\
\omega_{\ell}\left(\Theta^{c+1}\left(\Delta^{\delta_{\ell}}\right)\right) & =\underbrace{12 \delta_{\ell}}_{\omega_{\ell}\left(\Delta^{\delta_{\ell}}\right)}+(2 c-\ell+3) .
\end{aligned}
$$

Proof of Theorem 3 (cont.)

Study the sequence of filtrations $\omega_{\ell}\left(\Theta^{i}\left(\Delta^{\delta_{\ell}}\right)\right)$

If $0 \leq c<\ell$ satisfies $c \equiv-12 \delta_{\ell}(\bmod \ell)$, then

$$
\begin{aligned}
\omega_{\ell}\left(\Theta^{c}\left(\Delta^{\delta_{\ell}}\right)\right) & \equiv 0 \quad(\bmod \ell), \\
\omega_{\ell}\left(\Theta^{c+1}\left(\Delta^{\delta_{\ell}}\right)\right) & =\underbrace{12 \delta_{\ell}}_{\omega_{\ell}\left(\Delta^{\delta_{\ell}}\right)}+(2 c-\ell+3) .
\end{aligned}
$$

Applying the "preparation"

Because α is an even integer <0 or an odd integer >3, we know that

$$
2 c-\ell+3<0 .
$$

Proof of Theorem 3 (cont.)

Study the sequence of filtrations $\omega_{\ell}\left(\Theta^{i}\left(\Delta^{\delta_{\ell}}\right)\right)$

If $0 \leq c<\ell$ satisfies $c \equiv-12 \delta_{\ell}(\bmod \ell)$, then

$$
\begin{aligned}
\omega_{\ell}\left(\Theta^{c}\left(\Delta^{\delta_{\ell}}\right)\right) & \equiv 0 \quad(\bmod \ell), \\
\omega_{\ell}\left(\Theta^{c+1}\left(\Delta^{\delta_{\ell}}\right)\right) & =\underbrace{12 \delta_{\ell}}_{\omega_{\ell}\left(\Delta^{\delta_{\ell}}\right)}+(2 c-\ell+3) .
\end{aligned}
$$

Applying the "preparation"

Because α is an even integer <0 or an odd integer >3, we know that

$$
2 c-\ell+3<0 .
$$

Therefore $\omega_{\ell}\left(\Theta^{c+1}\left(\Delta^{\delta_{\ell}}\right)\right)<\omega_{\ell}\left(\Delta^{\delta_{\ell}}\right)$, contradicting the "preparation".

Extension of Theorem 3 to rational α ?

Extension of Theorem 3 to rational α ?

Theorem 4 (BCC)

Suppose α is not an even integer ≥ 0. If p_{α} admits an ℓ-balanced congruence for $\ell \geq|a|+5 b$, then

$$
\Psi_{2 b}\left(\frac{a}{\ell}\right) \geq b
$$

Illustration of Theorem 4

Example with $a=-1, b=3$.
Let $\ell \geq 17$. Choose $0 \leq c<\ell$ such that $c \equiv-\alpha / 2(\bmod \ell)$.

Illustration of Theorem 4

Example with $a=-1, b=3$.
Let $\ell \geq 17$. Choose $0 \leq c<\ell$ such that $c \equiv-\alpha / 2(\bmod \ell)$.

$$
\ell=6 k+1: \quad c=5 k+1 \Longrightarrow 2 c-\ell+3>0
$$

Illustration of Theorem 4

Example with $a=-1, b=3$.
Let $\ell \geq 17$. Choose $0 \leq c<\ell$ such that $c \equiv-\alpha / 2(\bmod \ell)$.

$$
\begin{array}{ll}
\ell=6 k+1: & c=5 k+1 \Longrightarrow 2 c-\ell+3>0 \\
\ell=6 k+5: & c=k+1 \Longrightarrow 2 c-\ell+3<0
\end{array}
$$

Illustration of Theorem 4

Example with $a=-1, b=3$.

Let $\ell \geq 17$. Choose $0 \leq c<\ell$ such that $c \equiv-\alpha / 2(\bmod \ell)$.

$$
\begin{array}{ll}
\ell=6 k+1: & c=5 k+1 \Longrightarrow 2 c-\ell+3>0 \\
\ell=6 k+5: & c=k+1 \Longrightarrow 2 c-\ell+3<0
\end{array}
$$

By the proof of Theorem 3, p_{α} does not admit an ℓ-balanced congruence for $\ell=6 k+5$.

Illustration of Theorem 4

Example with $a=-1, b=3$.

Let $\ell \geq 17$. Choose $0 \leq c<\ell$ such that $c \equiv-\alpha / 2(\bmod \ell)$.

$$
\begin{array}{ll}
\ell=6 k+1: & c=5 k+1 \Longrightarrow 2 c-\ell+3>0 \\
\ell=6 k+5: & c=k+1 \Longrightarrow 2 c-\ell+3<0
\end{array}
$$

By the proof of Theorem 3, p_{α} does not admit an ℓ-balanced congruence for $\ell=6 k+5$.

$$
\ell=6 k+1: \quad \Psi_{2 b}(a / \ell)=\Psi_{6}(-1 / 1)=5 \geq b
$$

Illustration of Theorem 4

Example with $a=-1, b=3$.

Let $\ell \geq 17$. Choose $0 \leq c<\ell$ such that $c \equiv-\alpha / 2(\bmod \ell)$.

$$
\begin{array}{ll}
\ell=6 k+1: & c=5 k+1 \Longrightarrow 2 c-\ell+3>0 \\
\ell=6 k+5: & c=k+1 \Longrightarrow 2 c-\ell+3<0
\end{array}
$$

By the proof of Theorem 3, p_{α} does not admit an ℓ-balanced congruence for $\ell=6 k+5$.

$$
\begin{array}{ll}
\ell=6 k+1: & \Psi_{2 b}(a / \ell)=\Psi_{6}(-1 / 1)=5 \geq b \\
\ell=6 k+5: & \Psi_{2 b}(a / \ell)=\Psi_{6}(-1 / 5)=1<b
\end{array}
$$

Which arithmetic progressions can have congruences?

Question

Given ℓ, are there restrictions that govern ℓ-balanced congruences?

Which arithmetic progressions can have congruences?

Question

Given ℓ, are there restrictions that govern ℓ-balanced congruences?

Theorem 1 (BCC)

Let $\ell \geq 5$ not divide b such that $\alpha \not \equiv 1,3(\bmod \ell)$. If

$$
p_{\alpha}(\ell n+c) \equiv 0 \quad(\bmod \ell)
$$

for all n, then $24 c \equiv-\alpha(\bmod \ell)$.

A general framework

Question

How can we use modular forms to study ℓ^{r}-balanced congruences?

A general framework

Question

How can we use modular forms to study ℓ^{r}-balanced congruences?

Theorem 2 (BCC)

If ℓ is good for α with parameter k and $v \leq \operatorname{ord}_{\ell}(24 k-\alpha)$ is a positive integer, then for all n, we have

$$
p_{\alpha}\left(\ell^{v} n-k\right) \equiv 0 \quad\left(\bmod \ell^{v}\right)
$$

How rare are ℓ-balanced congruences?

Question

Can we classify ℓ for which p_{α} admits ℓ-balanced congruences?

How rare are ℓ-balanced congruences?

Question

Can we classify ℓ for which p_{α} admits ℓ-balanced congruences?

Theorem 3 (BCC)

Let α be an even integer <0 or an odd integer >3. If

$$
p_{\alpha}\left(\ell n-\delta_{\ell}\right) \equiv 0 \quad(\bmod \ell)
$$

for all n, then $\ell \leq|\alpha|+4$. In particular, p_{α} admits finitely many ℓ-balanced congruences.

Can we extend to rational α ?

Question

Given rational α, can we find restrictions on the ℓ for which p_{α} admits an ℓ-balanced congruence?

Can we extend to rational α ?

Question

Given rational α, can we find restrictions on the ℓ for which p_{α} admits an ℓ-balanced congruence?

Theorem 4 (BCC)

Suppose α is not an even integer ≥ 0. If p_{α} admits an ℓ-balanced congruence for $\ell \geq|a|+5 b$, then

$$
\Psi_{2 b}\left(\frac{a}{\ell}\right) \geq b .
$$

Can we extend to rational α ?

Question

Given rational α, can we find restrictions on the ℓ for which p_{α} admits an ℓ-balanced congruence?

Theorem 4 (BCC)

Suppose α is not an even integer ≥ 0. If p_{α} admits an ℓ-balanced congruence for $\ell \geq|a|+5 b$, then

$$
\Psi_{2 b}\left(\frac{a}{\ell}\right) \geq b .
$$

Remark

Half of primes cannot be the modulus of a balanced congruence for p_{α}.

