Ramanujan Congruences for Fractional Partition Functions

Erin Bevilacqua, Kapil Chandran, and Yunseo Choi

December 2, 2019

Fractional partition congruences

Overview

1 Classical results

2 Our results

3 Non-ordinary primes and Hecke eigenforms

4 Modular forms modulo ℓ

Definition of p(n)

Definition

A *partition* of a nonnegative integer n is a non-increasing sequence of positive integers that sum to n.

Definition of p(n)

Definition

A *partition* of a nonnegative integer n is a non-increasing sequence of positive integers that sum to n.

p(n) := # partitions of n.

Definition of p(n)

Definition

A *partition* of a nonnegative integer n is a non-increasing sequence of positive integers that sum to n.

p(n) := # partitions of n.

Example $(p(4) = 5)$		
	4 = 1 + 1 + 1 + 1	
	= 2 + 1 + 1	
	= 2 + 2	
	= 3 + 1	
	= 4.	

Generating function for p(n)

Lemma (Euler)

The generating function for p(n) is

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} \frac{1}{1-q^n}.$$

Generating function for p(n)

Lemma (Euler)

The generating function for p(n) is

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} \frac{1}{1-q^n}.$$

We define

$$(q;q)_{\infty} := \prod_{n=1}^{\infty} (1-q^n).$$

Ramanujan's congruences

Theorem (Ramanujan (1915))

For every nonnegative integer n, we have

 $p(5n+4) \equiv 0 \pmod{5},$ $p(7n+5) \equiv 0 \pmod{7},$ $p(11n+6) \equiv 0 \pmod{11}.$

Ramanujan's congruences

Theorem (Ramanujan (1915))

For every nonnegative integer n, we have

 $p(5n+4) \equiv 0 \pmod{5},$ $p(7n+5) \equiv 0 \pmod{7},$ $p(11n+6) \equiv 0 \pmod{11}.$

Theorem (Watson (1938), Atkin (1967))

For prime $\ell \geq 5$ and positive integer r, define $0 \leq c_{\ell,r} < \ell^r$ such that $24c_{\ell,r} \equiv 1 \pmod{\ell^r}$. Then for every nonnegative integer n, we have $p(5^r n + c_{5,r}) \equiv 0 \pmod{5^r}$, $p(7^r n + c_{7,r}) \equiv 0 \pmod{7^{\lfloor r/2 \rfloor + 1}}$, $p(11^r n + c_{11,r}) \equiv 0 \pmod{11^r}$.

Theorem (Ahlgren, Ono (2000))

For every modulus L coprime to 6, there exist integers $A \neq 0$ and B such that for all n, we have

 $p(An+B) \equiv 0 \pmod{L}.$

Theorem (Ahlgren, Ono (2000))

For every modulus L coprime to 6, there exist integers $A \neq 0$ and B such that for all n, we have

$$p(An+B) \equiv 0 \pmod{L}.$$

Example

For all n, we have

 $p(4063467631n + 30064597) \equiv 0 \pmod{31}.$

Definition

A congruence is $\ell^r\text{-}balanced$ if it is the form

$$p(\ell^r n + c) \equiv 0 \pmod{\ell^r}$$

for all n, where c, r are integers and $r \ge 1$.

Definition

A congruence is ℓ^r -balanced if it is the form

$$p(\ell^r n + c) \equiv 0 \pmod{\ell^r}$$

for all n, where c, r are integers and $r \ge 1$.

Remark

The Ramanujan congruences and their generalizations to higher powers for $\ell = 5, 11$ are ℓ^r -balanced.

Questions inspired by the Ramanujan congruences

Classical results

Questions inspired by the Ramanujan congruences

1. Why do we have $24c \equiv 1 \pmod{\ell}$ for all congruences?

Questions inspired by the Ramanujan congruences

- 1. Why do we have $24c \equiv 1 \pmod{\ell}$ for all congruences?
- 2. How many ℓ -balanced congruences are there for p(n)?

- 1. Why do we have $24c \equiv 1 \pmod{\ell}$ for all congruences?
- 2. How many ℓ -balanced congruences are there for p(n)?
- 3. Is this a glimpse of a general theory of congruences?

Necessary condition for $\ell\text{-balanced}$ congruences

Question

Why do we have $24c \equiv 1 \pmod{\ell}$ for all congruences?

Fractional partition congruences

Classical results

Necessary condition for $\ell\mbox{-balanced}$ congruences

Question

Why do we have $24c \equiv 1 \pmod{\ell}$ for all congruences?

Theorem (Kiming-Olsson (1992))

Let $\ell > 5$ be a prime. If

$$p(\ell n + c) \equiv 0 \pmod{\ell}$$

for all n, then $24c \equiv 1 \pmod{\ell}$.

Question

How many ℓ -balanced congruences are there for p(n)?

Question

How many ℓ -balanced congruences are there for p(n)?

Theorem (Ahlgren-Boylan (2001))

Let ℓ be prime. Then

$$p(\ell n + c) \equiv 0 \pmod{\ell}$$

for all n if and only if $(\ell, c) \in \{(5, 4), (7, 5), (11, 6)\}.$

Definition (Chan-Wang (2018))

The fractional partition functions $p_{\alpha}(n)$ are defined for rational $\alpha = a/b$ by

$$\sum_{n=0}^{\infty} p_{\alpha}(n)q^n := (q;q)_{\infty}^{\alpha}.$$

Definition (Chan-Wang (2018))

The fractional partition functions $p_{\alpha}(n)$ are defined for rational $\alpha = a/b$ by

$$\sum_{n=0}^{\infty} p_{\alpha}(n)q^n := (q;q)_{\infty}^{\alpha}.$$

Remark

• $\alpha = -1$ corresponds to usual partition function.

Definition (Chan-Wang (2018))

The fractional partition functions $p_{\alpha}(n)$ are defined for rational $\alpha = a/b$ by

$$\sum_{n=0}^{\infty} p_{\alpha}(n)q^n := (q;q)_{\infty}^{\alpha}.$$

Remark

- $\alpha = -1$ corresponds to usual partition function.
- $\alpha = -k \in \mathbb{Z}^-$ corresponds to k-colored partition function.

Theorem (Chan-Wang 2018)

The denominator of $p_{\alpha}(n)$ when written in lowest terms is given by

denom
$$(p_{\alpha}(n)) = b^n \prod_{p|b} p^{\operatorname{ord}_p(n!)}.$$

Congruences for fractional partition functions

Theorem (Chan-Wang (2018))

For all n, we have

$$p_{\alpha}(\ell n + c) \equiv 0 \pmod{\ell},$$

if $24c \equiv -\alpha \pmod{\ell}$ and any of the following conditions hold:

Congruences for fractional partition functions

Theorem (Chan-Wang (2018))

For all n, we have

$$p_{\alpha}(\ell n + c) \equiv 0 \pmod{\ell},$$

if $24c \equiv -\alpha \pmod{\ell}$ and any of the following conditions hold:

1. $\alpha \equiv 4, 8, 14 \pmod{\ell}$ and $\ell \equiv 5 \pmod{6}$;

- 2. $\alpha \equiv 6, 10 \pmod{\ell}$ and $\ell \equiv 3 \pmod{4}$ and $\ell \geq 5$;
- 3. $\alpha \equiv 26 \pmod{\ell}$ and $\ell \equiv 11 \pmod{12}$.

Congruences for fractional partition functions

Theorem (Chan-Wang (2018))

For all n, we have

$$p_{\alpha}(\ell n + c) \equiv 0 \pmod{\ell},$$

if $24c \equiv -\alpha \pmod{\ell}$ and any of the following conditions hold:

1.
$$\alpha \equiv 4, 8, 14 \pmod{\ell}$$
 and $\ell \equiv 5 \pmod{6}$;

- 2. $\alpha \equiv 6, 10 \pmod{\ell}$ and $\ell \equiv 3 \pmod{4}$ and $\ell \geq 5$;
- 3. $\alpha \equiv 26 \pmod{\ell}$ and $\ell \equiv 11 \pmod{12}$.

Remark

Shortly, we will emphasize the special role of the list of α .

Examples from Chan-Wang

Example

$$\ \, {\mathfrak g}_{-\frac{3}{4}}(43n+39)\equiv 0 \ ({\rm mod} \ 43)$$

Examples from Chan-Wang

Example

•
$$p_{-\frac{3}{4}}(43n+39) \equiv 0 \pmod{43}$$

• $p_{\frac{1}{3}}(41n+37) \equiv 0 \pmod{41}$

Example

•
$$p_{-\frac{3}{4}}(43n+39) \equiv 0 \pmod{43}$$

• $p_{\frac{1}{2}}(41n+37) \equiv 0 \pmod{41}$

Remark

These congruences are ℓ -balanced.

Fractional partition congruences

Classical results

1. Is there a Kiming-Olsson analog (necessary condition) for α ?

- 1. Is there a Kiming-Olsson analog (necessary condition) for α ?
- 2. Are the congruences in Chan-Wang exhaustive?

- 1. Is there a Kiming-Olsson analog (necessary condition) for α ?
- 2. Are the congruences in Chan-Wang exhaustive?
- **3**. Is there a general theory that produces congruences for $p_{\alpha}(n)$?

- 1. Is there a Kiming-Olsson analog (necessary condition) for α ?
- 2. Are the congruences in Chan-Wang exhaustive?
- 3. Is there a general theory that produces congruences for $p_{\alpha}(n)$?
- 4. Is there an Ahlgren-Boylan analog (finiteness) for given α ?

Question

Is there a Kiming-Olsson analog (necessary condition) for α ?
Question

Is there a Kiming-Olsson analog (necessary condition) for α ?

Theorem 1 (BCC)

Let $\alpha = a/b$, and let $\ell \geq 5$ be a prime not dividing b such that $\alpha \not\equiv 1, 3 \pmod{\ell}$. If

$$p_{\alpha}(\ell n + c) \equiv 0 \pmod{\ell}$$

for all n, then $24c \equiv -\alpha \pmod{\ell}$.

Lacunary powers of the eta-function

Question

Are the congruences in Chan-Wang exhaustive?

Lacunary powers of the eta-function

Question

Are the congruences in Chan-Wang exhaustive?

Theorem (Serre 1985)

Let r be a positive even integer. Let

$$\eta := q^{1/24}(q;q)_{\infty}.$$

Then, η^r is lacunary if and only if

 $r\in\{2,4,6,8,10,14,26\}.$

Lacunary powers of the eta-function

Question

Are the congruences in Chan-Wang exhaustive?

Theorem (Serre 1985)

Let r be a positive even integer. Let

$$\eta := q^{1/24}(q;q)_{\infty}.$$

Then, η^r is lacunary if and only if

$$r\in\{2,4,6,8,10,14,26\}.$$

Remark

The work of Chan and Wang relies on the identities that Serre proves to establish this theorem.

Fractional partition congruences

Our results

Question

Is there a general theory that produces congruences for $p_{\alpha}(n)$?

Question

Is there a general theory that produces congruences for $p_{\alpha}(n)$?

Definition

We say that a prime ℓ is good for $\alpha = a/b$ with parameter k if $\ell \nmid b$ and k is a positive integer such that

Question

Is there a general theory that produces congruences for $p_{\alpha}(n)$?

Definition

We say that a prime ℓ is good for $\alpha = a/b$ with parameter k if $\ell \nmid b$ and k is a positive integer such that

1.
$$\ell \mid (24k - \alpha),$$

Question

Is there a general theory that produces congruences for $p_{\alpha}(n)$?

Definition

We say that a prime ℓ is good for $\alpha = a/b$ with parameter k if $\ell \nmid b$ and k is a positive integer such that

1.
$$\ell \mid (24k - \alpha),$$

2.
$$(\ell - 1) \mid (12k - m)$$
 for some $m \in \{4, 6, 8, 10, 14\},\$

Question

Is there a general theory that produces congruences for $p_{\alpha}(n)$?

Definition

We say that a prime ℓ is good for $\alpha = a/b$ with parameter k if $\ell \nmid b$ and k is a positive integer such that

1.
$$\ell \mid (24k - \alpha),$$

2.
$$(\ell - 1) \mid (12k - m)$$
 for some $m \in \{4, 6, 8, 10, 14\},\$

3. $\ell \nmid N_{12k}(\mathcal{D}_{12k})$, where \mathcal{D}_{12k} is the Hecke determinant for S_{12k} .

Question

Is there a general theory that produces congruences for $p_{\alpha}(n)$?

Definition

We say that a prime ℓ is good for $\alpha = a/b$ with parameter k if $\ell \nmid b$ and k is a positive integer such that

1.
$$\ell \mid (24k - \alpha)$$
,

2.
$$(\ell - 1) \mid (12k - m)$$
 for some $m \in \{4, 6, 8, 10, 14\},\$

3. $\ell \nmid N_{12k}(\mathcal{D}_{12k})$, where \mathcal{D}_{12k} is the Hecke determinant for S_{12k} .

Theorem 2 (BCC)

If ℓ is good for α with parameter k and $v \leq \operatorname{ord}_{\ell}(24k - \alpha)$ is a positive integer, then for all n, we have

$$p_{\alpha}(\ell^v n - k) \equiv 0 \pmod{\ell^v}.$$

Our results

Question

Is there an Ahlgren-Boylan analog (finiteness) for given α ?

Question

Is there an Ahlgren-Boylan analog (finiteness) for given α ?

Theorem 3 (BCC)

Let α be an integer that is either even and < 0 or odd and > 3. If

$$p_{\alpha}(\ell n - \delta_{\ell}) \equiv 0 \pmod{\ell}$$

for all n, then $\ell \leq |\alpha| + 4$. In particular, p_{α} admits finitely many ℓ -balanced congruences.

Limiting residue classes of primes mod 2b

Definition

For $m \in \mathbb{Z}^+$ and $\beta \in \mathbb{Q}$ with $gcd(denom(\beta), m) = 1$, define $\Psi_m(\beta)$:

- $\Psi_m(\beta) \in \{0, 1, \dots, m-1\},\$
- $\Psi_m(\beta) \equiv \beta \pmod{m}$.

Limiting residue classes of primes mod 2b

Definition

For $m \in \mathbb{Z}^+$ and $\beta \in \mathbb{Q}$ with $gcd(denom(\beta), m) = 1$, define $\Psi_m(\beta)$:

- $\Psi_m(\beta) \in \{0, 1, \dots, m-1\},\$
- $\Psi_m(\beta) \equiv \beta \pmod{m}$.

Theorem 4 (BCC)

Let $\alpha = a/b \in \mathbb{Q} - 2\mathbb{Z}$. If $\ell \ge |a| + 5b$ is a prime for which p_{α} admits an ℓ -balanced congruence, then

$$\Psi_{2b}\left(\frac{a}{\ell}\right) \ge b.$$

Modular forms and Hecke operators

Definition (Space of Modular Forms)

For $k \in 2\mathbb{Z}$, we let

- $M_k :=$ space of weight k modular forms on $SL_2(\mathbb{Z})$,
- $S_k :=$ space of weight k cusp forms on $SL_2(\mathbb{Z})$.

Modular forms and Hecke operators

Definition (Space of Modular Forms)

For $k \in 2\mathbb{Z}$, we let

- $M_k :=$ space of weight k modular forms on $SL_2(\mathbb{Z})$,
- $S_k :=$ space of weight k cusp forms on $SL_2(\mathbb{Z})$.

Definition (Hecke Operators)

Let $f(z) = \sum_{n=0}^{\infty} a_n q^n \in M_k$, where $q := e^{2\pi i z}$. The Hecke operator T_{ℓ} acts via

$$(f \mid T_{\ell})(z) = \sum_{n=0}^{\infty} \left(a(\ell n) + \ell^{k-1} a(n/\ell) \right) q^n.$$

Definition

Let $f(z) = q + \sum_{n=2}^{\infty} a(n)q^n \in S_k$. We call f(z) a normalized Hecke eigenform if for all m there exists $\lambda(m) \in \mathbb{C}$ such that

 $f(z) \mid T_m = \lambda(m)f(z).$

Fractional partition congruences

Definition

Let $f(z) = q + \sum_{n=2}^{\infty} a(n)q^n \in S_k$. We call f(z) a normalized Hecke eigenform if for all m there exists $\lambda(m) \in \mathbb{C}$ such that

$$f(z) \mid T_m = \lambda(m)f(z).$$

Remark

There is a canonical basis of normalized Hecke eigenforms for S_k .

$\ell\text{-non-ordinary primes}$

Definition

Let $f(z) = \sum_{n=0}^{\infty} a(n)q^n \in M_k \cap \mathcal{O}_L[[q]]$. We say that f(z) is ℓ -non-ordinary if

 $a(\ell) \equiv 0 \pmod{\ell \mathcal{O}_L}.$

$\ell\text{-non-ordinary primes}$

Definition

Let $f(z) = \sum_{n=0}^{\infty} a(n)q^n \in M_k \cap \mathcal{O}_L[[q]]$. We say that f(z) is ℓ -non-ordinary if

 $a(\ell) \equiv 0 \pmod{\ell \mathcal{O}_L}.$

Remark

If f(z) is a normalized Hecke eigenform, then

$$a(\ell n) = a(\ell)a(n) - \ell^{k-1}a(n/\ell).$$

$\ell\text{-non-ordinary primes}$

Definition

Let $f(z) = \sum_{n=0}^{\infty} a(n)q^n \in M_k \cap \mathcal{O}_L[[q]]$. We say that f(z) is ℓ -non-ordinary if

 $a(\ell) \equiv 0 \pmod{\ell \mathcal{O}_L}.$

Remark

If f(z) is a normalized Hecke eigenform, then

$$a(\ell n) = a(\ell)a(n) - \ell^{k-1}a(n/\ell).$$

Thus, ℓ -non-ordinarity is equivalent to

$$f(z) \mid T_{\ell} \equiv 0 \pmod{\ell \mathcal{O}_L}.$$

Lemma (BCC)

Suppose $f(z) = \sum_{n=0}^{\infty} a(n)q^n \in M_k \cap \mathcal{O}_L[[q]]$ is an ℓ -non-ordinary normalized Hecke eigenform. Then for all $r, n \geq 1$,

 $a(\ell^r n) \equiv 0 \pmod{\ell^r \mathcal{O}_L}.$

Definition (ℓ good for α)

We say that a prime ℓ is good for $\alpha = a/b$ with parameter k if $\ell \nmid b$ and k is a positive integer such that

1.
$$\ell \mid (24k - \alpha),$$

2.
$$(\ell - 1) \mid (12k - m)$$
 for some $m \in \{4, 6, 8, 10, 14\}$, and

3. $\ell \nmid N_{12k}(\mathcal{D}_{12k})$, where \mathcal{D}_{12k} is the Hecke determinant for S_{12k} .

Definition (ℓ good for α)

We say that a prime ℓ is good for $\alpha = a/b$ with parameter k if $\ell \nmid b$ and k is a positive integer such that

1.
$$\ell \mid (24k - \alpha),$$

2.
$$(\ell - 1) \mid (12k - m)$$
 for some $m \in \{4, 6, 8, 10, 14\}$, and

3. $\ell \nmid N_{12k}(\mathcal{D}_{12k})$, where \mathcal{D}_{12k} is the Hecke determinant for S_{12k} .

Theorem (Jin, Ma, Ono 2016)

Let f be normalized Hecke eigenform of even weight $k \ge 12$. If $(\ell - 1) \mid (k - m)$ for some $m \in \{4, 6, 8, 10, 14\}$, then f is ℓ -non-ordinary.

Definition of Hecke Determinant

Definition (Hecke Determinant)

 $\mathcal{D}_k := \text{the weight } k \text{ Hecke determinant for } S_k$

Definition (Hecke Determinant)

 $\mathcal{D}_k := \text{the weight } k \text{ Hecke determinant for } S_k$

Remark

Let f_1, \ldots, f_d be the basis of normalized Hecke eigenforms for S_k . For a cusp form $f(z) \in S_k \cap \mathcal{O}_L[[q]]$, we can write

$$f(z) = \sum_{i=1}^{d} \beta_i f_i.$$

By Cramer's rule, $\beta_i = \gamma_i / \mathcal{D}_k$ where $\gamma_i \in \mathcal{O}_L$.

ℓ -non-ordinarity extends to S_k

Lemma (BCC)

Let $k \geq 12$ be even and let ℓ be a prime such that

•
$$(\ell - 1) \mid (k - m)$$
 for some $m \in \{4, 6, 8, 10, 14\},\$

•
$$\ell \nmid N_k(\mathcal{D}_k).$$

Then for all $g(z) = \sum_{n=1}^{\infty} a_g(n) q^n \in S_k \cap \mathcal{O}_L[[q]]$, we have

$$a_g(\ell^r n) \equiv 0 \pmod{\ell^r \mathcal{O}_L}.$$

ℓ -non-ordinarity extends to S_k

Lemma (BCC)

Let $k \geq 12$ be even and let ℓ be a prime such that

•
$$(\ell - 1) \mid (k - m)$$
 for some $m \in \{4, 6, 8, 10, 14\},\$

•
$$\ell \nmid N_k(\mathcal{D}_k)$$

Then for all $g(z) = \sum_{n=1}^{\infty} a_g(n) q^n \in S_k \cap \mathcal{O}_L[[q]]$, we have

$$a_g(\ell^r n) \equiv 0 \pmod{\ell^r \mathcal{O}_L}.$$

Remark

When $\ell \nmid N_k(\mathcal{D}_k)$ holds (condition 3 of ℓ being good for α), the ℓ -non-ordinarity of normalized eigenforms extends through linearity.

Theorem 2 (BCC)

If ℓ is good for α with parameter k and $v \leq \operatorname{ord}_{\ell}(24k - \alpha)$ is a positive integer, then for all n, we have

 $p_{\alpha}(\ell^v n - k) \equiv 0 \pmod{\ell^v}.$

Theorem 2 (BCC)

If ℓ is good for α with parameter k and $v \leq \operatorname{ord}_{\ell}(24k - \alpha)$ is a positive integer, then for all n, we have

$$p_{\alpha}(\ell^v n - k) \equiv 0 \pmod{\ell^v}.$$

Ideas of Proof

• Technical lemma of Chan and Wang

Theorem 2 (BCC)

If ℓ is good for α with parameter k and $v \leq \operatorname{ord}_{\ell}(24k - \alpha)$ is a positive integer, then for all n, we have

$$p_{\alpha}(\ell^v n - k) \equiv 0 \pmod{\ell^v}.$$

Ideas of Proof

- Technical lemma of Chan and Wang
- Expression of ℓ^r -balanced congruences in terms of powers of Ramanujan's Delta-function $\Delta := q(q;q)_{\infty}^{24} \in S_{12}$

Theorem 2 (BCC)

If ℓ is good for α with parameter k and $v \leq \operatorname{ord}_{\ell}(24k - \alpha)$ is a positive integer, then for all n, we have

$$p_{\alpha}(\ell^v n - k) \equiv 0 \pmod{\ell^v}.$$

Ideas of Proof

- Technical lemma of Chan and Wang
- Expression of ℓ^r -balanced congruences in terms of powers of Ramanujan's Delta-function $\Delta := q(q;q)_{\infty}^{24} \in S_{12}$
- ℓ -non-ordinarity of $\Delta^k \in S_{12k}$ implied by ℓ good for α with parameter k

Lemma (Chan-Wang)

Let $\alpha = a/b$. Let ℓ be a prime not dividing b. Then for any $r \ge 1$,

$$(q;q)^{\ell^r\alpha}_{\infty} \equiv (q^\ell;q^\ell)^{\ell^{r-1}\alpha}_{\infty} \pmod{\ell^r}.$$

Lemma (Chan-Wang)

Let $\alpha = a/b$. Let ℓ be a prime not dividing b. Then for any $r \ge 1$,

$$(q;q)_{\infty}^{\ell^r \alpha} \equiv (q^{\ell};q^{\ell})_{\infty}^{\ell^{r-1} \alpha} \pmod{\ell^r}.$$

Rewrite in terms of Ramanujan Δ -function

Write $r := \operatorname{ord}_{\ell}(24k - \alpha)$ and $\Delta^k =: \sum_{n=0}^{\infty} \tau_k(n)q^n$. Then,

$$\sum_{n=0}^{\infty} p_{\alpha}(n)q^{n+k} = q^{k}(q;q)_{\infty}^{24k+\ell^{r}u} \equiv \Delta^{k}(q^{\ell};q^{\ell})_{\infty}^{\ell^{r-1}u} \pmod{\ell^{r}}.$$

Lemma (Chan-Wang)

Let $\alpha = a/b$. Let ℓ be a prime not dividing b. Then for any $r \ge 1$,

$$(q;q)_{\infty}^{\ell^r \alpha} \equiv (q^{\ell};q^{\ell})_{\infty}^{\ell^{r-1} \alpha} \pmod{\ell^r}.$$

Rewrite in terms of Ramanujan Δ -function

Write $r := \operatorname{ord}_{\ell}(24k - \alpha)$ and $\Delta^k =: \sum_{n=0}^{\infty} \tau_k(n)q^n$. Then,

$$\sum_{n=0}^{\infty} p_{\alpha}(n) q^{n+k} = q^k(q;q)_{\infty}^{24k+\ell^r u} \equiv \Delta^k(q^\ell;q^\ell)_{\infty}^{\ell^{r-1} u} \pmod{\ell^r}.$$

Extract terms of form $q^{\ell n}$ and replace q^{ℓ} by q:

$$\sum_{n=0}^{\infty} p_{\alpha}(\ell n - k)q^n \equiv (q;q)_{\infty}^{\ell^{r-1}u} \sum_{n=0}^{\infty} \tau_k(\ell n)q^n \pmod{\ell^r}.$$

Fractional partition congruences

Proof of Theorem 2 (cont.)

Induction $\sum_{n=0}^{\infty} p_{\alpha}(\ell^{i}n - k)q^{n} \equiv (q;q)_{\infty}^{\ell^{r-i}u} \sum_{n=0}^{\infty} \tau_{k}(\ell^{i}n)q^{n} \pmod{\ell^{r}}.$
Induction

$$\sum_{n=0}^{\infty} p_{\alpha}(\ell^{i}n-k)q^{n} \equiv (q;q)_{\infty}^{\ell^{r-i}u} \sum_{n=0}^{\infty} \tau_{k}(\ell^{i}n)q^{n} \pmod{\ell^{r}}.$$

ℓ -non-ordinarity extends

Normalized eigenforms in S_{12k} are ℓ -non-ordinary, hence Δ^k as well

$$\implies \tau_k(\ell^v n) \equiv 0 \pmod{\ell^v}$$
$$\implies \sum_{n=0}^{\infty} p_\alpha(\ell^v n - k) q^n \equiv 0 \pmod{\ell^v}.$$

Example of Theorem 2

Congruences for powers of primes

• $\ell = 17$ is good for $\alpha = 57/61$ with parameter k = 3 because

 $17 \mid (24 \cdot 3 - 57/61),$ $16 \mid (12 \cdot 3 - 4),$ $17 \nmid N_{36}(\mathcal{D}_{36}).$

Example of Theorem 2

Congruences for powers of primes

• $\ell = 17$ is good for $\alpha = 57/61$ with parameter k = 3 because

 $17 \mid (24 \cdot 3 - 57/61),$ $16 \mid (12 \cdot 3 - 4),$ $17 \nmid N_{36}(\mathcal{D}_{36}).$

• Check $\operatorname{ord}_{17}(24 \cdot 3 - \frac{57}{61}) = 2$, so our theorem gives that for all n,

$$p_{\frac{57}{61}}(17n-3) \equiv 0 \pmod{17},$$
$$p_{\frac{57}{61}}(17^2n-3) \equiv 0 \pmod{17^2},$$

Example of Theorem 2

Congruences for powers of primes

• $\ell = 17$ is good for $\alpha = 57/61$ with parameter k = 3 because

 $17 \mid (24 \cdot 3 - 57/61),$ $16 \mid (12 \cdot 3 - 4),$ $17 \nmid N_{36}(\mathcal{D}_{36}).$

• Check $\operatorname{ord}_{17}(24 \cdot 3 - \frac{57}{61}) = 2$, so our theorem gives that for all n,

$$p_{\frac{57}{61}}(17n-3) \equiv 0 \pmod{17},$$

$$p_{\frac{57}{61}}(17^2n-3) \equiv 0 \pmod{17^2},$$

$$p_{\frac{57}{61}}(17^3n-3) \not\equiv 0 \pmod{17^3}.$$

Fractional partition congruences

Non-ordinary primes and Hecke eigenforms

Ramanujan's Θ -operator

Definition

We collect all modular forms modulo ℓ of weight k into the space

 $M_{k,\ell} := \{ f \pmod{\ell} : f \in M_k \cap \mathbb{Z}[[q]] \}.$

Ramanujan's Θ -operator

Definition

We collect all modular forms modulo ℓ of weight k into the space

$$M_{k,\ell} := \{ f \pmod{\ell} : f \in M_k \cap \mathbb{Z}[[q]] \}.$$

Definition

Ramanujan's Theta-operator is defined on power series $f = \sum_{n} a_n q^n$ by

$$\Theta(f) := \sum_{n} n a_n q^n.$$

Ramanujan's Θ -operator

Definition

We collect all modular forms modulo ℓ of weight k into the space

$$M_{k,\ell} := \{ f \pmod{\ell} : f \in M_k \cap \mathbb{Z}[[q]] \}.$$

Definition

Ramanujan's Theta-operator is defined on power series $f = \sum_{n} a_n q^n$ by

$$\Theta(f) := \sum_{n} n a_n q^n.$$

Example (Repeated applications of the Θ -operator) Let $f = \sum_{n} a_n q^n \in \mathbb{Z}[[q]]$. By Fermat's Little Theorem, we have

$$\Theta^{\ell}(f) = \sum_{n} n^{\ell} a_n q^n \equiv \sum_{n} n a_n q^n = \Theta(f) \pmod{\ell}.$$

Fractional partition congruences

Modular forms modulo ℓ

Serre filtration

Definition

For $f \in M_k \cap \mathbb{Z}[[q]]$, define the filtration of f modulo ℓ by

 $\omega_{\ell}(f) := \inf\{k \in \mathbb{Z} : f \pmod{\ell} \in M_{k,\ell}\}.$

Serre filtration

Definition

For $f \in M_k \cap \mathbb{Z}[[q]]$, define the filtration of f modulo ℓ by

$$\omega_{\ell}(f) := \inf\{k \in \mathbb{Z} : f \pmod{\ell} \in M_{k,\ell}\}.$$

Example (Filtration of Eisenstein series)

The normalized Eisenstein series of weight $\ell-1$ has Fourier expansion

$$E_{\ell-1}(z) = 1 - \frac{2(\ell-1)}{B_{\ell-1}} \sum_{n=1}^{\infty} \sigma_{\ell-2}(n) q^n \equiv 1 \pmod{\ell}$$

by the Von Staudt-Clausen theorem on divisibility of Bernoulli numbers. Therefore, $\omega_{\ell}(E_{\ell-1}) = 0$.

Filtration and the Θ -operator

Filtration Lemma

If $\ell \geq 5$ and $f \in M_k \cap \mathbb{Z}[[q]]$, then $\Theta(f) \pmod{\ell}$ is the reduction of a modular form modulo ℓ . Moreover,

$$\omega_{\ell}(\Theta f) = \omega_{\ell}(f) + (\ell + 1) - s(\ell - 1)$$

for some integer $s \ge 0$, with equality if and only if $\ell \nmid \omega_{\ell}(f)$.

Filtration and the Θ -operator

Filtration Lemma

If $\ell \geq 5$ and $f \in M_k \cap \mathbb{Z}[[q]]$, then $\Theta(f) \pmod{\ell}$ is the reduction of a modular form modulo ℓ . Moreover,

$$\omega_{\ell}(\Theta f) = \omega_{\ell}(f) + (\ell + 1) - s(\ell - 1)$$

for some integer $s \ge 0$, with equality if and only if $\ell \nmid \omega_{\ell}(f)$.

Example

Let $\ell = 5$ and repeatedly apply the Θ -operator to the Delta-function.

Form
$$\Delta$$
 $\Theta(\Delta)$ $\Theta^2(\Delta)$ $\Theta^3(\Delta)$ $\Theta^4(\Delta)$ $\Theta^5(\Delta)$ ω_ℓ 121824301218

Which arithmetic progressions have congruences?

Theorem 1 (BCC)

Let $\alpha = a/b$. Let $\ell \geq 5$ not divide b such that $\alpha \not\equiv 1, 3 \pmod{\ell}$. If

 $p_{\alpha}(\ell n + c) \equiv 0 \pmod{\ell}$

for all n, then $24c \equiv -\alpha \pmod{\ell}$.

Which arithmetic progressions have congruences?

Theorem 1 (BCC)

Let $\alpha = a/b$. Let $\ell \geq 5$ not divide b such that $\alpha \not\equiv 1, 3 \pmod{\ell}$. If

$$p_{\alpha}(\ell n + c) \equiv 0 \pmod{\ell}$$

for all n, then $24c \equiv -\alpha \pmod{\ell}$.

"Key Ingredient" (Kiming-Olsson, 1992)

Let $\ell \geq 5$ and let $k \geq 1$ such that $24k \not\equiv 1, 3 \pmod{\ell}$. If

$$\Theta^{\ell-1}(q^{-s}\Delta^k) \equiv q^{-s}\Delta^k \pmod{\ell}$$

for some integer s, then $s \equiv 0 \pmod{\ell}$.

Rewrite in terms of Ramanujan Δ -function. Write $\alpha = 24k + \ell u$ for some $k \ge 1$ and $u \in \mathbb{Z}_{(\ell)}$. Then $\sum_{n=0}^{\infty} p_{\alpha}(n)q^{n+k} = q^{k}(q;q)_{\infty}^{24k+\ell u} \equiv \Delta^{k}(q^{\ell};q^{\ell})_{\infty}^{u} \pmod{\ell}.$

Rewrite in terms of Ramanujan Δ -function. Write $\alpha = 24k + \ell u$ for some $k \ge 1$ and $u \in \mathbb{Z}_{(\ell)}$. Then $\sum_{n=0}^{\infty} p_{\alpha}(n)q^{n+k} = q^{k}(q;q)_{\infty}^{24k+\ell u} \equiv \Delta^{k}(q^{\ell};q^{\ell})_{\infty}^{u} \pmod{\ell}.$

Introduce Θ -operator.

Write $\Delta^k =: \sum_{n=0}^{\infty} \tau_k(n) q^n$ and extract terms of the form $q^{\ell n + c + k}$: $\tau_k(\ell n + c + k) \equiv 0 \pmod{\ell}$

for all n.

Rewrite in terms of Ramanujan Δ -function. Write $\alpha = 24k + \ell u$ for some $k \ge 1$ and $u \in \mathbb{Z}_{(\ell)}$. Then $\sum_{n=0}^{\infty} p_{\alpha}(n)q^{n+k} = q^{k}(q;q)_{\infty}^{24k+\ell u} \equiv \Delta^{k}(q^{\ell};q^{\ell})_{\infty}^{u} \pmod{\ell}.$

Introduce Θ -operator.

Write $\Delta^k =: \sum_{n=0}^{\infty} \tau_k(n) q^n$ and extract terms of the form $q^{\ell n + c + k}$: $\tau_k(\ell n + c + k) \equiv 0 \pmod{\ell}$

for all n. By Fermat's little theorem, we find

$$\Theta^{\ell-1}\left(q^{-(c+k)}\Delta^k\right) \equiv q^{-(c+k)}\Delta^k \pmod{\ell}$$

Rewrite in terms of Ramanujan Δ -function. Write $\alpha = 24k + \ell u$ for some $k \ge 1$ and $u \in \mathbb{Z}_{(\ell)}$. Then $\sum_{n=0}^{\infty} p_{\alpha}(n)q^{n+k} = q^{k}(q;q)_{\infty}^{24k+\ell u} \equiv \Delta^{k}(q^{\ell};q^{\ell})_{\infty}^{u} \pmod{\ell}.$

Introduce Θ -operator.

Write $\Delta^k =: \sum_{n=0}^{\infty} \tau_k(n) q^n$ and extract terms of the form $q^{\ell n + c + k}$: $\tau_k(\ell n + c + k) \equiv 0 \pmod{\ell}$

for all n. By Fermat's little theorem, we find

$$\Theta^{\ell-1}\left(q^{-(c+k)}\Delta^k\right) \equiv q^{-(c+k)}\Delta^k \pmod{\ell}$$

"key ingredient" $\implies 0 \equiv c + k \equiv \frac{1}{24}(24c + \alpha) \pmod{\ell}$.

Which primes ℓ give a congruence?

Theorem 3 (BCC)

Let α be an even integer < 0 or an odd integer > 3. If

$$p_{\alpha}(\ell n - \delta_{\ell}) \equiv 0 \pmod{\ell}$$

for all n, then $\ell \leq |\alpha| + 4$. In particular, p_{α} admits finitely many ℓ -balanced congruences.

Which primes ℓ give a congruence?

Theorem 3 (BCC)

Let α be an even integer < 0 or an odd integer > 3. If

$$p_{\alpha}(\ell n - \delta_{\ell}) \equiv 0 \pmod{\ell}$$

for all n, then $\ell \leq |\alpha| + 4$. In particular, p_{α} admits finitely many ℓ -balanced congruences.

"Preparation"

If $\ell \geq 5$ and δ_{ℓ} is a positive integer, then for any $m \geq 0$ we have

$$\omega_{\ell}(\Theta^{m}\Delta^{\delta_{\ell}}) \geq \omega_{\ell}(\Delta^{\delta_{\ell}}) = 12\delta_{\ell}.$$

Rewrite in terms of Θ -operator.

Suppose for contradiction that for some $\ell > |\alpha| + 4$, we have

$$p_{\alpha}(\ell n - \delta_{\ell}) \equiv 0 \pmod{\ell}$$

for all n.

Rewrite in terms of Θ -operator.

Suppose for contradiction that for some $\ell > |\alpha| + 4$, we have

$$p_{\alpha}(\ell n - \delta_{\ell}) \equiv 0 \pmod{\ell}$$

for all n. By Theorem 1, write $24\delta_{\ell} = \alpha + \ell u$ for some $u \in \mathbb{Z}_{(\ell)}$.

Rewrite in terms of Θ -operator.

Suppose for contradiction that for some $\ell > |\alpha| + 4$, we have

$$p_{\alpha}(\ell n - \delta_{\ell}) \equiv 0 \pmod{\ell}$$

for all n. By Theorem 1, write $24\delta_{\ell} = \alpha + \ell u$ for some $u \in \mathbb{Z}_{(\ell)}$. Then

$$\Delta^{\delta_{\ell}} = q^{\delta_{\ell}}(q;q)_{\infty}^{\alpha+\ell u} \equiv (q^{\ell};q^{\ell})_{\infty}^{u} \sum_{n=0}^{\infty} p_{\alpha}(n-\delta_{\ell})q^{n} \pmod{\ell}.$$

Rewrite in terms of Θ -operator.

Suppose for contradiction that for some $\ell > |\alpha| + 4$, we have

$$p_{\alpha}(\ell n - \delta_{\ell}) \equiv 0 \pmod{\ell}$$

for all n. By Theorem 1, write $24\delta_{\ell} = \alpha + \ell u$ for some $u \in \mathbb{Z}_{(\ell)}$. Then

$$\Delta^{\delta_{\ell}} = q^{\delta_{\ell}}(q;q)_{\infty}^{\alpha+\ell u} \equiv (q^{\ell};q^{\ell})_{\infty}^{u} \sum_{n=0}^{\infty} p_{\alpha}(n-\delta_{\ell})q^{n} \pmod{\ell}.$$

By Fermat's little theorem, we conclude that

$$\Theta^{\ell-1}(\Delta^{\delta_{\ell}}) \equiv \Delta^{\delta_{\ell}} \pmod{\ell}.$$

Study the sequence of filtrations $\omega_{\ell}(\Theta^i(\Delta^{\delta_{\ell}}))$ If $0 \leq c < \ell$ satisfies $c \equiv -12\delta_{\ell} \pmod{\ell}$, then

 $\omega_{\ell}(\Theta^c(\Delta^{\delta_{\ell}})) \equiv 0 \pmod{\ell},$

Study the sequence of filtrations $\omega_{\ell}(\Theta^{i}(\Delta^{\delta_{\ell}}))$ If $0 \le c < \ell$ satisfies $c \equiv -12\delta_{\ell} \pmod{\ell}$, then $\omega_{\ell}(\Theta^{c}(\Delta^{\delta_{\ell}})) \equiv 0 \pmod{\ell}$, $\omega_{\ell}(\Theta^{c+1}(\Delta^{\delta_{\ell}})) = \underbrace{12\delta_{\ell}}_{\omega_{\ell}(\Delta^{\delta_{\ell}})} + (2c - \ell + 3).$

Study the sequence of filtrations $\omega_{\ell}(\Theta^{i}(\Delta^{\delta_{\ell}}))$ If $0 \le c < \ell$ satisfies $c \equiv -12\delta_{\ell} \pmod{\ell}$, then $\omega_{\ell}(\Theta^{c}(\Delta^{\delta_{\ell}})) \equiv 0 \pmod{\ell}$, $\omega_{\ell}(\Theta^{c+1}(\Delta^{\delta_{\ell}})) = \underbrace{12\delta_{\ell}}_{\omega_{\ell}(\Delta^{\delta_{\ell}})} + (2c - \ell + 3).$

Applying the "preparation"

Because α is an even integer < 0 or an odd integer > 3, we know that

$$2c - \ell + 3 < 0.$$

Study the sequence of filtrations $\omega_{\ell}(\Theta^{i}(\Delta^{\delta_{\ell}}))$ If $0 \le c < \ell$ satisfies $c \equiv -12\delta_{\ell} \pmod{\ell}$, then $\omega_{\ell}(\Theta^{c}(\Delta^{\delta_{\ell}})) \equiv 0 \pmod{\ell}$, $\omega_{\ell}(\Theta^{c+1}(\Delta^{\delta_{\ell}})) = \underbrace{12\delta_{\ell}}_{\omega_{\ell}(\Delta^{\delta_{\ell}})} + (2c - \ell + 3).$

Applying the "preparation"

Because α is an even integer < 0 or an odd integer > 3, we know that

$$2c - \ell + 3 < 0.$$

Therefore $\omega_{\ell}(\Theta^{c+1}(\Delta^{\delta_{\ell}})) < \omega_{\ell}(\Delta^{\delta_{\ell}})$, contradicting the "preparation".

Extension of Theorem 3 to rational α ?

Fractional partition congruences

Modular forms modulo ℓ

Theorem 4 (BCC)

Suppose α is not an even integer ≥ 0 . If p_{α} admits an ℓ -balanced congruence for $\ell \geq |a| + 5b$, then

$$\Psi_{2b}\left(\frac{a}{\ell}\right) \ge b.$$

Example with a = -1, b = 3.

Let $\ell \geq 17$. Choose $0 \leq c < \ell$ such that $c \equiv -\alpha/2 \pmod{\ell}$.

Example with a = -1, b = 3.

Let $\ell \geq 17$. Choose $0 \leq c < \ell$ such that $c \equiv -\alpha/2 \pmod{\ell}$.

$$\ell = 6k + 1: \quad c = 5k + 1 \implies 2c - \ell + 3 > 0,$$

Example with a = -1, b = 3.

Let $\ell \ge 17$. Choose $0 \le c < \ell$ such that $c \equiv -\alpha/2 \pmod{\ell}$.

$$\ell = 6k + 1: \quad c = 5k + 1 \implies 2c - \ell + 3 > 0,$$

$$\ell = 6k + 5: \quad c = k + 1 \implies 2c - \ell + 3 < 0.$$

Example with a = -1, b = 3.

Let $\ell \geq 17$. Choose $0 \leq c < \ell$ such that $c \equiv -\alpha/2 \pmod{\ell}$.

$$\ell = 6k + 1: \quad c = 5k + 1 \implies 2c - \ell + 3 > 0,$$

$$\ell = 6k + 5: \quad c = k + 1 \implies 2c - \ell + 3 < 0.$$

By the proof of Theorem 3, p_{α} does not admit an ℓ -balanced congruence for $\ell = 6k + 5$.

Example with a = -1, b = 3.

Let $\ell \geq 17$. Choose $0 \leq c < \ell$ such that $c \equiv -\alpha/2 \pmod{\ell}$.

$$\begin{split} \ell &= 6k+1: \quad c = 5k+1 \implies 2c-\ell+3 > 0, \\ \ell &= 6k+5: \quad c = k+1 \implies 2c-\ell+3 < 0. \end{split}$$

By the proof of Theorem 3, p_{α} does not admit an ℓ -balanced congruence for $\ell = 6k + 5$.

$$\ell = 6k + 1: \quad \Psi_{2b}(a/\ell) = \Psi_6(-1/1) = 5 \ge b,$$

Example with a = -1, b = 3.

Let $\ell \geq 17$. Choose $0 \leq c < \ell$ such that $c \equiv -\alpha/2 \pmod{\ell}$.

$$\ell = 6k + 1: \quad c = 5k + 1 \implies 2c - \ell + 3 > 0,$$

$$\ell = 6k + 5: \quad c = k + 1 \implies 2c - \ell + 3 < 0.$$

By the proof of Theorem 3, p_{α} does not admit an ℓ -balanced congruence for $\ell = 6k + 5$.

$$\begin{split} \ell &= 6k + 1: \quad \Psi_{2b}(a/\ell) = \Psi_6(-1/1) = 5 \ge b, \\ \ell &= 6k + 5: \quad \Psi_{2b}(a/\ell) = \Psi_6(-1/5) = 1 < b. \end{split}$$

Which arithmetic progressions can have congruences?

Question

Given ℓ , are there restrictions that govern ℓ -balanced congruences?
Which arithmetic progressions can have congruences?

Question

Given ℓ , are there restrictions that govern ℓ -balanced congruences?

Theorem 1 (BCC)

Let $\ell \geq 5$ not divide b such that $\alpha \not\equiv 1,3 \pmod{\ell}$. If

$$p_{\alpha}(\ell n + c) \equiv 0 \pmod{\ell}$$

for all n, then $24c \equiv -\alpha \pmod{\ell}$.

Question

How can we use modular forms to study ℓ^r -balanced congruences?

Question

How can we use modular forms to study ℓ^r -balanced congruences?

Theorem 2 (BCC)

If ℓ is good for α with parameter k and $v \leq \operatorname{ord}_{\ell}(24k - \alpha)$ is a positive integer, then for all n, we have

$$p_{\alpha}(\ell^v n - k) \equiv 0 \pmod{\ell^v}.$$

How rare are ℓ -balanced congruences?

Question

Can we classify ℓ for which p_{α} admits ℓ -balanced congruences?

Question

Can we classify ℓ for which p_{α} admits ℓ -balanced congruences?

Theorem 3 (BCC)

Let α be an even integer < 0 or an odd integer > 3. If

$$p_{\alpha}(\ell n - \delta_{\ell}) \equiv 0 \pmod{\ell}$$

for all n, then $\ell \leq |\alpha| + 4$. In particular, p_{α} admits finitely many ℓ -balanced congruences.

Can we extend to rational α ?

Question

Given rational α , can we find restrictions on the ℓ for which p_{α} admits an ℓ -balanced congruence?

Can we extend to rational α ?

Question

Given rational α , can we find restrictions on the ℓ for which p_{α} admits an ℓ -balanced congruence?

Theorem 4 (BCC)

Suppose α is not an even integer ≥ 0 . If p_{α} admits an ℓ -balanced congruence for $\ell \geq |a| + 5b$, then

$$\Psi_{2b}\left(\frac{a}{\ell}\right) \ge b.$$

Can we extend to rational α ?

Question

Given rational α , can we find restrictions on the ℓ for which p_{α} admits an ℓ -balanced congruence?

Theorem 4 (BCC)

Suppose α is not an even integer ≥ 0 . If p_{α} admits an ℓ -balanced congruence for $\ell \geq |a| + 5b$, then

$$\Psi_{2b}\left(\frac{a}{\ell}\right) \ge b.$$

Remark

Half of primes cannot be the modulus of a balanced congruence for p_{α} .