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Abstract 

The expression of genes in cells is a complicated process. Expression levels of a gene are 

determined not only by its local neighborhood but also by more distal regions, as is the case 

with enhancer-promoter interactions, which can connect regions millions of bases away [1]. The 

large-scale organization of DNA within the cell nucleus plays a substantial role in gene 

expression and cell fate, with recent developments in biochemical assays (such as Hi-C) 

generating quantitative maps of the higher-order structure of DNA. The interactions captured by 

Hi-C have been attributed to several distinct physical processes. One of the processes is that of 

segregation of DNA into compartmental domains by phase separation. While the current 

consensus is that there are broadly two types of compartmental domains (A and B), there is 

some evidence for a larger number of compartmental domains [2]. Here a methodology to 

determine the identity and number of such compartments is presented, and it is observed that 

there are four distinct compartments within the genome. 

 

Keywords: Hi-C, Clustering, Compartmentalization, Dimensionality Reduction, Stability, ChIP-

seq, Repli-seq  
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Introduction 

Hi-C is a method of measuring the proximity between two regions in the DNA strand [3]. An 

overview of the Hi-C protocol as well as an example interaction matrix is shown in Figure 1. 

Each row and column represent regions on the genome and the pixel represents the frequency 

of interaction between these two regions. 

A region refers to a position range in the genome. It is designated by chromosome, start 

position, and end position. A region can be any number of base pairs long. In this paper, a 

resolution of 1,000,000 base pairs will be used, which is suitable for clustering analysis on Hi-C 

matrices [4]. This means that all the regions will be 1,000,000 base pairs long. 

 

A contact probability is a value that represents how many times two regions are found in 

“contact” in the cell nucleus, i.e. are physically adjacent within some effective radius that is 

captured and processed using Hi-C. 
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Figure 1. An example of a Hi-C matrix (bottom) as well as a description of the process used to create it (top). Created 
from data in [5]. Top figure (cartoon representation of the Hi-C protocol) taken from [3]. 

 
 

Figure 2. Cis and trans interactions in a section of a Hi-C matrix. Created from data in Schwarzer et al. [6]. 
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Several features are present in Hi-C matrices. On the largest scales, interactions are 

differentiated into cis and trans interactions. Cis interactions occur within the same 

chromosome, while trans interactions occur between different chromosomes. Figure 2 illustrates 

that cis interactions are generally much stronger than trans interactions. 

 

 

Figure 3. A visualization of compartmentalization, scaling of contact probability, and loops. Created from data in [2]. 
Bottom right cartoon representation of interphase loop extrusion taken from [7]. 

 

Within cis interacting regions, there are three broad types of features: scaling of contact 

probability, checkerboarding, and loops (see Figure 3). Segments that are far away from each 

other along the chromatin fiber compared to segments close together, resulting in a generally 

smaller contact probability, known as scaling. At large genomic distances, the process of phase 

separation and compartmentalization results in a checkerboarding pattern. At small scales, one 

can see enriched squares known as TADs bordered by dots with even higher enrichment 

(known as a loop). Dots and loops are created by the mechanism of loop extrusion [7], and 

there is significant evidence for this [6] [8] [9]. 

 

In contrast to this, trans interactions contain only the checkerboarding patterns associated with 

compartmentalization. As the successful clustering relies on identifying only the 

compartmentalization pattern, trans interactions are the most relevant for this problem. 

Context 

Hi-C was a procedure invented in 2009, and it has revealed much about the three-dimensional 

conformation of the chromosomes [10]. Specifically, it is being used to investigate how the 

human genome is folded and packed within the cell nucleus. Hi-C has also found several other 

uses, such as in differentiating between different cells [4] and determining long-range chromatin 

interactions involving colorectal cancer risk loci [11].  
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In 2014, Rao et al. [2] made the first attempt at finding subcompartments using Hi-C data. Chen 

et al. [12] describes a mapping method capable of measuring chromosome distances to defined 

subcompartments. Xiong and Ma [13] demonstrated that given ground truth subcompartment 

annotations, a classifier can be created to compute subcompartments in other cell types.  

Research contributions 

This exploration seeks to expand on the exploration of subcompartments. Unsupervised 

clustering of Hi-C matrices can be explored to explain fundamental aspects of chromatin 

packing in the cell nucleus. The primary research contributions are: 

● Presenting a new method of using unsupervised clustering of Hi-C matrices to determine 

characteristics of the structure chromatin within the cell nucleus. 

● Presenting the results of the unsupervised clustering with respect to other biological 

signals. 

● Presenting a strategy for evaluating the clustering of Hi-C matrices, which can be 

extended to any unsupervised clustering problem. 

Experimental Methods 
Clustering techniques will be used to establish the identity of compartmental domains. The idea 

behind this is that different compartments will have different interaction patterns with the rest of 

the genome – a signal that should be present in Hi-C and should be distinguishable by 

clustering techniques. Standard techniques used in data science are leveraged to cluster the 

data. Most clustering techniques treat data as points in a high dimensional vector space. The 

matrix can be made amenable to such techniques by choosing one axis (row or column) to 

represent different data points and the other to represent dimensionality. 

 

Datasets Used 

Most of the experiments will use the Hi-C matrix of mouse liver cells with the cohesin-loading 

factor NIPBL removed, created by Schwarzer et al [6]. Cohesin is a strong candidate for the 

extruder in the loop extrusion model, and Schwarzer et al. [6] observed that when cohesin is 

prevented from binding, the compartmental strength gets stronger. Even more interestingly, 

regions that behaved like a single compartment in the presence of cohesin seem to break up 

into two or more distinct compartments with different interaction patterns. Along with in-silico 

simulations [14], this seems to indicate that loop extrusion antagonizes the formation of 

compartmental domains. Thus, focusing on the NIPBL dataset allows development and study of 

the technique on a system where the signal of interest is the strongest. 

Creating a matrix suitable for clustering 
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The problem with clustering the entire Hi-C matrix is that cis interactions (along the main 

diagonal) are significantly stronger than trans interactions, and there are other signals in cis 

interactions that interfere with compartmentalization. A matrix can be created that avoids cis 

interactions, and that allows us to cluster all the loci at once. The solution is a matrix formed by 

using odd chromosomes (chr1, chr3, …, chr23) as rows and even chromosomes (chr2, chr4, …, 

chr22) as columns. This method is described by Rao et al. [2] as a way to analyze trans 

interactions between rows and columns. This matrix will be referred to as the odd-even matrix, 

shown in Figure 4. 

 

Figure 4. The matrix formed by trans interactions. (The color scale is described below.) 

The matrix was normalized using iterative correction, which removes experimental biases from 

the Hi-C matrix and is part of the standard procedure for analyzing Hi-C matrices [15]. For 

plotting purposes, entries are divided by the mean of the matrix and then the logarithm is taken 

to produce data that approximates a Gaussian distribution with mean 0 (Figure 5). 
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Figure 5. The distribution of contact probabilities after iterative correction, logarithmic transformation, and then 
dividing by the mean. 

Clustering algorithms 

The analysis will focus on three major clustering algorithms: k-means, agglomerative, and 

spectral, as implemented in the Python library Scikit-learn [16] [17]. K-means minimizes the 

distance from each point in a cluster to the center, agglomerative clustering is a hierarchical 

clustering algorithm, and spectral clustering embeds the affinity matrix before applying k-means 

clustering.  

 

K-means works by partitioning the observations into k clusters for which each point is in the 

cluster with the nearest centroid. Initially, k points are randomly chosen to be means from which 

the k clusters are computed. At each iteration, the centroids of the k clusters are computed and 

become the new means. The algorithm iterates until convergence. 

 

Spectral clustering starts by constructing an affinity matrix where each element corresponds to 

the affinity between two of the points, which can be measured using several kernels. The 

eigenvectors of this affinity matrix are computed, and then k-means is used to cluster the affinity 

matrix. 

 

In agglomerative clustering, the initial state is each point being in its own cluster. Clusters are 

repeatedly merged by linkage criterion until the desired number of clusters is reached. For 

example, when ward linkage is used, the variance within a cluster is minimized (as measured by 

the sum of the squares of distances between all pairs of points). With average linkage, the pair 

of clusters with the smallest average of distances between each point is merged, and with single 

linkage, the two clusters with the closest distance between any pair of points are merged. 

Additionally, cosine distance is used, which serves as a distance metric for single and average 

linkage; the “distance” between two points is defined as the cosine of the angle between their 

position vectors. 



9 
 

Methods of evaluating clustering quality  

Most clustering techniques require specifying the number of clusters to find. Since the true 

number of different compartment domains present in Hi-C is not known, the following tools must 

be developed to infer the quality of the clusters: 

1. Visualization 

2. Eigendecomposition 

3. Stability 

4. ChromHMM labels 

5. Chromatin signals 

 

Visualization 

The clusterings in this paper are visualized using the following procedure:  

1. Run a clustering technique on the rows and the columns of the odd-even matrix.  

2. Sort the matrix by row and column according to cluster label 

3. Plot the matrix. The colormap used is the same as previously; blue cells correspond to a 

negative normalized contact probability, while red cells correspond to a positive 

normalized contact probability. Thus, red cells represent two regions that are far from 

each other, while blue cells represent two regions that are close (interact heavily). 

 

Furthermore, the clustering labels are shown in a row above the matrix and a column to the left 

of the matrix to aid in viewing the discrete clusters. The colors used may be arbitrary. 

 

 
Figure 6. An example visualization.  
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The visualization example in Figure 6 shows the results of a clusterer that found four large 

clusters.  

Eigendecomposition 

The base Hi-C matrix is square and can be eigendecomposed using the library in [15]. The sign 

of the first eigenvector is taken, and regions with a positive sign are type A and ones with a 

negative sign are type B. A good clustering creating two clusters should distinguish between the 

type A and type B compartments.  

 

The clustering methods can be tested by trying to find two clusters and seeing how well they 

match with type-A and type-B regions [16]. 

 

Figure 7. Results of finding 2 clusters in the odd-even matrix. 

The three clustering methods embedded the type A and type B compartments well, as shown in 

Figure 7. 

Agglomerative (average linkage) 
K-means 

Spectral 
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Evaluating the number of major clusters 

Stability 

Stability is a metric that can be applied to any clustering algorithm to help determine the number 

of major clusters in a dataset. In essence, stability analysis works by constructing perturbed 

versions of the dataset, running a clustering algorithm on both the original and perturbed 

versions, and then comparing the similarity of the two sets of labels generated. The stability is 

then compared for differing numbers of clusters to find the most stable clustering. Ulrike 

proposed several methods for generating perturbed versions of the dataset [18]. Two of them 

apply to this problem: subsampling and addition of noise.  

The training matrix can be subsampled to include only a portion of it (75% is used for further 

analysis). Then, one clusterer is fit to the subsample and another to the original matrix. The 

labels for the two clusterers on the subsample are compared using the adjusted Rand index, a 

measure of correlation between two different labelings of the same data which ranges from 0 to 

1 [19]. The process is repeated 25 times and the mean Rand index over all trials is calculated 

(Figure 8). 

 

 

Figure 8. The results of stability analysis using subsampling. 
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The distribution of stabilities for k-means is the cleanest, where k=2, k=3, and k=4 are stable, 

while 𝑘 ≥ 5 becomes increasingly unstable as k increases. Spectral clustering is stable for 𝑘 ≤

7, although it is unexpectedly unstable for k=4. Agglomerative clustering with ward linkage and 

average linkage have very low average Rand indices, and their stabilities do not diverge enough 

to decide on the number of clusters. Agglomerative clustering with single linkage, in which the 

closest pairs of points are combined at each step, seems to suggest that k=2 to k=5 are 

relatively stable. 

Another way to measure the stability of a clustering is by adding noise to the distribution. Since 

trans contact probabilities are Gaussian distributed in the log space (Figure 5), random 

Gaussian noise can be added (5% was used) in log space and then converted back to normal 

space to create a matrix with noise. One clusterer is fit to the matrix with noise and one is fit to 

the original matrix. The labels of these two clusterers are then compared using the adjusted 

Rand index. The process is repeated 25 times and then the mean index is taken (Figure 9).  

   

 

Figure 9. The results of stability analysis by adding noise.  

 

The stability plots for noise suggest that there are between two and five major clusters that are 

stable for k-means and spectral clustering.  
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It seemed necessary to further analyze the results of agglomerative clustering (with average 

linkage) to determine why stability increases as the number of clusters increases.  

 

The clusterer does not necessarily determine the number of clusters even when enough 

clusters are specified, as shown in Figure 10. If agglomerative clustering is used, it must be with 

a larger number of clusters, such as 20. The clustering with 20 clusters can still be stable, as 

most of the labels belong to one of the four clusters. 

 

 
 

Figure 10. The results of agglomerative clustering from k=5 to 40 clusters.  

 

Visualization of k-means labels 

As k-means was the most stable clustering algorithm, it was chosen to be visualized to better 

depict the clusters found. 𝑘 ≤ 7 clusters are worth analyzing as they have the greatest stability 

(Figure 11). The plots below show the result when k-means clustering is applied to the odd-even 

matrix with differing numbers of clusters (from k=2 to k=7). 

For 𝑘 ≤ 4, the clustering gets more discrete as the number of clusters increases. If k is at least 

5, the clustering appears to perform worse. The second (purple) and fifth (grass green) clusters 

in k=5 appear to have the same interaction pattern, which implies that they are not very distinct. 

Additionally, when k=6, the 3rd and 6th row clusters and the 1st and 6th column clusters are 

indistinguishable. The separation of the eigenvector classes (red and blue) also appears the 

best when k=2 or k=4. This concurs with the results from the analysis of stability, which found 

that 𝑘 ≤ 4 was especially stable. 
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Figure 11. Results of k-means clustering for k=2 to k=7 clusters. 

 

Comparison of spectral and k-means labels 

The spectral clustering for k=6 and k=7 seemed unusually stable (Figure 8, Figure 9), so the 

clusters for k=7 were compared to the k-means labels for k=4 (Figure 12).  

k=2 k=3 

k=4 k=5 

k=6 k=7 
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Figure 12. The 7 spectral labels (top, left) compared to the 4 k-means clusters (bottom, right) 

Each of the seven spectral labels is part of one of the four k-means clusters. For example, the 

dark green, grass green, and lime green clusters are part of the purple k-means cluster. The 

spectral clusters differ only slightly from one another, but these sub-clusters do exist.  

 

The three validation tools (stability, k-means visualization, and spectral clustering) suggest that 

there are four major clusters. The four k-means clusters seem to represent four compartments 

within the genome, and these compartments will be analyzed further for the remainder of the 

paper. 

 

This analysis demonstrates that there are four large clusters, which are not initially separated 

when the clusterer attempts to find four clusters. This is a drawback of using hierarchical 

clustering on the Hi-C data. Combined with the stability analysis, it can be concluded that there 

are four intrinsic types of regions within DNA.   

 

 
Eigenvector:         Negative (B)    Positive (A) 

 
Figure 13. The four clusters generated from k-means. 

 

 

These clusters (Figure 13) are best represented by the k-means plot for k=4 (Figure 11). The 

dark green, purple, light blue, and light green clusters can be named B1, B2, A2, and A1, 
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respectively. B1 interacts with B1 strongly, and A1 interacts with A1 especially strongly. B2 

interacts with B1, B2, and A2 about equally, but has a highly negative interaction with A1. 

Similarly, A2 interacts with B2, A2, and A2 strongly, but has a highly negative interaction with 

B1. 

Dimensionality reduction 

As the odd-even matrix has thousands of dimensions, dimensionality reduction was considered 

for improving the quality of clusters. For this, principal component analysis (PCA) was used to 

reduce the odd-even matrix to 25 dimensions. A parallel coordinates plot was made to visualize 

the original k-means labels on the plot. In this plot, each zig-zag line represents a single row of 

the matrix, and the lines are colored by label (Figure 14).  

 

 
Figure 14. Parallel coordinates plot of PCA for 25 dimensions, annotated by k-means labels. 

The dimensions past about 12 are likely noise, as there is minimal variance, so it is possible to 

do clustering on the 12-dimension reduction instead of the original matrix without compromising 

on quality.  

 
Figure 15. The stability using subsampling (left) and noise (right) for k-means with and without PCA. 

Dimensionality reduction using PCA is slightly more stable than without (Figure 15), so it might 

be useful to use PCA, especially when finding larger numbers of clusters. The clustering results 

with and without PCA may be compared by computing the adjusted Rand index between the 

clustering labels for each number of clusters (Figure 16).  
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Figure 16. Adjusted Rand index between the labels of k-means with and without PCA. 

It is found that the clustering results are very similar for 2, 3, and 4 clusters. When finding 

different numbers of clusters, PCA may be beneficial. Additionally, clustering on a lower 

dimensionality dataset can be much faster than the original dataset, which makes PCA useful 

for larger-scale analysis.  

Analysis of ChromHMM 

ChIP-seq data corresponds to proteins within the chromatin structure. ChromHMM [20], which is 

essentially a hidden Markov model algorithm running on ChIP-seq tracks, can help classify DNA 

regions as promoters, enhancers, quiescent, etc. ChromHMM runs separately from Hi-C. It 

classifies regions that are 200 base pairs long, so each of the regions for clustering (1,000,000 

base pairs) contains 5,000 ChromHMM regions. 

 
Figure 17. The ChromHMM states used for analysis plotted with the average length of consecutive states. 

One way to assign a ChromHMM state is to take the most common string of consecutive 

ChromHMM states (Figure 17) out of all the states in a region. The results of this method can be 

plotted similarly to the eigenvectors. The B1 cluster correlated almost perfectly with the Quies 



18 
 

state (white), as shown in Figure 18. The other states were mainly composed of the QuiesG 

(dark gray) state. This provides further evidence that the clustering represented a pattern 

fundamental to the structure of chromatin. 

 

 
Figure 18. Comparison of clusters with ChromHMM states 

Clusters can also be distinguished by comparing the average composition of regions by the 

states present. To compute the composition, the mean count of each of the 15 states within the 

regions for a cluster are computed, and then these counts are divided by 5000, the number of 

ChromHMM labels per clustering region. Figure 19 shows the composition visualized as 

percentages. The percentages may not add up to 100% due to independent rounding.  

 

 
Figure 19. Composition of clusters by ChromHMM state 

B1 regions are composed primarily of Quies and are deficient in every other state compared to 

the other regions. Furthermore, A1, A2, and B2 exhibit slightly different patterns in terms of their 

composition. For example, A1 and A2 are especially strong in enhancer states (Enh, EnhLo1, 

EnhLo2, EnhPois1, EnhPois2).  
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Chromatin signals 

Histones are the primary component of chromatin, and they are known to control chromosome 

structure. Some proteins act as histone modifiers, and these modifiers manipulate DNA 

expression [21]. The profiles of histone modifications across the genome can be measured 

using ChIP-seq [22]. Rao et al. [2] suggested that the average expression of these histone 

modifications can be compared by cluster type. 

 

Several different protein markers exist. The clustering of a GM12878 (human) cell from Rao et 

al. [2] was tested and compared it to the associated histone modifiers (Figure 20). 

 

 
Figure 20. Histone Modifications for Clusters in GM12878 (human)  

 

A1 and A2 have similar histone modifications, as do B1 and B2. However, there are slight 

differences. For example, the A2 region is more deficient in H4k20me1, which is involved in 

transcriptional repression. Additionally, there are small differences in the modifications between 

the type-B regions. 

  

Repli-seq is a tool used to analyze how different regions in the genome replicate at different 

times [23]. The cell cycle goes as follows: G1, S1, S2, S3, S4, G2. The activity of genomic 

regions is measured at each of these times. Repli-seq can be visualized similarly to ChIP-seq 

(Figure 21). 
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Figure 21. Repli-Seq for Clusters in GM12878 (human) 

Both A1 and A2 replicate at an earlier time than B1 and B2, on average. However, A2 replicates 

on average later than A1. The difference between B1 and B2 is less observable, but B2 

replicates slightly later than B1. This provides further evidence that there are structural 

differences between A1 and A2 regions.  

A method of clustering cis interactions 

At resolutions below 1 megabase, clustering trans interactions becomes difficult because the 

matrix becomes sparse. It is observed that some subcompartments may be smaller than 1 

megabase, and these may be missed when just clustering trans interactions. A solution to this is 

to develop a method to specifically cluster the denser cis interactions. 

 

First, scaling of contact probability must be removed, as it interferes the compartmental signal. 

To do this, the observed contact probability is divided by the expected value of the contact 

probability for its diagonal [24]. Figure 22 shows the result of this observed-over-expected 

correction. 

 

  
Figure 22. The result of observed-over-expected correction. 
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In the Schwarzer et al. dataset, the cis interactions can then be directly clustered using K-

means, because the Hi-C matrix does not contain TADs. Datasets with TADs were more difficult 

to cluster. 

 
Figure 23. The results of K-means clustering of corrected cis interactions. The subcompartments are sorted in the 

order B1, B2, A2, A1. 

Figure 23 shows the corrected cis interactions sorted by cluster label as done previously. 

Distinct interaction patterns, similar to the trans interactions, can be observed. 

 

The clustering results also capture several common arrangements in cis interactions. 

           
Figure 24 – Subcompartment annotations on different sections of a Schwarzer et al. (NIPBL) Hi-C Matrix. 

In Figure 24, A1 (red), A2 (orange), B1 (blue), and B2 (cyan) subcompartments are marked to 

the left of and above the matrix. From left to right, the following are noticed: 

1. Checkerboarding in a broad A compartment due to the presence of both A1 and A2 

subcompartments 

2. A large B1 compartment sandwiched between smaller A1 compartments 

3. Striping in a broadly B compartment due to the presence of A1 and A2 

subcompartments. 

4. The distinct interaction patterns of an A1 and an A2 subcompartment (top). 
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Figure 25.  A comparison between cis cluster labels and trans cluster labels. (ARI: 0.411) 

In Figure 25, the odd-even matrix of the NIPBL cell is reduced to two dimensions using PCA. 

The cis and trans clustering procedures were each run at a 1 megabase resolution, and then 

the cluster labels were plotted as different colors on the 2D reduction. It appears that the cis 

clusters are similar to the trans clusters, but there are some differences. Theoretically, 

compartmentalization should result in similar patterns across both cis and trans interactions, so 

this analysis reveals that the clustering methods are somewhat inconsistent. More methods will 

need to be developed to investigate the nature of subcompartments in cis and trans. 

 

This method does not work on Hi-C matrices that include TADs, which exist on the majority of 

Hi-C datasets. A simple investigation reveals that the 3D space created by the first three 

eigenvectors (E1, E2, and E3) can be used to find clusters. A simulated matrix that avoids TADs 

can be created that uses the fact that the cis interaction can be eigendecomposed. This matrix 

can be created using the three eigenvectors with the largest eigenvalues. Let the simulated 

matrix 𝑀 = ∑ 𝜆𝑘𝑒𝑘⃗⃗⃗⃗ ⊗ 𝑒𝑘⃗⃗⃗⃗ 
3
𝑘=1 , where 𝜆𝑘 and 𝑒𝑘⃗⃗⃗⃗  are the 𝑘-th eigenvalue and eigenvector, 

respectively.  

 
Figure 26. Reconstruction of subcompartments using E1-3. Left: correct cis interaction. Right: simulated matrix.  

Figure 26 compares the observed over expected cis interaction to the simulated matrix on the 

GM12878 dataset from Rao et al. [2]. The simulated matrix can reconstruct the compartmental 

signal even when other factors may interfere. Then, K-means can be used to cluster the 

simulated matrix. 
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Figure 27. Subcompartments from clustering simulated matrix. Left: sorted simulated matrix. Right: sorted original 

matrix. 

Figure 27 shows that the subcompartments are observed in the simulated matrix space, even if 

they are harder to observe in the original space. 

Clusters in eigenvector space 

For several chromosomes, especially in human embryonic stem cells (ESCs) in cell line H1, 

discrete clusters exist in the 3D space created by E1, E2, and E3. The Hi-C matrix was obtained 

from Krietenstein et al. [5]. Chromosome 3 of an H1 ESC was explored, as well as a 

differentiated HFFc6 cell (Figure 28). 

 

 
Figure 28. Clusters in eigenvector space. 

The nature of these clusters will be a future area of investigation. 

Conclusion 

It has been demonstrated that Hi-C matrices can be used to cluster chromosomal regions to 

reveal additional compartments domains past the consensus on an A/B split. Furthermore, the 

existence of these compartments has been justified through stability analysis, comparison to the 

A/B regions, and comparison with ChIP-seq and Repli-seq markers.  
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This process can be extended to any analysis of Hi-C data or other biological signals as these 

continue to be developed and refined. Additionally, the methods in this process can be used to 

aid in approaching any unsupervised clustering problem, even those not related to the field of 

genetics. 

Future exploration 

In the future, the clustering labels can be compared to computational models of chromatin 

structure to see whether they correlate with the 3-D structure of chromosomes. Additionally, the 

information about the types of clusters could be used to write a program optimized to find the 

A1, A2, B1, and B2 subcompartments from any Hi-C matrix, which other research groups could 

utilize.  

 

Clusters in cis interactions and the eigenvector space will need to be explored as well. These 

may offer an alternative to clustering sparse trans interactions. 

 

Another line of exploration is an analysis of the different patterns of subcompartments annotated 

by fine-grained clustering. These may lead to discoveries about chromatin states and 

connections between genes and genome structure. 

 

Finally, more sophisticated graph clustering methods, such as super-paramagnetic clustering, 

may be useful in determining the ground truth of the compartments. It will be important to use 

other clustering methods to cross-validate these results. 
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