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Abstract  

Major   histocompatibility   complex   class   I   (MHC   I)   molecules   present   peptides   from   cytosolic  
proteins   on   the   surface   of   cells.   Cytotoxic   T   cells   can   recognize   the   presented   antigens,   and  
infected   or   cancerous   cells   that   present   non-self   antigens   can   elicit   an   immune   response.   The  
identification   of   cancer-specific   peptides   (neoantigens)   produced   by   somatic   mutations   in   tumor  
cells   and   presented   by   MHC   I   molecules   enables   immunotherapies   such   as   personalized   cancer  
vaccines   and   adoptive   T   cell   transfer.   The   state   of   the   art   approach   searches   for   neoantigens  
derived   from   cancer-specific   somatic   variants   and   often   falls   short   for   cancers   with   few   somatic  
mutations.   Retained   introns   (RIs)   resulting   from   splicing   errors   in   cancer   are   an   additional   source  
of   neoantigens.   In   this   study,   we   identify   RIs   which   are   transcribed,   translated,   and   contribute  
peptides   to   MHC   I   presentation.   Using    de   novo    transcriptome   assembly   of   RNA-seq   data,we  
identified   1799   RIs   in   B721.221   cells.   Additionally,   we   detected   87   peptides   from   83   RIs   by  
liquid   chromatography-tandem   mass   spectrometry   of   the   MHC   I   immunopeptidome  
(LC-MS/MS).   Finally,   we   use   ribosome   profiling   (Ribo-seq),   which   provides   a   readout   of  
mRNA   translation,   to   identify   RIs   that   are   translated,   a   prerequisite   for   MHC   I   presentation.  
Previous   studies   have   predicted   thousands   of   RIs   but   have   been   able   to   validate   only   a   handful  
through   mass   spectrometry.   By   distinguishing   transcribed   but   untranslated   versus   translated  
candidates,   Ribo-seq   has   the   potential   to   improve   RI   predictions.   We   propose   the   use   of   a  
combination   of   RNA-seq   and   Ribo-seq,   paired   with   mass   spectrometry   validation,   to   more  
accurately   predict   the   contribution   of   RIs   to   the   MHC   I   immunopeptidome,   enabling   the   use   of  
RI   derived   neoantigens   in   future   immunotherapies.  
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Background  
The   major   histocompatibility   complex   class   I   (MHC   I)   complex   in   humans   is   encoded   by   the  
human   leukocyte   antigen   (HLA)   genes.   MHC   I   molecules   present   peptides   from   proteins   within  
the   cell   on   the   surface   of   cells,   and   cytotoxic   T   cells   can   recognize   presented   antigens   and  
distinguish   between   self   and   non-self   molecules.   Infected   or   cancerous   cells   that   present   non-self  
antigens   can   elicit   an   immune   response    (Swain,   1983) .   Neoantigens   are   the   tumor-specific  
antigens   which   result   from   somatic   mutations   in   cancer   cells   and   enable   their   immune  
identification.   Neoantigens   have   been   targeted   in   patient-specific   immunotherapies   targeting  
melanoma   and   glioblastoma    (Keskin   et   al.,   2019;   Ott   et   al.,   2017;   Sahin   et   al.,   2017) .   Currently,  
neoantigens   are   predicted   from   cancer-specific   somatic   mutations   in   protein-coding   regions   of  
the   genome    (Gubin   et   al.,   2015) .   However,   this   approach   falls   short   for   patients   with   low   somatic  
mutation   burden    (Rajasagi   et   al.,   2014) .   
 
Retained   introns   (RIs)   can   result   from   splicing   errors   in   cancer   cells   and   are   another   source   of  
potential   neoantigens.   In   order   to   determine   if   RIs   are   bona   fide   sources   of   neoantigens   in   cancer  
cells,   the   MHC   I   complex   can   be   biochemically   isolated   and   MHC   I-bound   peptides   subjected   to  
analysis   by   mass   spectrometry    (Abelin   et   al.,   2017;   Hunt   et   al.,   1992) .   Neoantigens   predicted  
from   tumor-specific   RIs   have   been   computationally   identified   using   RNA-seq   data   and   validated  
using   LC-MS/MS.   Despite   the   thousands   of   predicted   RIs,   only   a   handful   was   confirmed   by  
mass   spectrometry   to   be   presented   by   MHC   I   in   cancer   cell   lines    (Smart   et   al.,   2018) ,   suggesting  
that,   due   to   limitations   in   the   number   of   neoantigens   used   in   immunotherapy   vaccines,   there   are  
still   necessary   improvements   to   RI   prediction   prior   to   therapeutic   applications.  
 
Ribosome   profiling   (Ribo-seq)   has   emerged   as   a   powerful   approach   to   investigate   the   translated  
transcriptome   in   cells   and   tissues    (Ingolia   et   al.,   2009) .   It   is   based   on   enriching  
ribosome-protected   mRNA   footprints   (RPFs)   and   enables   the   identification   of   translated   open  
reading   frames    (Ji   et   al.,   2015) .   Here,   I   present   a   combination   of   RNA-seq,   Ribo-seq   and   mass  
spectrometry   analysis   to   validate   the   contribution   of   RIs   to   the   MHC   I   immunopeptidome   in  
healthy   and   cancer   cells,   and   I   show   progress   towards   improving   the   accuracy   of   translated   and  
presented   RI   predictions.  
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Methods   and   Results  

RI   prediction   and   analysis   were   performed   using   RNA-seq,   Ribo-seq,   and   mass   spectrometry   of  
the   MHC   I   immunopeptidome   from   B721.221   cells   engineered   to   express   a   single   class   I  
HLA-allele   (HLA-A*01:01,   HLA-A*33:03,   HLA-B*15:01,   HLA-B*44:02).   These   cells   were  
used   for   the   analysis   due   to   the   large   amount   of   the   MHC   I   immunopeptidome   MS   data  
previously   acquired   from   92   HLA   alleles   individually   expressed   in   these   cells    (Abelin   et   al.,  
2017) .   
 
Data   Preprocessing  

RNA-seq   reads   were   trimmed   of   adapter   sequences   and   aligned   to   the   genome.   Adapters   were  
removed   with   Cutadapt   1.15    (Martin,   2011) .   Reads   below   the   chosen   length   threshold   of   80   nt   or  
with   any   unknown   nucleotides   were   discarded,   leaving   99.29%   of   the   original   150   million   read  
pairs.   Reads   were   aligned   to   the   genome   with   STAR   2.5.3a,   using   reference   gene   annotations  
(Dobin   et   al.,   2013) .   The   reference   transcriptome   consisted   of   GENCODE   annotations   and  
transcripts   annotated   in   MiTranscriptome,   which   were   generated   by   de   novo   transcriptome  
assembly   of   RNA-seq   data   from   over   4,000   cancer   and   healthy   samples    (Harrow   et   al.,   2012;  
Iyer   et   al.,   2015) .   
 
Ribo-seq   reads   were   trimmed   of   primers   and   barcodes   with   Cutadapt,   stripped   of   contaminants  
such   as   ribosomal   RNA   with   BowTie    (Langmead   et   al.,   2009) ,   and   aligned   to   the   genome   with  
STAR,   using   annotations   generated   through    de   novo    transcript   assembly   described   in   the  
following   section.   In   contrast   to   RNA-seq,   where   long   fragments   of   mRNA   were   converted   to  
cDNA   and   sequenced,   generating   paired-end   reads   ~150   nt   long,   a   Ribo-seq   sequencing   library  
mainly   consists   of   28-29   nt   single   reads,   due   to   the   size   of   the   RPFs.   Compared   to   RNA-seq,   a  
greater   proportion   of   Ribo-seq   reads   map   to   multiple   genomic   loci   or   remained   unmapped  
(Figure   1).   
 

 
Figure   1:   STAR   alignment   summary  

Alignment   metrics   for   RNA-seq   (left)   and   Ribo-seq   (right),   showing   reads   aligned   to   a   single   locus   (blue),   multiple  

loci   (red),   too   many   loci   (>20   loci   for   RNA-seq   or   >10   loci   for   Ribo-seq)   (yellow),   or   that   were   unmapped   (green).   
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Ribo-seq   read   alignments   were   then   offset-corrected   with   RibORF    (Ji   et   al.,   2015) .  
Offset-correction   is   performed   in   order   to   truncate   each   read   to   1   nt   and   place   it   at   the   predicted  
position   of   the   ribosomal   A-site.   Reads   should   exhibit   trinucleotide   periodicity   supporting   the  
translation   of   a   given   open   reading   frame   (ORF)   (Figure   2).  
 

 
Figure   2:   Offset   Correction  

An   example   of   a   translated   ORF   in   the   5’   UTR   of   MLEC   supported   by   Ribo-seq.   Offset-corrected   reads   shown   in  

green   are   in-frame   reads,   supporting   the   translation   of   the   ORF,   while   the   reads   shown   in   grey   are   out   of   frame.   The  

start   codon   (M)   is   light   green,   the   stop   codon   (*)   is   red.   
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Retained   Intron   Candidate   Identification  
In   order   to   identify   RIs,    de   novo    transcripts   were   assembled   from   aligned   RNA-seq   data   using  
StringTie    (Pertea   et   al.,   2015) .   Transcripts   containing   RIs   were   identified   by   comparing    de   novo  
transcripts   to   the   reference   transcriptome   using   GffCompare   (v0.11.2,  
https://ccb.jhu.edu/software/stringtie/gffcompare.shtml ).   RI   candidates   that   were   contained  
within   the   coding   sequence   of   any   other   annotated   transcript   were   discarded.   
 
The    de   novo    assembly   and   RI   identification   were   performed   on   RNA-seq   data   from   4   B721.221  
cell   lines   individually   and   also   on   RNA-seq   data   combined   across   samples.   A   superset   of   1799  
RI   candidates   was   constructed   from   all   predictions   and   processed   downstream   (Figure   3).   
 

 
Figure   3:   RI   analysis   schematic,   after   adapter   trimming   and   genome   alignment  

BAM   files   are   generated   after   RNA-seq   reads   are   trimmed   and   aligned   to   the   genome,   and   used   for    de   novo  
transcript   and   RI   identification.   RI   candidates   are   predicted   from   each   individual   BAM   file,   as   well   as   from   a  

composite   BAM   file   containing   the   reads   from   all   4   samples.   For   the   superset   of   candidates,   features   are   generated  

from   RNA-seq   and   Ribo-seq   data.   Candidates   are   translated   into   proteins   so   that   they   can   be   searched   in   the   MS  

data.   
 
Carrying   out   RI   predictions   at   the   sample   level   as   well   as   across   samples   preserves  
sample-specific   differences   but   also   better   captures   overall   trends.   The   4   B721.221   cell   lines   are  
technical   replicates,   and   they   are   biologically   identical   apart   from   their   HLA   alleles.   Combining  
alignments   across   samples   increases   sensitivity   to   lowly-expressed   transcripts   and   enables   their  
identification   in    de   novo    transcript   assembly.   These   lowly-expressed   transcripts   are   potential  
sources   of   RI   candidates.   493   RI   candidates   were   predicted   only   in   the   combined   analysis  
(Figure   4.A).   The   transcripts   containing   those   candidates   trended   toward   lower   expression   levels  
compared   to   transcripts   containing   RI   candidates   predicted   in   the   individual   analysis.  
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The   median   TPM   of   transcripts   containing   RIs   predicted   only   in   the   combined   analysis   was   0.41,  
whereas   the   median   TPM   of   the   remaining   RI   transcripts   was   0.77   (Figure   4.B).   Here,   transcript  
expression   levels   are   quantified   using   TPM   (transcripts   per   million),   which   measures   the   number  
of   reads   aligning   to   each   transcript   normalized   by   transcript   length   and   sequencing   depth.  
StringTie   calculates   the   TPM   for   each   transcript   during   transcript   assembly    (Pertea   et   al.,   2015) .  
 

 
Figure   4:   

A.   The   number   of   RI   candidates   predicted   only   in   the   combined   analysis,   in   only   1   sample,   and   in   >1   sample.   

B.   TPM   of   the   transcripts   containing   RIs   unique   to   the   combined   analysis   (orange),   or   the   transcripts   identified   in  

both   the   combined   and   individual   searches   (blue).   The   rank   sum   test   p-value   of   the   two   distributions   is   1.36e-33.  
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Mass   Spectrometry   Analysis  

Following   MHC-I   immunoprecipitation,   MHC   I-bound   peptides   were   analyzed   by   LC-MS/MS  
across   17   HLA   alleles    (Abelin   et   al.,   2017) ,   Sarkizova   et   al,   2019).   In   order   to   determine   if   the  
RIs   generate   antigens   for   MHC   I   presentation,   I   constructed   a   protein   sequence   database   of   RI  
candidates   compatible   with   searching   the   MHC   I   immunopeptidome   mass   spectrometry   data.   For  
the   database,   each   RI   and   its   flanking   45   nt   in   neighboring   exons   were   translated   in   3   frames,   and  
potential   open   reading   frames   (ORFs)   that   ended   with   a   stop   codon   and   were   at   least   8   AA  
(amino   acids)   long   were   added   to   the   search   space,   such   that   each   RI   contributed   multiple   ORFs  
to   the   database   (Figure   5.A).   ORFs   shorter   than   8   AA   were   discarded   because   MHC   I-presented  
antigens   are   typically   9-11   AA   or,   less   frequently,   8   or   12   AA.   Entire   RIs   were   considered   rather  
than   just   their   exon-adjacent   regions   due   to   the   diverse   variations   of   intron   retention   (Figure  
5.B).  
 

 
 

Figure   5:   Generating   ORFs   from   a   RI   Candidate  

A.   A   representative   example   of   how   an   RI   and   its   flanking   regions   contribute   ORFs   to   the   protein   sequence  

database.   Nucleotide   sequence   (top)   is   translated   in   3   frames   (F0,   F1,   F2).   Stop   codons   (red),   are   marked   with  

asterisks.   Potential   ORFs   can   be   derived   from   the   three   frames   (bottom).   The   green   line   marks   the   minimum  

required   length   of   8   AA   for   ORFs   to   be   added   to   the   database.  

B.   Schematic   of   types   of   intron   retention.   Exonic   regions   of   a   transcript   are   signified   by   thick   blue   lines.   Intronic  

regions   are   signified   by   thin   blue   lines,   and   intronic   regions   that   are   retained   are   signified   by   thick   orange   lines.  
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MS   spectra   were   mapped   to   a   protein   sequence   database   including   translated   RIs   and   proteins  
annotated   in   the   UCSC   Genome   Browser.   Mapped   peptides   were   remapped   to   a   protein   sequence  
database   also   including   GENCODE   annotations   to   ensure   that   intron-mapping   peptides   did   not  
map   to   any   annotated   exons.   Of   the   44,678   peptides   found   in   the   mass   spectra,   87   were   found  
exclusively   in   introns   (Figure   6.A).   82   of   87   peptides   mapped   completely   within   RIs,   while   5  
peptides   spanned   an   intron-exon   boundary   (Figure   6.B).   
 
Out   of   the   493   RI   candidates   predicted   only   in   the   combined   analysis,   23   were   validated   by   MS,  
with   the   remaining   64   peptides   mapped   to   RI   candidates   predicted   in   at   least   1   individual   sample.  
The   distribution   of   RIs   across   the   3   prediction   categories   was   proportional   to   the   total   number   of  
candidates   in   each   category   (Figure   7).   Thus,   RI   candidates   with   varying   strengths   of   RNA-seq  
signal   are   translated   and   contribute   antigens   to   MHC   I   presentation.   Additionally,   identifying   RIs  
both   at   the   sample   level   as   well   as   across   all   samples   enabled   the   identification   MS-detected   RIs  
that   would   otherwise   not   be   found.   
 
84   (96.6%)   RI-assigned   peptides   mapped   to   just   1   RI,   while   the   remaining   3   peptides   mapped   to  
2   RIs   (Figure   6.C).   The   84   uniquely   mapping   peptides   supported   77   unique   RIs,   while   the   3  
multi-mapping   peptides   supported   6   unique   RIs.   Of   the   3   multi-mapping   peptides,   1   mapped   at  
the   same   genomic   locus   but   was   assigned   to   2   overlapping   but   distinct   introns   from   different  
isoforms   on   the   gene   AC093110.3.   The   other   2   peptides   each   mapped   to   2   RIs   at   distinct  
genomic   loci.   1   peptide   mapped   in   loci   that   had   identical   flanking   sequences,   while   the   other  
peptide   mapped   in   loci   that   had   identical   sequence   only   at   the   peptide   region.   The   3   out   of   87  
(3.4%)   peptides   that   mapped   to   multiple   loci   reflected   the   percent   of   unique   9-mers   in   the  
RI-derived   protein   sequences   that   appear   multiple   times.   Translated   RI-derived   ORFs   introduced  
1,069,750   9-mers   to   the   MS-search   space   (Figure   9).   2.1%   of   those   9-mers   appeared   more   than  
once   in   RI   protein   sequences,   so   such   a   proportion   of   multi-mapping   peptides   is   expected.   
 
In   total,   87   RI-assigned   peptides   supported   85   unique   ORFs,   5   of   which   were   supported   by   2  
peptides   when   counting   multi-mapping   peptides   multiple   times   (Figure   8.A).   4   of   those   5   ORFs  
were   supported   by   2   peptides   of   identical   sequence   detected   on   different   HLA   alleles.  
RI-assigned   peptides   supported   83   unique   RIs   out   of   the   1799   predicted,   and   7   of   those   RIs   were  
supported   by   more   than   1   peptide,   counting   multi-mapping   peptides   multiple   times   (Figure   8.B).  
For   3   of   those   7   RIs,   mapping   peptides   had   distinct   sequences   and   supported   more   than   1  
intronic   ORF,   and   for   the   other   4   RIs,   mapping   peptides   had   identical   sequence   and   were   derived  
from   distinct   alleles.  
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Figure   6:    Peptide   Mapping   

A.   Number   of   peptides   (y   axis)   found   in   total,   mapped   to   canonical   proteins,   and   to   RIs   (x   axis).  

B.   Number   of   peptides   (y   axis),   mapped   entirely   within   a   RI   or   overlapping   a   3’   or   5’   exon-intron   junction   (x   axis).  

Multimapping   peptides   were   counted   once.   

C.   Number   of   peptides   (y   axis)   mapping   to   a   unique   or   multiple   RIs   (x   axis).   

 

 

Figure   7:    Prediction   of   RI   Candidates   Across   Samples   for   All   Predicted   RIs   vs.   MS-Validated   RIs  

The   number   of   RI   candidates   predicted   in   >1   sample,   1   sample,   and   only   in   the   combined   analysis   for   all   predicted  

RIs   and   for   RIs   to   which   a   peptide   has   been   assigned.  

 

 

Figure   8:    Peptide   Support   Across   ORFs   and   Introns  

The   number   of   ORFs   or   RIs   (y-axis)   with   0,   1,   or   >1   peptides   mapping   (x-axis).   Peptides   that   map   multiple   times   are  

multiply   counted.  
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We   set   a   global   peptide-spectrum   match   FDR   of   1%,   which   resulted   in   a   detected   peptide   FDR   of  
1.33%   globally.   Applying   the   same   aggregate   false   discovery   rate   (FDR)   threshold   to   detected  
peptides   mapped   to   canonical   proteins   and   RIs   resulted   in   a   much   higher   FDR   among   RIs  
(29.89%)   than   among   canonical   proteins   (1.27%)   (Figure   9.A).   The   high   FDR   likely   results   from  
the   size   of   the   search   space,   and   likely   large   number   of   spurious   predictions.   To   quantify   the  
relative   contribution   of   RIs   to   the   overall   MHC   I   immunopeptidome   MS   search   space,   I  
identified   all   possible   9   AA   long   peptides   that   could   be   generated   from   the   RI   candidates   as   well  
as   from   the   GENCODE   references.   Adding   RI   candidates   to   the   search   space   yielded   a   9.73%  
increase   in   the   number   of   unique   9-mers   compared   to   the   UCSC   reference   alone   (Figure   9.B).   A  
larger   search   space   increases   the   FDR   as   the   same   number   of   spectra   are   matched   against   a  
greater   number   of   sequences,   many   of   which   are   spurious.   Reducing   the   number   of   RI   candidates  
by   filtering   those   that   are   less   likely   to   be   translated   would   decrease   the   size   of   the   search   space  
and   improve   the   FDR.  
 

 

Figure   9:    MS   False   Discovery   Rate   and   Search   Space  

A.   The   FDR   (y   axis)   of   peptides   assigned   to   canonical   proteins   or   RIs   (x   axis).  

B.     Number   of   unique   9   amino   acid   peptides   (y   axis)   in   the   MS   search   database   with   and   without   RIs.   
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Ribo-seq   Support   and   MS-Validation   of   Peptides,   ORFs,   and   Introns  
Given   that   peptides   from   just   83   out   of   1799   RIs   (4.6%)   predicted   by   RNA-seq   were   detected   in  
the   MHC   I   immunopeptidome,   in   agreement   with   previous   reports    (Smart   et   al.,   2018) ,   I  
hypothesized   that   there   are   additional   features   that   determine   which   RIs   are   translated   and  
contribute   antigens   to   the   MHC   I   immunopeptidome.   Because   Ribo-seq   provides   a   readout   of   the  
transcriptome   that   is   actually   translated   by   the   ribosomes,   I   investigated   whether   Ribo-seq   can  
improve   RI   prediction   by   comparing   RPF   support   of   MS-detected   and   undetected   ORFs   and  
introns.   
 

 

   Figure   10:   RI   candidates   with   RNA-seq,   Ribo-seq,   and   MS   data  

A.   Example   of   RI   candidate   that   is   supported   by   RNA-seq   but   does   not   appear   to   be   translated   and   presented   based  

on   a   lack   of   RPF   and   MS   support.   The   RI   is   from   the   AFF1   gene   at   chr4:88053016-88053422(+).  

B.   Example   of   RI   candidate   supported   by   RNA-seq,   Ribo-seq,   and   MS   data.   The   RI   is   from   the   RP11-1151B14.4   gene  

at   chr4:88053016-88053422(+).   The   peptide   highlighted   has   been   found   in   the   mass   spectra   for   the   allele   B3701.  

C.   The   peptide   shown   in   B   appears   to   match   the   expected   binding   motifs   for   its   allele.   
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For   example,   the   RI   candidate   on   the   gene   AFF1   presents   has   RNA-seq   support   but   lacks  
Ribo-seq   and   MS   support   (Figure   10.A),   while   the   RI   candidate   on   the   gene   RP11-1151B14.4   is  
supported   by   RNA-seq   and   Ribo-seq,   and   a   peptide   has   been   found   in   the   mass   spectra   that   maps  
to   the   RI   and   matches   the   expected   binding   motif   (Figure   10.B).   While   the   RI   candidates   are  
both   supported   by   RNA-seq,   the   second   RI   candidate   has   much   stronger   evidence   of   translation.  
The   first   RI   exemplifies   the   class   of   RI   candidates   I   seek   to   filter   out   from   RI   predictions,   while  
the   second   example   embodies   the   class   of   RI   candidates   that   I   seek   to   enrich   for.   
 
Overall,   MS-validated   RIs   and   the   ORFs   derived   from   each   RI   (Figure   5)   had   higher   rates   of  
RPF   support   compared   to   non-MS-validated   RIs   and   ORFs.   While   14.93%   of   MS-validated  
ORFs   have   any   in-frame   RPFs,   6.38%   of   all   predicted   ORFs   and   6.37%   of   non-MS-validated  
ORFs   have   any   in-frame   RPFs.   The   rate   of   RPF   support   in   the   MS-validated   set   was   2.3-fold  
greater   than   the   rate   in   the   non-MS-validated   set   (Figure   11.A).   Mirroring   the   trend   seen   among  
ORFs,   80.72%   of   MS-validated   introns   had   any   RPFs,   enriched   in   comparison   to   the   67.83%   of  
all   introns   with   any   RPFs   and   67.31%   of   non-MS-validated   introns   with   RPF   support   (Figure  
11.B).   While   the   majority   of   predicted   RIs   had   RPF   support,   a   greater   proportion   of   RIs  
validated   by   MS   had   RPF   support   than   RIs   not   validated   by   MS.   Thus,   the   number   of   both   ORFs  
and   introns   with   any   RPFs   was   enriched   in   the   MS-validated   subsets.  
 
In   addition   to   examining   how   many   MS-validated   ORFs   are   RPF   supported,   I   also   looked   at   how  
many   RPF-supported   ORFs   are   MS-validated.   ORFs   and   introns   supported   by   Ribo-seq   had  
higher   levels   of   MS   validation   than   ORFs   and   introns   not   supported   by   Ribo-seq.   0.21%   of  
RPF-supported   ORFs   are   detected   by   MS   while   0.11%   of   non-RPF-supported   ORFs   are  
validated   by   MS,   so   MS-validation   levels   were   nearly   double   for   RPF-supported   ORFs   (Figure  
12.A).   Additionally,   while   5.48%   of   RPF-supported   introns   were   validated   by   MS,   just   2.77%   of  
non-RPF-supported   introns   were   MS-validated   (Figure   12.B).   The   0.11%   of   ORFs   and   2.77%   of  
introns   not   supported   by   RPFs   but   validated   by   MS,   present   at   low   levels   but   still   present,   may  
be   accounted   for   by   a   need   for   a   greater   sequencing   depth.  
 
Thus,   RPF   support   is   a   factor   positively   related   to   MS-validation   that   provides   further  
information   about   the   translation   of   an   RI   candidate.   
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Figure   11:    RPF   Support   for   RI   Candidates   and   RI   Candidate   ORFs  

A.   The   proportion   of   RI   candidates   that   had   any   RPF   reads   for   introns   that   were   validated   or   not   validated   by   MS.   

B.   The   proportion   of   RI   ORFs   with   any   supporting   RPFs.   Only   ORFs   fully   contained   within   introns   were   considered  

in   this   figure   so   as   not   to   artificially   inflate   RPF   support   levels   by   including   ORFs   in   exonic   flanking   regions.  
 

 

Figure   12:    MS   Validation   of   ORFs,   partitioned   by   RPF   support  

Percent   of   ORFs   or   introns   that   are   supported   by   peptides   for   all   ORFs   or   introns,   ORFs   or   introns   with   at   least   1  

in-frame   RPF,   and   ORFs   or   introns   without   any   in-frame   RPFs.  
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Ribo-seq   Featurization  
Additional   features   generated   from   Ribo-seq   data   may   be   able   to   better   distinguish   true   positives  
from   false   positives   and,   through   such   filtering,   increase   the   precision   of   RI   predictions.   I   have  
generated   additional   Ribo-seq   features   for   each   RI-derived   ORF,   beyond   just   checking   for   the  
presence   of   any   RPFs,   and   seek   to   use   those   features   to   filter   RI   candidates   in   this   way   (Table   1).   
 
More   highly   translated   ORFs   should   have   higher   numbers   of   aligned   RPFs.   In-frame   Ribo-seq  
TPM   provides   a   measure   of   the   abundance   of   an   ORF’s   translation   normalized   by   length   and  
sequencing   depth.   In   addition,   the   majority   of   RPFs   should   be   in-frame   with   a   translated   ORF,   a  
feature   that   I   quantify   as   purity,   calculated   as   the   ratio   of   reads   in-frame   vs.   out-frame   (Figure  
13).   Translated   ORFs   are   also   expected   to   have   uniform   coverage   by   RPFs,   which   I   define   as  
entropy   (Figure   13).   Furthermore,   true   ribosomal   footprints   should   be   approximately   28   nt   long,  
so   translated   ORFs   should   have   mapping   RPFs   with   a   mode   length   of   approximately   28   nt.  
These   additional   features   will   help   enable   the   differentiation   of   truly   translated   ORFs   from   those  
supported   by   spurious   Ribo-seq   reads   resulting   from   RPF   multimapping   or   from   mRNA  
protection   by   non-ribosomal   proteins    (Ji   et   al.,   2016) .   
 
Table   1:   Ribo-seq   features   for   RI   candidates  

Feature   for   each   RI   candidate  Definition/Calculation  Purpose  

Presence   of   Any   RPFs  Binary   variable   to   indicate   whether   a  
peptide,   ORF,   or   intron   has   0   or   >0  
RPFs   aligned  

Indicate   the   lowest   threshold   of   Ribo-seq  
support  

In-frame   Ribo-seq   TPM  TPM   calculated   from   Ribo-seq   data,  
considering   only   reads   in   the  
translational   frame   for   each   candidate  

Quantify   amount   of   Ribo-seq   support   of   the  
candidate’s   translation  

Purity  Ratio   of   in-frame   RPFs   to   total   RPFs  Measure   trinucleotide   periodicity   of   aligned  
RPFs.   Truly   translated   transcripts   should  
demonstrate   strong   periodicity   (Figure   13).  

Percentage   of   maximum  
entropy   (PME)   of   aligned  
RPFs   (ribosome   protected  
fragments)  

Entropy   of   RPF   distribution   out   of   the  
entropy   of   a   uniform   distribution    (Ji,  
2018)  

Evaluate   the   distribution   of   RPF   alignments  
across   a   RI   candidate.   For   example,   a  
concentration   of   reads   in   a   single   base  
(which   would   have   low   PME)   does   not  
provide   very   strong   evidence   of   translation  
(Figure   13).  

Mode   RPF   length  Most   frequent   length   of   RPFs   aligned  
to   the   RI   candidate  

Distinguish   Ribo-seq   support   stemming  
from   true   translation   events   from   RPF  
alignments   that   are   artifacts   of   the   protocol.  
True   ribosomal   footprints   should   be   ~28   nt.  
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Figure   13:    RPF   Entropy   and   Purity  

Schematics   of   an   ORF   with   varying   purity   and   varying   entropy.   The   start   codon   (M)   is   light   green,   the   stop   codon  

(*)   is   red.   In-frame   reads   are   shown   in   green,   and   out-of-frame   reads   are   shown   in   gray.   While   in   ORFs   with   high  

purity,   nearly   all   reads   are   in-frame,   in   ORFs   with   low   purity,   few   reads   are   in-frame.   ORFs   with   high   entropy   have  

reads   distributed   throughout   their   lengths   while   ORFs   with   low   entropy   have   RPFs   aligning   in   only   small   subsets   of  

their   length.  
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Discussion  
More   accurate   prediction   of   intron   retention   is   an   important   step   toward   improved   identification  
of   neoantigens   derived   from   intron   retention.   RNA-seq   data   supports   the   prediction   of   1799   RIs  
in   this   data,   but   only   83   are   validated   by   MS,   reflecting   previous   findings    (Smart   et   al.,   2018) .  
Considering   Ribo-seq   data   in   addition   to   RNA-seq   data   when   predicting   RIs   has   the   potential   to  
lower   the   false   positive   rate   by   providing   information   about   the   translation   of   RI   candidates   to  
distinguish   translated   candidates   from   non-translated   candidates.   
 
6.38%   of   RI-derived   ORFs   were   supported   by   any   in-frame   RPFs   and   were   2   times   as   likely   to  
be   MS   validated   compared   to   ORFs   not   supported   by   any   in-frame   RPFs   (0.21%   vs   0.11%).   The  
rates   of   MS-validation   of   RPF-supported   ORFs   and   introns   were   both   enriched   compared   to   rates  
of   MS-validation   of   non-RPF-supported   ORFs   and   introns   (Figure   12).   Accordingly,   features  
derived   from   Ribo-seq   data   have   the   potential   to   improve   the   accuracy   of   RI   prediction,   in  
conjunction   with   RNA-seq   data   and   features   such   as   RNA-seq   TPM   of   the   transcripts   containing  
RI   candidates   and   the   RNA-seq   expression   levels   of   the   RI   itself,   which   may   also   be   useful   in  
determining   the   likelihood   of   an   RI   candidate’s   translation   and   presentation.  
 
Although   the   current   FDR   within   intron-assigned   peptides   is   29.89%,   filtering   RI   candidates  
using   RPF   features   will   decrease   the   contribution   of   RI-derived   protein   sequences   to   the   search  
space,   mitigate   the   number   of   spurious   matches,   and   improve   the   FDR.   Here,   the   small   number  
of   intron-assigned   peptides   and   even   smaller   number   of   RPF-supported   intron-assigned   peptides  
in   this   data   restricts   meaningful   quantitative   analysis   of   the   use   of   RPF   features   in   improving  
FDR.  
 
In   addition,   MHC   I   molecules   derived   from   different   HLA   alleles   bind   a   different   repertoire   of  
peptide   ligands,   presenting   peptides   with   specific   anchor   motifs    (Sidney   et   al.,   2008) .   Therefore,  
not   all   RI-derived   ORFs   have   peptides   that   are   presentable   by   MHC   I   molecules.   I   hope   to   more  
closely   examine   the   6.37%   of   ORFs   with   in-frame   RPF(s)   supporting   translation   but   not   lacking  
MS   support   to   determine   whether   they   contain   presentable   peptides   compatible   with   the   MHC   I  
binding   motifs   of   the   searched   alleles   or   if   they   should   not   be   expected   to   be   validated   by   MS.  
 
In   order   to   determine   the   extent   of   intron   contribution   to   the   MHC   I   immunopeptidome,   I   have  
taken   advantage   of   the   vast   MHC   I   immunopeptidome   MS   data   that   has   been   previously  
generated   in   the   lab.   However,   in   order   to   find   cancer-specific   RIs   that   could   be   used   for   targeted  
immunotherapy,   I   have   also   applied   my   pipeline   to   RNA-seq   data   acquired   from   patient-derived  
melanoma   cultures   for   which   MHC   I   immunopeptidome   MS   data   is   also   available.   I   have  
generated   a   patient-specific   RI   database   that   will   be   used   to   search   MS   spectra.   Ultimately,   I   will  
compare   the   RI   candidates   as   well   as   MS-identified   RI   antigens   in   tumor   samples   to   their  
equivalents   in   healthy   samples   in   order   to   find   truly   cancer-specific   RIs.   
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