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Introduction and Motivation

1. What is Gene Expression Data?
2. Gene expression data in cancer research
3. The “Curse of Dimensionality”
4. Current dimensionality reduction methods

5. Current state-of-the-art method



1. What is Gene
Expression Data?




Expression level of a gene = how much does
this gene contribute to the final gene product
(either proteins or functional RNAs)?

Biomedical sequencing technology allows for
Gene simultaneous measurements of genome-
Expression wide gene expressions in organism tissues

Genome-wide gene expression levels are
different for healthy subjects and diseased
subjects
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2. Gene Expression Data
for Cancer Research



Cancer diagnosis & identifying key genes to
tumor formation

Multiclass cancer diagnosis using tumor gene
expression sighatures

Sridhar Ramaswamy**, Pablo Tamayo*, Ryan Rifkin**, Sayan Mukherjee**, Chen-Hsiang Yeang*$, Michael Angelo*,
Christine Ladd*, Michael Reich*, Eva Latulippe?, Jill P. Mesirov*, Tomaso Poggio*, William Gerald7,

Massimo Loda'l, Eric S. Lander*-**, and Todd R. Golub*'*#*
*Whitehead Institute/Massachusetts Institute of Technology Center for Genome Research, Cambridge, MA 02138; Departments of 'Adult and ""Pediatric
Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02115; 'Department of Pathology, Brigham and Women'’s Hospital,

Boston, MA 02115; "Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021; and Departments of **Biology,
*McGovern Institute, Center for Brain and Computational Learning, and *Artificial Intelligence Laboratory, Massachusetts Institute of

Technology, Cambridge, MA 02139

Contributed by Eric S. Lander, October 23, 2001
(Ramaswamy et al., 2001, PNAS)
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> “ ® Novel molecular subgroups for clinical classification and
outcome prediction in childhood medulloblastoma:

a cohort study

Edward C Schwalbe, Janet C Lindsey, Sirintra Nakjang, Stephen Crosier, Amanda ) Smith, Debbie Hicks, Gholamreza Rafiee, Rebecca M Hill,
Alice lliasova, Thomas Stone, Barry Pizer, Antony Michalski, Abhijit Joshi, Stephen B Wharton, Thomas S Jacques, Simon Bailey, Daniel Williamson,

Steven C Clifford

(Schwalbe et al., 2017, The Lancet)
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nature

genetics

Pan-cancer network analysis identifies combinations
of rare somatic mutations across pathways and
protein complexes

Mark D M Leiserson'->14, Fabio Vandin!-213:14, Hsin-Ta Wu!:2, Jason R Dobson!-3, Jonathan V Eldridgel,

Jacob L Thomas!, Alexandra Papoutsaki!, Younhun Kim!, Beifang Niu?, Michael McLellan?, Michael S Lawrence>,
Abel Gonzalez-Perez®, David Tamborero®, Yuwei Cheng?, Gregory A Ryslik®, Nuria Lopez-Bigas®?, Gad Getz>!0,
Li Ding*!112 & Benjamin ] Raphael’-?

(Leiserson et al., 2014, Nature Genetics) II Ii |_
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SCIENTIFIC REPQRTS

Received: 9 January 2017
Accepted: 27 June 2017
Published online: 1 August 2017

Machine Learning-Assisted
Network Inference Approach to
Identify a New Class of Genes that
Coordinate the Functionality of
Cancer Networks

Mehrab Ghanat Bari', ChoongYong Ung*, Cheng Zhang?, Shizhen Zhu? & Hu Li(»*

(Bari et al., 2017, Scientific Reports)
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3. The Curse of
Dimensionality




High dimensions of gene expression data is
problematic...

* Dimensions of gene expression data is too high!
e Each sample has thousands of genes describing it (i.e. “thousands-
dimensional”)

* When the sample size is significantly smaller than the dimension size,
there is no way to gain any useful information from the data
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Dimensionality Reduction Strategies

* Feature (gene) Selection
* e.g. Differential analysis
* You still keep genes as features

* Feature Learning/feature extraction
* e.g. PCA
* You construct artificial features from combinations of genes
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This research fo
feature learning a
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extract both computationally

and biologically meaningful

features from gene
expression data.
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Il Methodology

1. Related Works
2. netDAE: An Overview
3. Denoising Autoencoders (DAE)
4. Network Modularity
5. Putting it all together!



Disclaimer

* The following slides contain unpublished contents of a new algorithm.

* Please refrain from taking pictures or notes, and please do not post
anything online about this algorithm before it is formally published.

* Thank you so much for your understanding!
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1. Related Works (state-of-
the-art)



State-of-the-art: ADAGE

* Analysis using Denoising Autoencoders of Gene Expression

* Developed by Tan et al. at Geisel School of Medicine at Dartmouth
and Perelman School of Medicine at University of Pennsylvania

 Tan et al., 2015, Pac. Symp. Biocomput.: First use of DAE for feature
learning of gene expression data; tested on METABRIC and TCGA-
BRCA breast cancer datasets

* Tan et al., 2016, mSystems: GE feature learning with DAE generalized
into framework called ADAGE; tested on Pseudomonas aeruginosa

 Tan etal., 2017, Cell Systems: Ensemble version of ADAGE, eADAGE,
was developed; tested on Pseudomonas aeruginosa
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Published 1n final edited form as:
Pac Symp Biocomput. 2015 ; 20: 132-143.

UNSUPERVISED FEATURE CONSTRUCTION AND KNOWLEDGE
EXTRACTION FROM GENOME-WIDE ASSAYS OF BREAST
CANCER WITH DENOISING AUTOENCODERS

JIE TAN, MATTHEW UNG, CHAO CHENG, and CASEY S GREENE’
Department of Genetics Institute for Quantitative Biomedical Sciences Norris Cotton Cancer
Center The Geisel School of Medicine at Dartmouth Hanover, NH 03755, USA

(Tan et al., 2015, Pac. Symp. Biocomput.)
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ADAGE-Based Integration of Publicly
Available Pseudomonas aeruginosa Gene
Expression Data with Denoising
Autoencoders llluminates Microbe-Host
Interactions

Jie Tan, John H. Hammond,? Deborah A. Hogan,? ““'Casey S. Greene®*

Department of Genetics? and Department of Microbiology and Immunology,® Geisel School of Medicine at
Dartmouth, Hanover, New Hampshire, USA; Department of Systems Pharmacology and Translational
Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

(Tan et al., 2016, mSystems)
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Cell Systems

Unsupervised Extraction of Stable Expression
Signatures from Public Compendia with an Ensemble
of Neural Networks

Jie Tan,"® Georgia Doing,?® Kimberley A. Lewis,” Courtney E. Price,” Kathleen M. Chen,® Kyle C. Cady,*°
Barret Perchuk,*® Michael T. Laub,** Deborah A. Hogan,? and Casey S. Greene®’-*

Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
2Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA

3Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
4Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA

SHoward Hughes Medical Institute, Cambridge, MA, USA

6These authors contributed equally

’Lead Contact

*Correspondence: csgreene@upenn.edu

http://dx.doi.org/10.1016/j.cels.2017.06.003

(Tan et al., 2017, Cell Systems) o —
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The ADAGE Framework

 ADAGE is essentially a framework of using denoising autoencoders
(DAE) for feature learning of gene expression data

* Provided very innovative ways to interpret the learned features
* Able to retrieve a gene subset even with a feature learning method
* Learned features are biologically meaningful

* My method is inspired by and based on ADAGE

* | only compare with ADAGE, not the ensemble version eADAGE, for
the sake of simplicity (my method can also be extended to an
ensemble version, so here | only compare the base version)
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2. netDAE: An Overview



't is very simple: net + DAE = netDAE!!

* netDAE is essentially a variation of denoising autoencoders (DAE)
that, for the first time ever, incorporates complex network measures

* Preserves the advantages of ADAGE: you are still able to retrieve an
important gene subset from a feature learning method

 Task/trait-specific (not really “supervised”)
* Needs to know the clinical traits of the samples

* Superior accuracies

| will explain the "DAE” part and the “net” part separately and talk
about how they connect to form netDAE
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3 Denoising Autoencoder
(DAE)



Neural Networks: From input to output

* A feedforward network structure that learns the relationship between
the input X and the output Y through nonlinear combinations of
input features (using weights and biases).

54 a,

1) — o ( wOT T, o b<1>) ;

y h? =g¢® (W(Z)Th(l) + b(2)) :

output layer

input layer

hidden layer Illil_
(Venelin Valkov, Medium.com) FﬂiIIIEE



Autoencoder: From input to input

e Autoencoder is a neural network that

copies the input to its output. xi—» () P () x
* The hidden layer has a small number of e . _—
nodes to force the input into a lower ¢< ).
dimension. The loss calculates how well the <i—» P > X;
input can be reconstructed from this low _
. . . . x¢ —-( ) ()—>x
dimensional space back to its original
Input Hidden Output
Space. Layer Layer Layer

* The hidden layer is a “code” that efficiently
represents the high dimensional input data I [— ?
Decoder —
in lower dimensions. For feature learning 1 K o
tasks, we take the hidden layer node as the ™ — Ut
“learned features.” EHUHr




Denoising Autoencoder (DAE)

* Autoencoder that maps the Reco::;L:Cted
corrupted input to the clean — T
input

Hidden Layer

Encode T

* Avoids “prefect
reconstruction” (decoder
learning the inverse function Corrupted
. Input Layer
of the encoder) and makes it Add o
. noise T
able to denoise data

Reconstruction Error

Input

(Tan et al., 2015, Pac. Symp. Biocomput.)
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In other words, DAE maps the input
into a low dimensional space.

Evaluates the low dimensional space based on how much information it contains
about the original space by trying to reconstruct the original space from it.
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4 Network Modularity



Newman and Girvan Modularity

PHYSICAL REVIEW E 69, 026113 (2004)
Finding and evaluating community structure in networks

M. E. J. Newman'? and M. Girvan®*
'Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109-1120, USA
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
3Department of Physics, Cornell University, Ithaca, New York 14853-2501, USA
(Received 19 August 2003; published 26 February 2004)

We propose and study a set of algorithms for discovering community structure in networks —natural divi-
sions of network nodes into densely connected subgroups. Our algorithms all share two definitive features:
first, they involve iterative removal of edges from the network to split it into communities, the edges removed
being identified using any one of a number of possible “betweenness’ measures, and second, these measures
are, crucially, recalculated after each removal. We also propose a measure for the strength of the community
structure found by our algorithms, which gives us an objective metric for choosing the number of communities
into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering
community structure in both computer-generated and real-world network data, and show how they can be used
to shed light on the sometimes dauntingly complex structure of networked systems.

DOI: 10.1103/PhysRevE.69.026113 PACS number(s): 89.75.Hc, 87.23.Ge, 89.20.Hh, 05.10.—a

(Newman and Girvan, 2004, Physical Review E) o
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Newman and Girvan Modularity

* A measure of the quality of Ao
modularization (clusterization) of O%:E
a complex network | NG

* Used in many clustering
algorithms to assess the quality of
clustering

FIG. 1. A small network with community structure of the type

° In the ra nge [O 1] Where 1 means considered in this paper. In this case there are three communities,
’ ’

denoted by the dashed circles, which have dense internal links but

the network has a St rong between which there is only a lower density of external links.
commun |ty/c| usterization (Newman and Girvan, 2004, Physical Review E)
structure
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Definition of Modularity

* Actual fraction of within-community edges (density of within clusters)
minus the expected value of the fraction of within-community edges
(density within clusters) in a random graph

b

Q= 2 (eii_aiz):Tr e—||e’
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b

Q= Z (eii_aiz):Tr e—||e’

Consider a network of k communities. Make a k by k matrix e whose element e;; is

the fraction of edges in the network that link vertices in community i to vertices in

community J.
k
z e;; = Tr(e) = fraction of edges that connect

l_ vertices in the same community
Define row sums a; = Z? e;j, representing the fraction of edges that connect to
vertices in community L.

* el-j= aiaj,

when network edges are randomly wired
regardless of community structure

First term = fraction of within-community edges
Second term = expected fraction of within-community edges for a random grapfijy
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5 Putting it together!




A recap...

* Denoising Autoencoder: Maps data from the original high
dimensional space to a low dimensional space

* Assessment of the mapping: level of reconstruction

* Newman Girvan Modularity: Measure of the quality of a graph’s
clusterizations

* Used in clustering algorithms to determine the best way to assign vertices to
clusters in a graph

* How is this related to microarray data?

* Modularity is used in unsupervised learning (clustering) but we have labeled
datal
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112 Key Ideas: What if...

1. What if we view microarray data not as a matrix, but as a weighted
sample graph (a complex network)?

2. What if we do not use modularity to determine the quality of
clusterization structures, but, the other way around, given the
clusterization structures, we use modularity to determine the
quality of the “space” (which determines the distance measures)
that this clusterization structure is in?
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l[dea 1: Weighted Sample Graph (WSG)

* Given an m-dimensional space where the samples are defined by m
features. We create a weighted sample graph over all samples such that:

* Each sample is a vertex.

* |t is a complete Kn graph where each vertex is connected to every other
vertex, where n is the number of samples.

* Weight of the edge connecting two vertices is determined by the m-
dimensional Euclidean distance between the two samples in this given
space.

Il Clinical traits of the samples determine the clusterization structure of the
graph
* e.g. healthy patients in one cluster, and diseased patients in another cluster
MIT
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l[dea 2: Modularity as an assessment of “space”

* Recall: You can make a WSG in the original, high-dimensional space or
in the low-dimensional space mapped by DAE

* Distance measures are different because the same sample is represented by
different features

* A simple modification of modularity into weighted modularity allows
us to calculate the modularity of WSGs
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Comparing the modularity of two spaces

* Assumption: In a “good” space that represents the samples, samples
of different labels should be quite different.

* In other words, the WSG with identical clusterization structures in a “good”
space measured by its distance measures should have higher modularity
measures

* DAE: the low dimensional space that contains similar amount of
information as the original space is optimal

* Modularity: the low dimensional space that exhibits high quality
clusterizations compared to the original space is optimal

* netDAE: | like both.
HIT
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netDAE optimizes the reconstruction
error in its decoded layer and the
modularity measure of its encoded
layer simultaneously
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Finale: The Loss Function

* Original data: X; labels of c classes (formulated as identity function): 6. (x;, x;)
e Corrupted input: X

 Output: X

* Encoder: H = f(X)

* Decoder: Z = g(H)

* Modularity function: Q(H, 6,)

* Loss:

L(X» X, 5k) — ALencod.(f(sg): 6C) + Ldecod.(z — g(f(X)),X)
= —2log (Q(f(%).4.)) - Zk—l{x" logz, + (1 — x)log[1 — z,.]}
) N
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Il Results

1. Datasets
2. (optional) Training strategies
3. Evaluation Method: node cutoffs
4. Comparison with ADAGE



1 Datasets




METABRIC and TCGA compendia

* |dentical to the 2015 ADAGE publication

* Two largest breast cancer gene expression data compendia:
METABRIC (held by Cambridge Cancer Institute) and TCGA-BRCA (held
by NIH)

* Preprocessing and normalization follows the ADAGE paper exactly
« METABRIC: 1992 + 144 = 2136 samples

e TCGA: 525 + 22 =547 samples (recently updated to contain 1222 samples, but
| use the old version for a fair comparison with the ADAGE paper)

* Both contained information about breast cancer traits/subtypes
* Basal, Her2 enriched, Luminal A, Luminal B, Normal-like
* ER+/- signaling (whether patient benefits from endocrine therapy
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2 Evaluation Method




Evaluation of Node Activations (computational)

1. Parameter tuning on the entire METABRIC dataset
2. Randomly split METABRIC into 2/3 discovery and 1/3 test sets

3. Given a label of interest, run through the discovery set:
1. For each node in the hidden layer, find its range of activations and divide
into 10 cutoffs
2. Find the cutoff for this node that results in the best separation of all the
discovery samples’ labels
3. Test the most accurate node from discovery set on the test set of METABRIC

4. Test the most accurate node from the accuracy set on the TCGA set as
validation (never seen TCGA set before)

4. Repeat 10 times and average accuracy to avoid split biases
N
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Evaluation of pathway discovery (biological)

* (Employed in ADAGE but not yet o ssransom s

experimented with netDAE; will be Sanpies_
a future task to do for netDAE)

* For given trait of interest (e.g. ER
status), find the best node and
retrieve the set of genes with |
highest weights to this node Reconstructed ____Decode Nodes to ‘

Reconstruct Expression

Corrupted Encode | Nodes — Biological
Expression Features

< saugn
mE
mE
+
(T
CEE
CEEEE"

Reconstruction Error
‘ PN BN
(]
N
I N
NN

* Run pathway enrichment analysis
to see whether this gene set is
biologically related to the clinical
trait of interest o
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3 (Computational)
Comparison with ADAGE



Table 1: Node cutoff accuracies reported in Tan et al.

Tumor ER+/- Basal Her2 LumA LumB Normal-Like
MB. discov.  0.970 0.848 0.929 0.761 0.780 0.755 0.750
MB. test 0.968 0.833 0.918 0.741 0.777 0.750 0.748
TCGA val. 0.996 0.749 0.712 0.800 0.717 0.733

Table 2: Node cutoff accuracies of netDAE (tuned on ER status only).

Tumor ER+/- Basal Her2 LumA LumB Normal-Like
MB. discov.  0.989 0.929 0.948 0.881 0.791 0.797 0.905
MB. test 0.987 0.880 0.932 0.880 0.774 0.780 0.905
TCGA val. 0.982 0.852 0.888 0.854 0.702 0.737 0.945

| did not have enough time to tune the hyperparameters for all the labels; therefore, | tuned with the ER status

label and use the hyperparameters on all other datasets.

netDAE outperforms ADAGE for almost all [abels except the one for Luminal A. The reason has not been

investigated thoroughly, but | suspect that tuning the hyperparameters for Luminal A would resolve the issue.

A more formal comparison would ensure ADAGE and netDAE use the exact same partitions each time and Iooillil—

into the t-test for statistical validity.
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IV Discussion and Future Works

1. Potential improvements of netDAE
2. Formal comparison to ADAGE using t-tests

3. Evaluate pathway enrichment of netDAE (biological evaluation)
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Thank you for your time! Any questions?




