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I Introduction and Motivation



1. What is Gene 
Expression Data?



Gene 
Expression

Expression level of a gene = how much does 
this gene contribute to the final gene product 
(either proteins or functional RNAs)?

Biomedical sequencing technology allows for 
simultaneous measurements of genome-
wide gene expressions in organism tissues

Genome-wide gene expression levels are 
different for healthy subjects and diseased 
subjects



2. Gene Expression Data 
for Cancer Research 



Cancer diagnosis & identifying key genes to 
tumor formation

(Ramaswamy et al., 2001, PNAS)



(Schwalbe et al., 2017, The Lancet)



(Leiserson et al., 2014, Nature Genetics)



(Bari et al., 2017, Scientific Reports)



3. The Curse of 
Dimensionality



High dimensions of gene expression data is 
problematic…
• Dimensions of gene expression data is too high!
• Each sample has thousands of genes describing it (i.e. “thousands-

dimensional”)
• When the sample size is significantly smaller than the dimension size, 

there is no way to gain any useful information from the data



Dimensionality Reduction Strategies

• Feature (gene) Selection
• e.g. Differential analysis
• You still keep genes as features

• Feature Learning/feature extraction
• e.g. PCA
• You construct artificial features from combinations of genes



This research follows the 
feature learning approach to 
extract both computationally 
and biologically meaningful 

features from gene 
expression data.



1. Related Works
2. netDAE: An Overview

3. Denoising Autoencoders (DAE)
4. Network Modularity

5. Putting it all together!

II Methodology



Disclaimer

• The following slides contain unpublished contents of a new algorithm.
• Please refrain from taking pictures or notes, and please do not post 

anything online about this algorithm before it is formally published.
• Thank you so much for your understanding!



1. Related Works (state-of-
the-art)



State-of-the-art: ADAGE

• Analysis using Denoising Autoencoders of Gene Expression
• Developed by Tan et al. at Geisel School of Medicine at Dartmouth 

and Perelman School of Medicine at University of Pennsylvania
• Tan et al., 2015, Pac. Symp. Biocomput.: First use of DAE for feature 

learning of gene expression data; tested on METABRIC and TCGA-
BRCA breast cancer datasets
• Tan et al., 2016, mSystems: GE feature learning with DAE generalized 

into framework called ADAGE; tested on Pseudomonas aeruginosa
• Tan et al., 2017, Cell Systems: Ensemble version of ADAGE, eADAGE, 

was developed; tested on Pseudomonas aeruginosa



(Tan et al., 2015, Pac. Symp. Biocomput.)



(Tan et al., 2016, mSystems)



(Tan et al., 2017, Cell Systems)



The ADAGE Framework

• ADAGE is essentially a framework of using denoising autoencoders 
(DAE) for feature learning of gene expression data
• Provided very innovative ways to interpret the learned features
• Able to retrieve a gene subset even with a feature learning method
• Learned features are biologically meaningful

• My method is inspired by and based on ADAGE
• I only compare with ADAGE, not the ensemble version eADAGE, for 

the sake of simplicity (my method can also be extended to an 
ensemble version, so here I only compare the base version)



2. netDAE: An Overview



It is very simple: net + DAE = netDAE!!

• netDAE is essentially a variation of denoising autoencoders (DAE) 
that, for the first time ever, incorporates complex network measures
• Preserves the advantages of ADAGE: you are still able to retrieve an 

important gene subset from a feature learning method
• Task/trait-specific (not really “supervised”)
• Needs to know the clinical traits of the samples

• Superior accuracies
• I will explain the ”DAE” part and the “net” part separately and talk 

about how they connect to form netDAE



3 Denoising Autoencoder 
(DAE)



Neural Networks: From input to output

• A feedforward network structure that learns the relationship between 
the input ! and the output " through nonlinear combinations of 
input features (using weights and biases).

(Venelin Valkov, Medium.com)



Autoencoder: From input to input
• Autoencoder is a neural network that 

copies the input to its output.
• The hidden layer has a small number of 

nodes to force the input into a lower 
dimension. The loss calculates how well the 
input can be reconstructed from this low 
dimensional space back to its original 
space.
• The hidden layer is a “code” that efficiently 

represents the high dimensional input data 
in lower dimensions. For feature learning 
tasks, we take the hidden layer node as the 
“learned features.”



Denoising Autoencoder (DAE)

• Autoencoder that maps the 
corrupted input to the clean 
input
• Avoids “prefect 

reconstruction” (decoder 
learning the inverse function 
of the encoder) and makes it 
able to denoise data

(Tan et al., 2015, Pac. Symp. Biocomput.)



In other words, DAE maps the input 
into a low dimensional space.

Evaluates the low dimensional space based on how much information it contains 
about the original space by trying to reconstruct the original space from it.



4 Network Modularity



Newman and Girvan Modularity

(Newman and Girvan, 2004, Physical Review E)



Newman and Girvan Modularity

• A measure of the quality of 
modularization (clusterization) of 
a complex network
• Used in many clustering 

algorithms to assess the quality of 
clustering
• In the range [0, 1], where 1 means 

the network has a strong 
community/clusterization 
structure

(Newman and Girvan, 2004, Physical Review E)



Definition of Modularity 

• Actual fraction of within-community edges (density of within clusters) 
minus the expected value of the fraction of within-community edges 
(density within clusters) in a random graph



Consider a network of k communities. Make a k by k matrix e whose element !"# is 
the fraction of edges in the network that link vertices in community $ to vertices in 
community %. 

&
"

' !"" = )* + = ,*-./$01 0, !23!4 /ℎ-/ .011!./
6!*/$.!4 $1 /ℎ! 4-7! .07781$/9

Define row sums -" = ∑#' !"#, representing the fraction of edges that connect to 
vertices in community $.

∗ !"#= -"-#,
=ℎ!1 1!/=0*> !23!4 -*! *-1207?9 =$*!2
*!3-*2?!44 0, .07781$/9 4/*8./8*!

First term = fraction of within-community edges
Second term = expected fraction of within-community edges for a random graph



5 Putting it together!



A recap…

• Denoising Autoencoder: Maps data from the original high 
dimensional space to a low dimensional space
• Assessment of the mapping: level of reconstruction

• Newman Girvan Modularity: Measure of the quality of a graph’s 
clusterizations
• Used in clustering algorithms to determine the best way to assign vertices to 

clusters in a graph
• How is this related to microarray data?
• Modularity is used in unsupervised learning (clustering) but we have labeled 

data!



!!! 2 Key Ideas: What if…

1. What if we view microarray data not as a matrix, but as a weighted 
sample graph (a complex network)?

2. What if we do not use modularity to determine the quality of 
clusterization structures, but, the other way around, given the 
clusterization structures, we use modularity to determine the 
quality of the “space” (which determines the distance measures) 
that this clusterization structure is in?



Idea 1: Weighted Sample Graph (WSG)

• Given an m-dimensional space where the samples are defined by m 
features. We create a weighted sample graph over all samples such that:
• Each sample is a vertex.
• It is a complete Kn graph where each vertex is connected to every other 

vertex, where n is the number of samples.
• Weight of the edge connecting two vertices is determined by the m-

dimensional Euclidean distance between the two samples in this given 
space.
• !! Clinical traits of the samples determine the clusterization structure of the 

graph
• e.g. healthy patients in one cluster, and diseased patients in another cluster



Idea 2: Modularity as an assessment of “space”

• Recall: You can make a WSG in the original, high-dimensional space or 
in the low-dimensional space mapped by DAE
• Distance measures are different because the same sample is represented by 

different features

• A simple modification of modularity into weighted modularity allows 
us to calculate the modularity of WSGs



Comparing the modularity of two spaces

• Assumption: In a “good” space that represents the samples, samples 
of different labels should be quite different.
• In other words, the WSG with identical clusterization structures in a “good” 

space measured by its distance measures should have higher modularity 
measures

• DAE: the low dimensional space that contains similar amount of 
information as the original space is optimal
• Modularity: the low dimensional space that exhibits high quality 

clusterizations compared to the original space is optimal
• netDAE: I like both.



netDAE optimizes the reconstruction 
error in its decoded layer and the 
modularity measure of its encoded 
layer simultaneously



Finale: The Loss Function

• Original data: !; labels of c classes (formulated as identity function): "# (%&, %()
• Corrupted input: *!
• Output: !
• Encoder: + = - *!
• Decoder: . = / +
• Modularity function: 0(+, "#)
• Loss: 

1 *!, !, "2 = 3145#67. -(*!), "# + 174#67. . = /(- *! ), !
= −3 log 0 - *! , "# −>

2?@

7
{%2 log B2 + 1 − %2 DE/ 1 − B2 }



1. Datasets
2. (optional) Training strategies

3. Evaluation Method: node cutoffs
4. Comparison with ADAGE

III Results



1 Datasets



METABRIC and TCGA compendia

• Identical to the 2015 ADAGE publication
• Two largest breast cancer gene expression data compendia: 

METABRIC (held by Cambridge Cancer Institute) and TCGA-BRCA (held 
by NIH)
• Preprocessing and normalization follows the ADAGE paper exactly
• METABRIC: 1992 + 144 = 2136 samples
• TCGA: 525 + 22 = 547 samples (recently updated to contain 1222 samples, but 

I use the old version for a fair comparison with the ADAGE paper)
• Both contained information about breast cancer traits/subtypes

• Basal, Her2 enriched, Luminal A, Luminal B, Normal-like
• ER+/- signaling (whether patient benefits from endocrine therapy



2 Evaluation Method



Evaluation of Node Activations (computational)

1. Parameter tuning on the entire METABRIC dataset
2. Randomly split METABRIC into 2/3 discovery and 1/3 test sets
3. Given a label of interest, run through the discovery set: 

1. For each node in the hidden layer, find its range of activations and divide 
into 10 cutoffs

2. Find the cutoff for this node that results in the best separation of all the 
discovery samples’ labels

3. Test the most accurate node from discovery set on the test set of METABRIC
4. Test the most accurate node from the accuracy set on the TCGA set as 

validation (never seen TCGA set before)
4. Repeat 10 times and average accuracy to avoid split biases



Evaluation of pathway discovery (biological)

• (Employed in ADAGE but not yet 
experimented with netDAE; will be 
a future task to do for netDAE)
• For given trait of interest (e.g. ER 

status), find the best node and 
retrieve the set of genes with 
highest weights to this node
• Run pathway enrichment analysis 

to see whether this gene set is 
biologically related to the clinical 
trait of interest



3 (Computational) 
Comparison with ADAGE



Tumor ER+/- Basal Her2 LumA LumB Normal-Like

MB. discov. 0.970 0.848 0.929 0.761 0.780 0.755 0.750

MB. test 0.968 0.833 0.918 0.741 0.777 0.750 0.748

TCGA val. 0.996 0.749 0.992 (?) 0.712 0.800 0.717 0.733

Table 1: Node cutoff accuracies reported in  Tan et al.

Tumor ER+/- Basal Her2 LumA LumB Normal-Like

MB. discov. 0.989 0.929 0.948 0.881 0.791 0.797 0.905

MB. test 0.987 0.880 0.932 0.880 0.774 0.780 0.905

TCGA val. 0.982 0.852 0.888 0.854 0.702 0.737 0.945

Table 2: Node cutoff accuracies of netDAE (tuned on ER status only).

I did not have enough time to tune the hyperparameters for all the labels; therefore, I tuned with the ER status 
label and use the hyperparameters on all other datasets.
netDAE outperforms ADAGE for almost all labels except the one for Luminal A. The reason has not been 
investigated thoroughly, but I suspect that tuning the hyperparameters for Luminal A would resolve the issue.
A more formal comparison would ensure ADAGE and netDAE use the exact same partitions each time and look 
into the t-test for statistical validity.



1. Potential improvements of netDAE
2. Formal comparison to ADAGE using t-tests

3. Evaluate pathway enrichment of netDAE (biological evaluation)

IV Discussion and Future Works
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