Verkle Trees:
Ver(y Short Mer)kle Trees

John Kuszmaul

Mentored by Alin Tomescu
PRIMES Computer Science Conference - 10/13/18

Storing Files Remotely

Droppox

Alice sends her files F, F., ..., F .

_—

Storing Files Remotely

Dropon

e—

g What is Fi?

Here you go: F

—r

Proving/Verifying Integrity
Dropbox

Alice sends her files F, F., ..., F .

_—

Alice generates a digest d
of her files.

Proving/Verifying Integrity

What is Fi?

F., and a proof of membership, .

—

Alice verifies the proof i against d to
make sure F_has not been modified. 5

Secure Hash Functions
Original File F.

\ Ideally,

Bob owes Hash H(F

Alice $70k.] ———3p» Function +> 01(1%1_0...1 10 finding any two distinct
256 files, F., F,, s.t.
bits

Corrupted File F.) =)
! takes 228 attempts.

Bob owes Hash H(E") =

Alice $20. | ———p Function ——~—p>] (0F0)1_1 1101
056 /

bits

A Simple Scheme for Verifying File Integrity

Alice hashes each of her files:

H(F,)

H(F,)

H(F,)

H(F,)

H(F,)

H(F;)

H(F,)

H(F,)

Proving/Verifying Integrity: Simple Scheme
Dropbox

Alice sends her files F, F., ..., F .

_——

Alice computes and stores
the hashes locally.

Proving/Verifying Integrity: Simple Scheme

Alice computes H(F) and checks that it
equals stored H(F)). 9

Problem: Alice has to store n hashes.

Alice’'s digest must be constant-sized.

10

h

Solution: Merkle Trees

hg =

SN TS AN

h12

= [H(hg hy)

/\

H(h,, h,)

h, =

H(h,, h,)

14~ H(h,,, h.,)

/\

The root is the digest.

H(F)

H(F,)

H(F,)

H(F,)

f

f

f

f

Fo

F

F

Fs

Proving/Verifying Integrity: Merkle Tree

Alice sends her files F, F., ..., F .

_——

Alice computes the Merkle tree
and stores the root locally.

Drop‘paox

12

Proving/Verifying Integrity: Merkle Tree

What is Fi?

How does Dropbox respond with a proof?

Droppox

13

Merkle Proofs

hg =

h12

h

/\

H(h,, h,)

hy =

H(h,, h,)

14~ H(h,,, h.,)

SN TS AN

Dropbox sends these
highlighted nodes.

/\

= [H(hg hy)

h13= H(h1o'h11)
=[H(h, h,) h,, = |H(h, h))

H(F)

H(F,)

H(F,)

H(F,)

f

f

f

!

Fo

F

F

Fs

Proving/Verifying Integrity: Merkle Tree

Fy H(hy, h,) || HFD [[H(h,, hy,)

10" 114

Drop‘paox

15

h. =

Verifying the Proof)

h. = H(h& hg)

12

/\

9

= H(h, h,) h, = [H(h,, h,)

SN

Heh h)

H(F,)

H(F,)

!

/\

h,,= H(h1o'h11)

13

Alice computes the root starting
from F, with these highlighted proof.

16

h = H(h,, h..) Alice hashes up the tree.

Verifying th%

h,, = |H(hg ho) h,,= |H(h hyy)
= |H(h, h.) h, = [H(h,, h,)
H(F,) H(F,)

h = H(h,, h..) Alice hashes up the tree.

Verifying th%

h,, = |H(hg ho) h,,= |H(h hyy)
= |H(h, h.) h, = [H(h,, h,)
H(F,) H(F,)

h = H(h,, h..) Alice hashes up the tree.

Verifying th%

h12 = H(hg, h9) h13 = H(h1oi h1‘|)
¢ = |H(hy h.) hy = [H(h,, h,)
h, =/ 3~
H(F,) H(F,)

h. =

Alice checks if the LFs has not been

H(h12' h13) modified!

Verifying the Proof Merkle Root = d X
/\ Time to stop
using Dropbox!

h,, = [H(hg hy)

12

PG

9

= [H(hy hy) h, = H(h,, h,)

N

h,= [Hh h11)

13

H(F,)

H(F,)

f

20

Everyone loves Merkle Trees!

e They're beautiful. n = number of leaves (files)

e They're efficient.

Merkle Tree
Construct Tree O(n)
Proof size O(log n)
Update File O(log n)

VN A NI AN AN

21

Problem: Many small files = Merkle proofs too large.

Problem: Many small files = Merkle proofs too large.

e Suppose Alice has one billion = 2 files.

23

Problem: Many small files = Merkle proofs too large.

e Suppose Alice has one billion = 2 files.

VN NE.A- N AN

Merkle Proof: ~ 1 KB
(in addition to the file itself)

Depth: 30

24

Possible Solution: g-ary Merkle Tree

Example: 3-ary tree

_—

H(F,, F., F,

H(F,, F.,F,

)

N

H(h,, h., h,)

H(F., F,, F)

N

N

H(F,)

H(F,)

H(F,)

H(F)

H(F,)

H(Fy)

T

T

T

T

T

T

T

T

F

1

F

F,

Fs

F

7

Fg

25

Problem: The Proof Becomes Bigger, O(q Iogqn)

Example: 3-ary tree

_— T

H(F, F,, F.)

H(F,, F.,F,

N

H(h b, h)

012

H(F,, F.,F

6’ 7' 8

)

IS

H(F.)

H(F,)

H(F,)

H(F,)

H(F.)

H(F,)

T

T

T

T

T

T

T

T

F

1

F

F

4

Fs

F

7

Fg

26

Our Work: Verkle Trees reduce the proof size

We pick a q.

We reduce the proof size from log,n to Iogqn =log,n/ log,q.
Factor of log,q less bandwidth!

At the cost of q times more computation

(e.9.,q=1024 = log,(q) =1 i Bob
Wow, that’s big! @

27

Does this matter? (Hint: Yes)

e Merkle hash trees are everywhere in cryptography:
o Consensus Protocols

Public-Key Directories

Cryptocurrencies

Encrypted Web Applications

Secure File Systems

o O O O

Vector Commitment (VC) Schemes by catalano and Fiore (2013)

Commitment (C) is the digest.

Each file has a constant-sized proof (7). C

4;

T

29

VC Schemes are Computationally Impractical

Scheme/op Construct Proof size
Merkle O(n) O(log,n)

VC scheme O(nZ) O(1)

30

Our Solution: Replace Hash Functions with VC Schemes

This is the Verkle Tree.

C4
C1' L Cz' LT Cs' T,

31

We now have a Verkle Tree!

We get to choose the The root commitment is
branching factor, q, C, — the digest.

to be whatever we
want! /T\

32

Alice Receives Iogqn Constant-Sized 1t's.

Alice verifies:
C 1. VC Proof from F,to C1: T,
4 2. VC Proof from C1 to C4: T,
C1' L Cz' o Cs' T,
0’ TTO F1’ TI-’I F2' 'IT2 F3' TI-3 F4' 1T4 I:5 'IT5 F6 Tr6 I:7' 1T7 I:8' TI-8

33

Comparison

Scheme/op Construct Update file Proof size
Merkle O(n) O(log,n) O(log,n)
g-ary Merkle O(n) O(q Iogqn) O(q Iogqn)
VC scheme 0o(n?) O(n) o(1)

qg-ary Verkle O(qn) O(q logqn) O(/ogqn)

Verkle Trees let us trade off proof-size vs. construction time.

34

My Contribution

| proved complexity bounds for Verkle Trees.

| implemented Verkle Trees in C++.

| am measuring performance.

Verkle Tree Construction: g = 1024

Time (us)

2000000000

1500000000

1000000000

500000000

5000

10000

Number of Nodes

15000

@ Time (us)

Acknowledgements

e Thank you Alin!
e Thank you PRIMES!
e Thank you Mom and Dad!

