On Quasirandom Permutations

Eric K. Zhang Mentor: Tanya Khovanova

Plano West Senior High School

PRIMES Conference, May 20, 2018

Eric K. Zhang (PWSH)

• An ordering of the elements of a set

- An ordering of the elements of a set
- ${\ensuremath{\, \circ }}$ Elements of the symmetric group S_n

- An ordering of the elements of a set
- Elements of the symmetric group S_n
- Denoted (4, 2, 3, 1), or 4231 for short.

Randomness:

- Cryptography
- Unbiased ordering of products
- Selection of election districts

Randomness:

- Cryptography
- Unbiased ordering of products
- Selection of election districts

What kinds of properties do random permutations have?

Permutation density helps define quasirandomness.

- A sequence of distinct integers a₁, a₂,..., a_k is order-isomorphic to a permutation π ∈ S_k if they are ordered the same.
- Example: The sequences 295 and 396 are both order-isomorphic to the permutation 132, but 123 and 483 are not.

This helps study patterns of subsequences within permutations.

The density of a pattern permutation π in a permutation τ , denoted by $t(\pi, \tau)$, is the probability that the restriction of τ to a random $|\pi|$ -point set is order-isomorphic to π .

The density of a pattern permutation π in a permutation τ , denoted by $t(\pi, \tau)$, is the probability that the restriction of τ to a random $|\pi|$ -point set is order-isomorphic to π .

Example

The density $t(12, 132) = \frac{2}{3}$, while $t(21, 132) = \frac{1}{3}$. In general, the density $t(21, \tau)$ equals the number of inversions in τ divided by $\binom{\tau}{2}$.

The density of a pattern permutation π in a permutation τ , denoted by $t(\pi, \tau)$, is the probability that the restriction of τ to a random $|\pi|$ -point set is order-isomorphic to π .

Example

The density $t(12, 132) = \frac{2}{3}$, while $t(21, 132) = \frac{1}{3}$. In general, the density $t(21, \tau)$ equals the number of inversions in τ divided by $\binom{\tau}{2}$.

Example

For a random permutation $\tau \in S_n$ and any fixed permutation π (of which there are $|\pi|!$ of a given length),

$$\mathbb{E} t(\pi, \tau) = \frac{1}{|\pi|!}.$$

Eric K. Zhang (PWSH)

Sequences of permutations $\{\tau_j\}$ are called convergent if as $j \to \infty$,

- Lengths $|\tau_j| \to \infty$
- Sequences of densities $t(\pi, \tau_i)$ converge, for any permutation π

Advantage: we can ignore higher-order terms, e.g. $\binom{n}{2}/n^2 = 1/2 + o(1)$.

Behavior of random permutations with respect to subpermutation densities:

Definition

A convergent sequence of permutations $\{\tau_j\}$ is called *quasirandom* if for every permutation π ,

$$\lim_{j \to \infty} t(\pi, \tau_j) = \frac{1}{|\pi|!}.$$

Convergent sequences of permutations can be characterized by corresponding limit objects known as *permutons*.

Definition

A *permuton* is a probability measure μ on the unit square $[0, 1]^2$ with *uniform marginals*, meaning the individual distributions of the two coordinates are uniform.

The definition of density in permutations, $t(\pi, \tau)$, can be extended to density in permutons, $t(\pi, \mu)$.

Convergent sequences of permutations can be characterized by corresponding limit objects known as *permutons*.

Definition

A *permuton* is a probability measure μ on the unit square $[0, 1]^2$ with *uniform marginals*, meaning the individual distributions of the two coordinates are uniform.

The definition of density in permutations, $t(\pi, \tau)$, can be extended to density in permutons, $t(\pi, \mu)$.

Theorem

For every convergent sequence of permutations $\{\tau_j\}$, there exists a corresponding permuton μ with the same densities of pattern permutations.

A permuton μ is called *k*-symmetric if sampling permutations of length k from μ is uniformly random, i.e. the densities are all 1/k!.

Example

The following permuton is 2-symmetric:

Inflation

Are there non-uniform three-symmetric permutons?

Image: Image:

3

Inflation

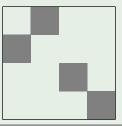
Are there non-uniform three-symmetric permutons? Yes.

Definition

A permutation τ of length n is called k-inflatable if the permuton μ corresponding to mass uniformly distributed along the graph of the permutation on an $n \times n$ grid is k-symmetric.

Example

The inflation of 3421 is the following permuton:



Eric K. Zhang (PWSH)

On Quasirandom Permutations

PRIMES 2018 10 /

20

Let $B(\pi)$ be the set of all pairs (b, σ) corresponding to ways of dividing π into consecutive blocks of size b_1, b_2, \ldots, b_k , with relative ordering σ .

Theorem

The density of π in the inflation of τ is

$$t(\pi, \textit{inflated}(\tau)) = \frac{|\pi|!}{|\tau|^{|\pi|}} \sum_{(b,\sigma)\in B(\pi)} \left[\binom{|\tau|}{|\sigma|} t(\sigma, \tau) \cdot \prod_{x\in b} \frac{1}{x!^2} \right].$$

Theorem

A permutation $\tau \in S_n$ is 3-inflatable if and only if $t(12, \tau) = \frac{1}{2}$ and

$$t(123, \tau) = t(321, \tau) = \frac{2n - 7}{12(n - 2)},$$

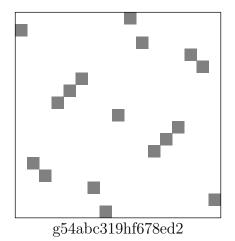
$$t(132,\tau) = t(213,\tau) = t(231,\tau) = t(312,\tau) = \frac{4n-5}{24(n-2)}.$$

Corollary

$$n \equiv 0, 1, 17, 64, 80, 81 \pmod{144}.$$

There are 750 rotationally symmetric permutations of size 17 that are 3-inflatable, e.g. g54abc319hf678ed2.

3-Inflatable Example



Quasirandomness is only dependent on densities of four-point permutations.

Theorem (Kral and Pikhurko, 2013)

Any four-symmetric permuton μ is the uniform probability measure.

Theorem

Let $S = S_4 \setminus D$ for some equi-dense $D \subseteq S_4$. If a convergent sequence $\{\tau_j\}$ of permutations satisfies $t(\pi, \tau_j) = 1/4! + o(1)$ for every $\pi \in S$, then it is quasirandom.

Equi-dense subset of size 8 \implies better condition for quasirandomness, only requiring densities of 16/24 four-point permutations.

$$\int F(X,Y)^2 \ \mathrm{d} V = \int F(X,Y)XY \ \mathrm{d} V = \int F(x,y)^2 \ \mathrm{d} v = \frac{1}{9}.$$

PRIMES 2018 16 / 2

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$\underbrace{\int F(X,Y)^2 \ \mathrm{d}V}_A = \underbrace{\int F(X,Y)XY \ \mathrm{d}V}_B = \underbrace{\int F(x,y)^2 \ \mathrm{d}v}_C = \frac{1}{9}.$$

Permutation	A	В	С
1234, 2134	1/3	1/4	1/6
1243, 2143	1/6	1/6	1/6
1324, 2314, 3124, 3214	1/4	1/4	1/6
1342, 1423, 2341, 2413, 3142, 3241, 4123, 4213	1/12	1/12	1/12
1432, 2431, 4132, 4231	0/1	1/24	1/12
3412, 3421, 4312, 4321	0/1	0/1	1/12

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$\int F(X,Y)^2 \mathrm{d}V =$	$\int F(X,Y)XY \mathrm{d}V =$	$\int F(x,y)^2 \mathrm{d}v = \frac{1}{9}.$

Permutation	A	В	С
1234, 2134	1/3	1/4	1/6
1243, 2143	1/6	1/6	1/6
1324, 2314, 3124, 3214	1/4	1/4	1/6
1342, 1423, 2341, 2413, 3142, 3241, 4123, 4213	1/12	1/12	1/12
1432, 2431, 4132, 4231	0/1	1/24	1/12
3412, 3421, 4312, 4321	0/1	0/1	1/12

We call a group of permutations *equi-dense* if each element of the group has the same coefficient in the expression of each of these integrals as a linear combination of densities of permutations in S_4 .

- Find a complete list of minimal subsets of permutations for which having density 1/24 is a sufficient condition for quasirandomness.
- Better understand inflatable permutations, including examples with inflated density 1/24 of some $\pi \in S_4$.
- Use the technique of flag algebras to generate bounds on densities given those of a certain subset.

PRIMES

- Dr. Tanya Khovanova, my mentor
- Professor Yufei Zhao, who suggested the project and gave helpful discussion
- Dr. James Hirst, who helped explain flag algebras
- Dr. Elina Robeva, for listening to this presentation and giving suggestions

Thank you for listening!

- Joshua Cooper and Andrew Petrarca. "Symmetric and Asymptotically Symmetric Permutations". In: (Feb. 2008).
- Daniel Král and Oleg Pikhurko. "Quasirandom permutations are characterized by 4-point densities". In: Geometric and Functional Analysis 23 (May 2012).
- Jakub Sliačan and Walter Stromquist. "Improving Bounds on packing densities of 4-point permutations". In: *Discrete Mathematics and Theoretical Computer Science* 19.2 (Feb. 2008).