On Quasirandom Permutations

Eric K. Zhang
Mentor: Tanya Khovanova
Plano West Senior High School

PRIMES Conference, May 20, 2018

Permutations

- An ordering of the elements of a set

Permutations

- An ordering of the elements of a set
- Elements of the symmetric group S_{n}

Permutations

- An ordering of the elements of a set
- Elements of the symmetric group S_{n}
- Denoted ($4,2,3,1$), or 4231 for short.

Introduction

Randomness:

- Cryptography
- Unbiased ordering of products
- Selection of election districts

Introduction

Randomness:

- Cryptography
- Unbiased ordering of products
- Selection of election districts

What kinds of properties do random permutations have?

Patterns

Permutation density helps define quasirandomness.

- A sequence of distinct integers $a_{1}, a_{2}, \ldots, a_{k}$ is order-isomorphic to a permutation $\pi \in S_{k}$ if they are ordered the same.
- Example: The sequences 295 and 396 are both order-isomorphic to the permutation 132 , but 123 and 483 are not.
This helps study patterns of subsequences within permutations.

Permutation Density

Definition

The density of a pattern permutation π in a permutation τ, denoted by $t(\pi, \tau)$, is the probability that the restriction of τ to a random $|\pi|$-point set is order-isomorphic to π.

Permutation Density

Definition

The density of a pattern permutation π in a permutation τ, denoted by $t(\pi, \tau)$, is the probability that the restriction of τ to a random $|\pi|$-point set is order-isomorphic to π.

Example

The density $t(12,132)=\frac{2}{3}$, while $t(21,132)=\frac{1}{3}$. In general, the density $t(21, \tau)$ equals the number of inversions in τ divided by $\binom{\tau}{2}$.

Permutation Density

Definition

The density of a pattern permutation π in a permutation τ, denoted by $t(\pi, \tau)$, is the probability that the restriction of τ to a random $|\pi|$-point set is order-isomorphic to π.

Example

The density $t(12,132)=\frac{2}{3}$, while $t(21,132)=\frac{1}{3}$. In general, the density $t(21, \tau)$ equals the number of inversions in τ divided by $\binom{\tau}{2}$.

Example

For a random permutation $\tau \in S_{n}$ and any fixed permutation π (of which there are $|\pi|$! of a given length),

$$
\mathbb{E} t(\pi, \tau)=\frac{1}{|\pi|!}
$$

Permutation Sequences

Sequences of permutations $\left\{\tau_{j}\right\}$ are called convergent if as $j \rightarrow \infty$,

- Lengths $\left|\tau_{j}\right| \rightarrow \infty$
- Sequences of densities $t\left(\pi, \tau_{j}\right)$ converge, for any permutation π Advantage: we can ignore higher-order terms, e.g. $\binom{n}{2} / n^{2}=1 / 2+o(1)$.

Quasirandomness

Behavior of random permutations with respect to subpermutation densities:

Definition

A convergent sequence of permutations $\left\{\tau_{j}\right\}$ is called quasirandom if for every permutation π,

$$
\lim _{j \rightarrow \infty} t\left(\pi, \tau_{j}\right)=\frac{1}{|\pi|!}
$$

Permutation Limits

Convergent sequences of permutations can be characterized by corresponding limit objects known as permutons.

Definition

A permuton is a probability measure μ on the unit square $[0,1]^{2}$ with uniform marginals, meaning the individual distributions of the two coordinates are uniform.

The definition of density in permutations, $t(\pi, \tau)$, can be extended to density in permutons, $t(\pi, \mu)$.

Permutation Limits

Convergent sequences of permutations can be characterized by corresponding limit objects known as permutons.

Definition

A permuton is a probability measure μ on the unit square $[0,1]^{2}$ with uniform marginals, meaning the individual distributions of the two coordinates are uniform.

The definition of density in permutations, $t(\pi, \tau)$, can be extended to density in permutons, $t(\pi, \mu)$.

Theorem

For every convergent sequence of permutations $\left\{\tau_{j}\right\}$, there exists a corresponding permuton μ with the same densities of pattern permutations.

Symmetry

Definition

A permuton μ is called k-symmetric if sampling permutations of length k from μ is uniformly random, i.e. the densities are all $1 / k$!.

Example

The following permuton is 2-symmetric:

Inflation

Are there non-uniform three-symmetric permutons?

Inflation

Are there non-uniform three-symmetric permutons? Yes.

Definition

A permutation τ of length n is called k-inflatable if the permuton μ corresponding to mass uniformly distributed along the graph of the permutation on an $n \times n$ grid is k-symmetric.

Example

The inflation of 3421 is the following permuton:

Densities in Inflations

Definition

Let $B(\pi)$ be the set of all pairs (b, σ) corresponding to ways of dividing π into consecutive blocks of size $b_{1}, b_{2}, \ldots, b_{k}$, with relative ordering σ.

Theorem

The density of π in the inflation of τ is

$$
t(\pi, \text { inflated }(\tau))=\frac{|\pi|!}{|\tau|^{|\pi|}} \sum_{(b, \sigma) \in B(\pi)}\left[\binom{|\tau|}{|\sigma|} t(\sigma, \tau) \cdot \prod_{x \in b} \frac{1}{x!^{2}}\right] .
$$

3-Inflatable Permutations

Theorem

A permutation $\tau \in S_{n}$ is 3-inflatable if and only if $t(12, \tau)=\frac{1}{2}$ and

$$
\begin{gathered}
t(123, \tau)=t(321, \tau)=\frac{2 n-7}{12(n-2)} \\
t(132, \tau)=t(213, \tau)=t(231, \tau)=t(312, \tau)=\frac{4 n-5}{24(n-2)} .
\end{gathered}
$$

Corollary

$$
n \equiv 0,1,17,64,80,81 \quad(\bmod 144)
$$

There are 750 rotationally symmetric permutations of size 17 that are 3-inflatable, e.g. g54abc319hf678ed2.

3-Inflatable Example

Four-Symmetry

Quasirandomness is only dependent on densities of four-point permutations.

Theorem (Kral and Pikhurko, 2013)

Any four-symmetric permuton μ is the uniform probability measure.

Better Condition for Quasirandomness

Theorem

Let $S=S_{4} \backslash D$ for some equi-dense $D \subseteq S_{4}$. If a convergent sequence $\left\{\tau_{j}\right\}$ of permutations satisfies $t\left(\pi, \tau_{j}\right)=1 / 4!+o(1)$ for every $\pi \in S$, then it is quasirandom.

Equi-dense subset of size $8 \Longrightarrow$ better condition for quasirandomness, only requiring densities of $16 / 24$ four-point permutations.

Equi-Dense

$$
\int F(X, Y)^{2} \mathrm{~d} V=\int F(X, Y) X Y \mathrm{~d} V=\int F(x, y)^{2} \mathrm{~d} v=\frac{1}{9} .
$$

Equi-Dense

$$
\underbrace{\int F(X, Y)^{2} \mathrm{~d} V}_{A}=\underbrace{\int F(X, Y) X Y \mathrm{~d} V}_{B}=\underbrace{\int F(x, y)^{2} \mathrm{~d} v}_{C}=\frac{1}{9}
$$

Permutation	A	B	C
1234,2134	$1 / 3$	$1 / 4$	$1 / 6$
1243,2143	$1 / 6$	$1 / 6$	$1 / 6$
$1324,2314,3124,3214$	$1 / 4$	$1 / 4$	$1 / 6$
$1342,1423,2341,2413,3142,3241,4123,4213$	$1 / 12$	$1 / 12$	$1 / 12$
$1432,2431,4132,4231$	$0 / 1$	$1 / 24$	$1 / 12$
$3412,3421,4312,4321$	$0 / 1$	$0 / 1$	$1 / 12$

Equi-Dense

$$
\underbrace{\int F(X, Y)^{2} \mathrm{~d} V}_{A}=\underbrace{\int F(X, Y) X Y \mathrm{~d} V}_{B}=\underbrace{\int F(x, y)^{2} \mathrm{~d} v}_{C}=\frac{1}{9}
$$

Permutation	A	B	C
1234,2134	$1 / 3$	$1 / 4$	$1 / 6$
1243,2143	$1 / 6$	$1 / 6$	$1 / 6$
$1324,2314,3124,3214$	$1 / 4$	$1 / 4$	$1 / 6$
$1342,1423,2341,2413,3142,3241,4123,4213$	$1 / 12$	$1 / 12$	$1 / 12$
$1432,2431,4132,4231$	$0 / 1$	$1 / 24$	$1 / 12$
$3412,3421,4312,4321$	$0 / 1$	$0 / 1$	$1 / 12$

We call a group of permutations equi-dense if each element of the group has the same coefficient in the expression of each of these integrals as a linear combination of densities of permutations in S_{4}.

Future Work

- Find a complete list of minimal subsets of permutations for which having density $1 / 24$ is a sufficient condition for quasirandomness.
- Better understand inflatable permutations, including examples with inflated density $1 / 24$ of some $\pi \in S_{4}$.
- Use the technique of flag algebras to generate bounds on densities given those of a certain subset.

Acknowledgments

- PRIMES
- Dr. Tanya Khovanova, my mentor
- Professor Yufei Zhao, who suggested the project and gave helpful discussion
- Dr. James Hirst, who helped explain flag algebras
- Dr. Elina Robeva, for listening to this presentation and giving suggestions

Thank you for listening!

References

目 Joshua Cooper and Andrew Petrarca．＂Symmetric and Asymptotically Symmetric Permutations＂．In：（Feb．2008）．
直 Daniel Král and Oleg Pikhurko．＂Quasirandom permutations are characterized by 4－point densities＂．In：Geometric and Functional Analysis 23 （May 2012）．
囯 Jakub Sliačan and Walter Stromquist．＂Improving Bounds on packing densities of 4－point permutations＂．In：Discrete Mathematics and Theoretical Computer Science 19.2 （Feb．2008）．

