
Polynomial Wolff Axioms and Multilinear Kakeya-type Estimates

for Bent Tubes in Rn

William Fisher

August 2018

1



Abstract

In this paper we consider the applicability of Guth and Zahl’s polynomial Wolff axioms to bent tubes.

We demonstrate that Guth and Zahl’s multilinear bounds hold for tubes defined by low degree algebraic

curves with bounded C2-norms. To show this we give an exposition of their proof in a n-dimensional,

k-linear context.

In considering the ability to obtain linear bounds using the multilinear bounds we utilize the strategy

of Guth and Bourgain. We find that the multilinear bounds obtained from Guth and Zahl’s technique

break the inductive structure of this process and thus provide inferior bounds to the endpoint cases of

Bennett, Carbery, and Tao’s multilinear bounds. We discuss future research directions, which could

eventually remedy this, that improve multilinear bounds by adding the assumption that the collection

of tubes lie near a k-plane.
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1 Introduction

In this paper we consider recent techniques relating to the Kakeya conjecture and their applicability

to bent tubes. The Kakeya conjecture in its maximal function form deals with the Kakeya maximal

operator: Let f ∈ L1,loc(Rn), then define the operator Mδ by

Mδf : Rn → R, Mδf(e) = sup
T//e

1

|T |

∫
T

|f |,

where T ranges over cylinders (or tubes) of length 1, cross sectional radius δ, and axis parallel to e, and

| · | denotes the Lebesgue measure. It is conjectured that for every ε > 0 there is a constant Cε dependent

on ε such that

‖Mδf‖n ≤ Cεδ−ε‖f‖n.

Standard interpolation of the conjectured bound with the trivial L∞ bound gives the equivalent conjecture

‖Mδf‖q ≤ Cεδ−(n/p−1+ε)‖f‖p, 1 ≤ p ≤ n, q = (n− 1)p′, (1)

where p′ is the dual exponent to p. This puts the conjecture into a form that opens the door to a whole

family of partial results. The most significant of which has been the work of Wolff that showed (1) to

hold for p = (n + 2)/2 (see [8]). A good survey of results relating to this conjecture was given by Katz

and Tao and can be found in [6].

While the above gives the maximal function formulation of the Kakeya conjecture, a very common,

discretized formulation deals with the overlap of tubes (neighborhoods of line segments). Suppose that

T is a set of tubes of length 1 and radius δ in Rn that are δ-separated. By δ-separated, it is meant that

for each pair of tubes in T, their axes have an angular separation of at least δ. It is then conjectured

that for every 1 ≤ p ≤ n and ε > 0 we have that∥∥∥∑
T∈T

χT

∥∥∥
p/(p−1)

≤ Cεδ−(n/p−1+ε). (2)

The reason that this conjecture is also referred to as the Kakeya maximal function conjecture lies in that

(2) is dual to the estimate (1). Note that by Hölder, (2) implies the weaker bound∣∣∣ ⋃
T∈T

T
∣∣∣ ≥ Cεδn−p+ε

which is also of interest (| · | again denotes the Lebesgue measure).

In proving that (2) holds for p = (n+2)/2, Wolff utilized a consequence of the δ-separation of the tubes

that roughly states that not too many tubes can lie too close to a plane. Recently, however, Guth and

Zahl (see [5]) gave the first improvement on Wolff’s partial result in R4 by considering a generalization of

Wolff’s property. Guth and Zahl considered tubes satisfying the polynomial Wolff axioms, which in short

says that not too many tubes can lie to close to a low degree algebraic variety. By doing this they proved

that collections of tubes satisfying the polynomial Wolff axioms satisfied (2) for p = 3 + 1/28 (compared

to Wolff’s result of p = 3), and it was subsequently proven in [7] by Katz and Rogers that collections of

tubes that are δ-separated indeed satisfy the polynomial Wolff axioms. In their proof, Guth and Zahl

also make use of multilinear bounds. Roughly speaking, multilinear bounds are bounds founded on the

addition assumption that for every x, most k-tuples of tubes going through x point in k quantitatively

linearly independent directions (such an estimate would be referred to as a k-linear estimate).

In this paper we consider the polynomial Wolff axioms in relation to bent tubes. In the traditional

discretized form of the Kakeya conjecture, one considers the size of the overlap of straight tubes. It is

well known that this hypothesis is necessary for the full Kakeya conjecture, but the exact function of the
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straightness hypothesis is yet to be perfectly understood. Any successful proof of the Kakeya conjecture

will have to exploit straightness, making it useful to understand its function. The results in this paper

are to serve as a bellwether to where straightness of the tubes is necessary, specifically in the context of

the polynomial Wolff axioms and multilinear estimates.

In demonstrating the agnosticism of Guth and Zahl’s techniques a generalization of Guth and Zahl’s

multilinear bound from [5] is proven. Roughly speaking, if a set T of bent tubes in Rn satisfies the

polynomial Wolff axioms (i.e. are never too concentrated on a low degree algebraic variety) and most

tubes through a given point point in k linearly independent directions, then∥∥∥∑
T∈T

χT

∥∥∥
nk+n−k
n−1

≤ Cεδn−
n−k
k
−ε|T|

n
n−1 .

This result is stated more precisely in Theorem 2.6. To prove this, Guth and Zahl’s technique divides the

domain of interest into a covering by low degree algebraic varities. By choosing this covering appropri-

ately, it follows from the polynomial Wolff axioms that the tubes must be sufficiently evenly distributed

over the algebraic varities, leading to improved bounds.

2 Definitions and Main Results

We begin by introducing the following notation that is used throughout the paper.

Definition 2.1. Let f and g be real valued functions, then f . g means that there exists a constant C

such that f ≤ Cg. Writing f ∼ g means that f . g and f . g. Note that what the constant C depends

on will be clear by context, but throughout the paper C will never depend on properties relating to the

collection of tubes.

Definition 2.2. Let f and g be real valued functions, then f / g means that for all ε > 0 there exists

a constant Cε (dependent on ε) such that f ≤ Cεδ−εg (note that here δ represents a variable that f and

g will often be functions dependent on). Similarly, writing f ≈ g means that f / g and f / g.

Using this notation, (2), for example, can be rewritten as∥∥∥∑
T∈T

χT

∥∥∥
p/(p−1)

/ δ−(n/p−1).

Since the results of this paper focus on bent tubes, we also define what will be understood by a δ-tube

in the context of this paper.

Definition 2.3. A δ-tube is the δ-neighborhood of an algebraic curve of degree . 1 with C2-norm . 1.

Remark 2.1. By Definition 2.1, the statement “algebraic curve of degree . 1” may be thought of as

“algebraic curve of bounded degree”. The important difference, however, is that . 1 represents a fixed

implicit constant in the definition whereas one could have a set of algebraic curves all of bounded degree,

but whose degrees are not bounded by a single fixed constant.

Specifically, in this paper we consider Guth and Zahl’s polynomial Wolff axioms and its applications

to bent tubes in dimensions above R4. The standard Wolff axioms require that not too many tubes lie

close to a plane, while the polynomial Wolff axioms, first introduced in [5], require that not too many

tubes lie close to low degree algebraic varieties. Assuming this constraint only, Guth and Zahl managed

to show that for collections of tubes T in R4 of size ∼ δ−3

∣∣∣ ⋃
T∈T

T
∣∣∣ ' δ1−1/28. (3)
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As it turns out, however, many of the techniques featured in [5] appear agnostic when it comes to

tubes centered around low degree (bent) algebraic curves over degree one (straight) algebraic curves.

Technically, the polynomial Wolff axioms say that not too many tubes can intersect a semi-algebraic set

with a high enough density.

Definition 2.4 (Semi-algebraic set). A semi-algebraic set is a set of the form

S = {x ∈ Rn : f1(x) B1 0, f2(x) B2 0, . . . , fi(x) Bi 0}

where Bj ∈ {=, >} and f1, . . . , fi are polynomials in x. The complexity of S is then the minimum value

of deg(f1) + · · ·+ deg(fi) over all representations of S of the above form.

Definition 2.5 (Polynomial Wolff axioms). A collection T of δ-tubes is said to satisfy the polynomial

Wolff axioms if for every semi-algebraic set S of complexity ≤ E and every δ ≤ λ ≤ 1 we have that

#{T ∈ T : |T ∩ S| ≥ λ|T |} ≤ KE |S|δ1−nλ−n,

where KE is some constant dependent only on E, and | · | denotes the Lebesgue measure.

At the heart of Guth and Zahl’s proof of (3) is an improved trilinear bound that is obtained through

emerging polynomial methods, first introduced by Dvir in [3] to resolve Wolff’s modification of the Kakeya

problem for finite fields, in conjunction with the polynomial Wolff axioms. In short, by decomposing

the collection of tubes into a union of low degree algebraic varieties we get a dichotomy: Either the

tubes are concentrated on an algebraic variety, or well distributed over them. The hypothesis that the

tubes satisfy the polynomial Wolff axioms eliminate the former possibly, leading to improved multilinear

bounds. In this paper, we extend Guth and Zahl’s multilinear bounds to k-linear bounds in Rn for bent

tubes. Specifically, we conclude the following theorem:

Theorem 2.6. Assume 2 ≤ k ≤ n−1. Let T1, . . . ,Tk be sets of δ-tubes in Rn that satisfy the polynomial

Wolff axioms. Then,

∫
B(0,2)

( ∑
(T1,...,Tk)∈T1×···×Tk

χT1 . . . χTk |v1 ∧ · · · ∧ vk|
kn

nk−k+n
)nk+n−k
k(n−1)

/ δn−
n−k
k

( k∏
i=1

|Ti|
) n
k(n−1)

.

Remark 2.2. In the above theorem, |v1 ∧ · · · ∧ vk| represents the Lebesgue measure of the parallelpiped

spanned by v1, . . . , vk.

3 Multilinear Bounds

The best known general multilinear bounds are due to Guth and Bourgain in [2]. Although they only

prove the trilinear bound in R4, their proof implies the following k-linear bounds in Rn.

Theorem 3.1 (Bourgain-Guth, [2]). Assume 2 ≤ k ≤ n − 1. Let T1, . . . ,Tk be sets of δ-tubes in Rn.

Then there exists a constant C independent of the set of tubes such that

∫
B(0,2)

( ∑
(T1,...,Tk)∈T1×···×Tk

χT1 . . . χTk |v1 ∧ · · · ∧ vk|
) 1
k−1 ≤ C

k∏
i=1

δn/k|Ti|1/(k−1).

This estimate is the endpoint case of the multilinear estimates first proven by Bennett, Carbery, and

Tao in [1]. The latter states that if T is a set of δ-tubes in Rn, with |T| ∼ δ1−n, such that most k-tuples

of tubes point in k linearly independent directions then∣∣∣ ⋃
T∈T

T
∣∣∣ ' δn−k. (4)
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The above estimates require no constraints on the sets of tubes. However, as Guth and Zahl found, these

bounds admit the following improvement in R4 when the additional assumption of the polynomial Wolff

axioms is added.

Theorem 3.2 (Guth-Zahl, [5]). Let T1, . . . ,Tk be sets of δ-tubes in R4 that satisfy the polynomial Wolff

axioms. Then we have∫
B(0,2)

( ∑
(T1,...,Tk)∈T1×···×Tk

χT1 . . . χTk |v1 ∧ · · · ∧ vk|
12/13

)13/9
/ δ11/3

( 3∏
i=1

|Ti|
)4/9

.

More general of course is Theorem 2.6 which tells us that if T is a set of δ-tubes, with |T| ∼ δ1−n,

such that most k-tuples of tubes point in k linearly independent directions then∣∣∣ ⋃
T∈T

T
∣∣∣ ' δ

n−1
n
·(n−k).

This gives a clear improvement over (4). The proof of Theorem 2.6 in the case of k = 3 and n = 4 is

given by Guth and Zahl in [5], but their method extends to k-linear in Rn. Moreover, their proof allows

the result to be rephrased in a manner that takes in existing bounds and returns an improved bound.

Proposition 3.3. Let Kk,n(p, q, e1, e2) be the proposition that

∫
B(0,2)

( ∑
(T1,...,Tk)∈T1×···×Tk

χT1 . . . χTk |v1 ∧ · · · ∧ vk|
q
)p/k

/ δe1
( k∏
i=1

|Ti|
)e2/k

, (5)

whenever T1, . . . ,Tk are sets of δ-tubes in Rn satisfying the polynomial Wolff axioms. Then

Kk,n(p, q, e1, e2)⇒ Kk,n(p′, q′, e′1, e
′
2)

where

p′ = 1 +
n

n− 1
· p− 1

e2

q′ =
qp

p− 1 + e2(n− 1)/n

e′1 = 1 +
n

n− 1
· e1 − 1

e2

e′2 =
n

n− 1
.

Corollary 3.4. Theorem 2.6 holds.

Proof. By Theorem 4, we have that Kk,n
(

k
k−1

, 1, n, k
k−1

)
holds with no assumptions on the tubes. As-

suming that T1, . . . ,Tk satisfy the polynomial Wolff axioms, we can then apply Proposition 3.3.

A major tool utilized by Guth and Zahl are grains and grains decompositions for which we restate

the definition given in [5].

Definition 3.5 (Grain). A grain of complexity D is the δ-neighborhood of a semi-algebraic set in Rn

of complexity D and dimension ≤ n− 1.

Definition 3.6 (Grains decomposition). A grains decomposition of complexity D and error ε of a set of

δ-cubes Q is a set G of grains of complexity ≤ D such that the following holds: There exists a collection

of subsets of Q, {QG}G∈G , such that for each G ∈ G, we have that for all Q ∈ QG, Q ⊂ G, the sets

{QG}G∈G are disjoint, and the following three properties hold:

• Roughly every cube is accounted for, i.e. ∑
G∈G

|QG| ' |Q|. (6)
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• The grains are evenly distributed, i.e.

|QG| ≈ |Q|/|G|. (7)

• A tube doesn’t intersect too many grains, i.e. for every δ-tube T

#{G ∈ G : T ∩G 6= ∅} / |G|1/n. (8)

The primary function of grains decompositions comes in one’s ability to invoke an arbitrarily precise

grains decomposition at the expense of its complexity. For this we restate Proposition 3.2 of [5] and an

overview of its proof with justification that it holds for bent tubes.

Proposition 3.7. For every set of δ-cubes Q in Rn with |Q| = O(δm) and ε > 0 there exists a grains

decomposition of Q with complexity D(ε,m, n) and error ε.

Proof. The proof of this proposition makes heavy use of the polynomial partitioning theorem introduced

in [4], which for any open set U ⊂ Rn gives the existence of a of a degree D algebraic variety that divides

U into ∼ Dn disjoint, connected, equal volume subsets called cells. Consider U = ∪Q∈QQ, the proof

utilizes this partitioning theorem to iteratively divide U and subsequent cells into smaller cells. At each

iteration we can consider the δ-neighborhood of these cell walls. Eventually the process will terminate

when a fraction ' 1 of the δ-cubes lie in the neighborhood of one of these cell walls, which become our

grains.

The only modification necessary to account for bent tubes is in showing that (8) still holds under this

construction despite the generalization to bent tubes. Following the proof of Proposition 3.2 in [5] we

know that the process will terminate in

s . logDn |Q| (9)

steps. Since a δ-tube is an algebraic curve of degree ≤ d we know that a tube will intersect at most

d(D + 1) cells on each iteration. Thus we have that T intersects ≤ ds(D + 1)s / ds|G|1/n grains. Using

(9) we have

ds . |Q|logDn d . δ−m logDn d

Since d . 1, by choosing D = D(ε,m, n) sufficiently large we see that the term ds term can be absorbed

into the δ−ε term.

Proof of Proposition 3.3. Fix k and n and assume Kk,n(p, q, e1, e2) holds. We are considering the integral∫
B(0,2)

( ∑
(T1,...,Tk)∈T1×···×Tk

χT1 . . . χTk |v1 ∧ · · · ∧ vk|
q′
)p′/k

(10)

where q′ and p′ are as stated in Proposition 3.3. In this proof, replace each tube with the union of all

δ-tubes intersecting it. Doing this allows for convenience of notation, but has no effect on the results

since these sets are contained in the 2δ-neighborhoods of the central curves of each tube. Firstly, dyadic

pigeonhole |v1 ∧ · · · ∧ vk| to find a dyadic θ such that

(10) ∼
∫
B(0,2)

( ∑
(T1,...,Tk)∈T1×···×Tk
|v1∧···∧vk|∼θ

χT1 . . . χTk |v1 ∧ · · · ∧ vk|
q′
)p′/k

.

Now let Q be the set of all δ-cubes intersecting B(0, 2), so that∫
B(0,2)

( ∑
T1,...,Tk

|v1∧···∧vk|∼θ

χT1 . . . χTk |v1∧· · ·∧vk|
q′
)p′/k

=

∫
⋃
Q∈Q Q

( ∑
T1,...,Tk

|v1∧···∧vk|∼θ

χT1 . . . χTk |v1∧· · ·∧vk|
q′
)p′/k

.
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Dyadic pigeonhole the contribution of each cube to the integral to refine the set Q so that if A =
⋃
Q∈QQ

then∫
B(0,2)

( ∑
T1,...,Tk

|v1∧···∧vk|∼θ

χT1 . . . χTk |v1 ∧ · · · ∧ vk|
q′
)p′/k

∼
∫
A

( ∑
T1,...,Tk

|v1∧···∧vk|∼θ

χT1 . . . χTk |v1 ∧ · · · ∧ vk|
q′
)p′/k

where each cube in Q contributes roughly evenly to the integral on the RHS. Invoke Proposition 3.7 to

find a grains decomposition G of Q.

Let G be our grains decomposition of Q. We have that∫
B(0,2)

( ∑
T1,...,Tk

|v1∧···∧vk|∼θ

χT1 . . . χTkθ
q′
)p′/k

/
∑
G∈G

∫
A∩G

( ∑
T1,...,Tk

|v1∧···∧vk|∼θ

χT1 . . . χTkθ
q′
)p′/k

.

Each tube intersecting a grain will intersect for some length l along its central curve. Let CC(S, x) mean

the connected component of the set S containing x. The length of the intersection of a grain G and a

tube T containing the point x is given by diam(CC(G ∩ T, x)). Dyadic pigeonhole these lengths to find

l1, . . . , lk such that

(10) /
∑
G∈G

∫
A∩G

( ∑
(T1,...,Tk)∈T1×···×Tk
|v1∧···∧vk|∼θ

li≤diam(CC(Ti∩G,x))≤2li

χT1 . . . χTkθ
q′
)p′/k

. (11)

Assume that l1 = max(l1, . . . , lk). Cover each grain by radius Cl1 balls that are boundedly overlapping

such that every subset of G of diameter ≤ 2l1 is fully contained in one of these balls. The intersection

of a grain G with one of these balls will be called a sub-grain G′ with parent G. If G′ is a sub-grain of

G, let QG′ = {Q ∈ QG : Q ⊂ G′}. Let G′ denote the set of sub-grains and let Q′ =
⋃
G′∈G′ QG′ . Note

that after dyadic pigeonholing and refining the sub-grains in G′, we can assume (6), (7), and (8) hold for

G′ (doing this makes |G′| smaller by a factor / 1), which makes G′ a grains decomposition of Q′. Let

A′ =
⋃
Q∈Q′ Q.

For i = 1, . . . , k and G′ ∈ G′, define

Ti,G′ = {T ∈ Ti : there exists a connected set W ⊂ T ∩G′, li ≤ diam(W ) ≤ 2li}.

By construction of the sub-grains, if T is a δ-tube and G is a grain such that for some x, li ≤ diam(CC(T∩
G, x)) ≤ 2li, then T ∈ Ti,G′ for some sub-grain G′ of G. Hence, by (11) we have

(10) / θq
′p′/k

∑
G′∈G′

∫
A′∩G′

( ∑
(T1,...,Tk)∈T1,G′×···×Tk,G′

|v1∧···∧vk|∼θ

χT1 . . . χTk

)p′/k
.

Refine the sub-grains so that each sub-grain contributes roughly equally to the integral.

Since each sub-grain is the Cδ-neighborhood of a semi-algebraic set of dimension ≤ n− 1 contained

in a ball of radius . l1 we have

|G′| . ln−1
1 δ (12)

(see [9]; note that the result of [9] applies only to algebraic varieties, but tracing the construction of G′,

G′ is the neighborhood of an algebraic variety intersected with a radius . l1 ball).

Dyadic pigeonhole the grains to find numbers N1, . . . , Nk so that Ni ≤ |Ti,G′ | ≤ 2Ni for each G′ ∈ G′.
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Since each G′ satisfies (8),

Ni|G′| ∼
∑
G′∈G′

|Ti,G′ | ≤
∑
T∈Ti

|{G′ ∈ G′ : G′ ∩ T 6= ∅}| / |Ti| · |G′|1/n.

Hence,

Ni / |Ti| · |G′|−
n−1
n . (13)

Dyadic pigeonhole and refine the set Q′ and the associated sets QG′ to find numbers µ and µ1, . . . , µk

such that if Q ∈ QG′ for some G′ ∈ G′ and x ∈ Q, then∑
(T1,...,Tk)∈T1,G′×···×Tk,G′

|v1∧···∧vk|∼θ

χT1(x) . . . χTk (x) ∼ µk

and ∼ µi tubes from Ti,G′ pass through x for each i = 1, . . . , k. Due to all the dyadic pigeonholing,

(10) / |A′|µp
′
θp
′q′/k. (14)

Notice that

µ ≤
( k∏
i=1

µi
)1/k

. (15)

Also notice that
µi|A′| .

∑
G′∈G′

∑
T∈Ti,G′

|T ∩A′ ∩G′|

≤
∑
G′∈G′

∑
T∈Ti,G′

|T ∩G′|

≤ |G′|Niliδn−1

/ |Ti| · |G′|1/nliδn−1

where the last line uses (13). Hence,

li ' µi|A′| · |G|−1/nδ1−n|Ti|−1.

Since the sets of tubes T1, . . . ,Tk satisfy the polynomial Wolff axioms, using (12) we have

Ni . Kln−1
i δδ1−nl−ni

= Kδ2−nl−1
i

/ δ2−nµ−1
i |A

′|−1|G|1/nδn−1|Ti|,

(16)

where K = sup1≤E≤D(ε,n)KE with the KE being as in Definition 2.5. Note that the K can be absorbed

by the Cε implicit constant since the complexity of the grains are . D(ε, n).
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Refine G′ so that we still have |QG′ | ≈ |Q′|/|G′| for all G′ ∈ G′. Let G′ ∈ G′. Thus

|A′| · |G′|−1µpθqp/k ≈
∫
A′∩G′

( ∑
(T1,...,Tk)∈T1,G′×···×Tk,G′

|v1∧···∧vk|∼θ

χT1 . . . χTkθ
q
)p/k

/ δe1
( k∏
i=1

Ni
)e2/k

/ δe1
( k∏
i=1

|Ti| · |G′|−
n−1
n

)x/k( k∏
i=1

δ2−nµ−1
i |A

′|−1|G|1/nδn−1|Ti|
)(e2−x)/k

= δe1+e2−x|A′|−(e2−x)|G′|−1
( k∏
i=1

µi
)− e2−x

k
( k∏
i=1

|Ti|
) e2
k

(17)

where

x =
n+ e2
n

is chosen such that there is cancellation of the |G′|−1 terms. The second line uses the assumption that

Kk,n(p, q, e1, e2) holds and the third line uses (13) and (16). Using (15) we see that (17) gives

|A′|µp
′
θp
′q′/k / δe

′
1

( k∏
i=1

|Ti|
)e′2

where p′, q′, e′1, and e′2 are as given in Proposition 3.3. Referring to (14) we see that this completes the

proof.

4 Linear Bounds

We follow the technique of [2] to go from k-linear bounds to linear bounds. The general idea behind this

is to evaluate ∫
B(0,2)

∣∣∣∑
v∈τ

χT

∣∣∣p,
where τ is a cap of radius between δ and O(1). We start with a cap of radius δ and induct to get

to a cap of radius O(1). To induct we will break τ into smaller caps of radius radius(τ)/K and use

a broad-narrow decomposition. A point will be narrow if most tubes through x are contained in the

(radius(τ)/K)-neighborhood of a (k − 1)-plane, and a point will be broad otherwise. We write∫
B(0,2)

∣∣∣∑
v∈τ

χT

∣∣∣p =

∫
Broad

∣∣∣∑
v∈τ

χT

∣∣∣p +

∫
Narrow

∣∣∣∑
v∈τ

χT

∣∣∣p.
The integral over the broad points is easily handled by the k-linear estimate. For the narrow points,

using Holder and the fact that for each x most tubes are contributed to by ∼ Kk−2 caps, the integral

over the narrow points can be handled directly by the inductive hypothesis.

To handle the induction, we need to add the geometric hypothesis used in [2]. Let T be a set of

δ-tubes. We say that the tubes in T are δ-separated if to each tube Ti ∈ T we can associate a vector

yi ∈ Sn−1 such that the vectors {yi} are δ-separated and for every Ti, Tj ∈ T, |vi(x)− vj(x)| & |yi − yj |
for all x ∈ Ti ∩ Tj . When every tube is straight, this constraint is equivalent to standard definition of

δ-separation, but formulating it in this manner allows us to also handle bent tubes.

Theorem 4.1. Let T be a set of δ-separated δ-tubes satisfying the polynomial Wolff axioms. If

10



Kk,n(p0, q0, e1, e2) holds, then ∥∥∥∑
T∈T

χT

∥∥∥
p
/ δ−(n−1)+((n−1)(p0−e2)+e1)/p

for

p ≥ max
(
p0, 1 +

(n− 1)(p0 − e2) + k−1
k
p0q0

n− k + 1

)
.

To prove this we will instead prove a stronger proposition that emits an inductive proof.

Proposition 4.2. Let T be a set of δ-separated δ-tubes in Rn that satisfy the polynomial Wolff axioms.

If Kk,n(p0, q0, e1, e2) holds, then for every δ ≤ ρ ≤ 1 and every cap τρ of radius ρ,∥∥∥ ∑
yi∈τρ

χTi

∥∥∥
p
/ δ−(n−1)+((n−1)(p0−e2)+e1)/pρ(n−1)−((n−1)(p0−e2)+ k−1

k
p0q0)/p

provided

p ≥ max
(
p0, 1 +

(n− 1)(p0 − e2) + k−1
k
p0q0

n− k + 1

)
.

Notice that the case ρ ∼ δ is trivial and that the case ρ = 1 gives Proposition 4.1.

To prove this proposition we will follow [2] and break τρ into a covering of smaller caps, {τρ/K}, each

of radius ≤ ρ/K (where K is a sufficiently large constant chosen later). A point x will be called broad

if for every (k − 1)-plane, Π,

|{Ti ∈ T : x ∈ Ti, ∠(yi,Π) ≥ ρK−1}| ≥ 1

2
|{Ti ∈ T : x ∈ Ti}|.

A point will be called narrow if it is not broad. Notice that for a narrow point, there are . Kk−2 caps

that account for ≥ 1/2 of the tubes. That is, there is a set C(x) ⊂ {τρ/K} with |C(x)| . Kk−2 such that

∑
τρ/K∈C(x)

|{Ti : x ∈ Ti, yi ∈ τρ/K}| ≥
1

2
|{T : x ∈ T}|.

The inductive hypothesis directly covers the narrow points.

Proposition 4.3.∫
Narrow

( ∑
yi∈τρ

χTi

)p
/ δ−(n−1)+((n−1)(p0−e2)+e1)/pρ(n−1)−((n−1)(p0−e2)+ k−1

k
p0q0)/p

for

p > 1 +
(n− 1)(p0 − e2) + k−1

k
p0q0

n− k + 1
.

Proof. If x ∈ Narrow, then there exists a collection of caps C(x) ⊂ {τρ/K} with |C(x)| . Kk−2 such that∑
yi∈τρ

χTi(x) ≤ 2
∑

τρ/K∈C(x)

∑
yi∈τρ/K

χTi(x). (18)

By Hölder, (18) implies that

∑
yi∈τρ

χTi(x) . 2K(k−2)(p−1)/p
( ∑
τρ/K∈C(x)

( ∑
yi∈τρ/K

χTi(x)
)p)1/p

.

Thus, ∫
Narrow

( ∑
yi∈τρ

χTi

)p
. 2pK(k−2)(p−1)

∑
{τρ/K}

∫
B(0,2)

( ∑
yi∈τρ/K

χTi(x)
)p
. (19)

11



The RHS of (19) is directly controlled by the inductive hypothesis, and thus we get∫
Narrow

( ∑
yi∈τρ

χTi

)p
. 2pK(k−2)(p−1)Kn−1δ−(n−1)p+b1(ρ/K)(n−1)p−((n−1)(p0−e2)+ k−1

k
p0q0)

. 2pK(p−1)(k−n−1)+(n−1)(p0−e2)+ k−1
k
p0q0δ−(n−1)p+b1ρ(n−1)p−((n−1)(p0−e2)+ k−1

k
p0q0).

Provided that

(p− 1)(k − n− 1) + (n− 1)(p0 − e2) +
k − 1

k
p0q0 < 0,

or equivalently,

p > 1 +
(n− 1)(p0 − e2) + k−1

k
p0q0

n− k + 1

we can close the inductive step by making K = K(p) sufficiently large.

Proposition 4.4.∫
Broad

( ∑
yi∈τρ

χTi

)p
/ δ−(n−1)+((n−1)(p0−e2)+e1)/pρ(n−1)−((n−1)(p0−e2)+ k−1

k
p0q0)/p (20)

provided that

p ≥ p0.

Proof. Let x be a broad point. By definition of a broad point, most k-tuples of tubes going through x

fail to lie near a (k− 1)-plane. That is to say for most k-tuples of tubes T1, T2, . . . , Tk going through x,

we have

|v1 ∧ · · · ∧ vk| ≥ |y1 ∧ · · · ∧ yk| ≥ C(K)ρk−1.

This gives that ∣∣∣ ∑
yi∈τρ

χTi

∣∣∣k . C(K)−1ρ−q0(k−1)
∑

T1,...,Tk∈T

χT1 . . . χTk |v1 ∧ · · · ∧ vk|
q0

and thus ∣∣∣ ∑
yi∈τρ

χTi

∣∣∣p0 . C(K)−p0/kρ−
k−1
k
p0q0

( ∑
y1,...,yk∈τρ

χT1 . . . χTk |v1 ∧ · · · ∧ vk|
q0
)p0/k

. (21)

At this point let T′ = {Ti ∈ T : yi ∈ τρ}. Notice that by the δ-separation hypothesis, |T′| . (ρ/δ)n−1.

Using the assumption that Kk,n(p0, q0, e1, e2) holds and letting T1 = T2 = · · · = Tk = T′, we can

integrate (21) to get∫
Broad

( ∑
yi∈τρ

χTi

)p0
. C(K)−p0/kρ−

k−1
k
p0q0

∫ ( ∑
y1,...,yk∈τρ

χT1 . . . χTk |v1 ∧ · · · ∧ vk|
q0
)p0/k

/ C(K)−p0/kρ−
k−1
k
p0q0δe1(ρ/δ)(n−1)e2

= C(K)−p0/kρ(n−1)e2− k−1
k
p0q0δe1−(n−1)e2 .

(22)

This gives (20) for the case p = p0. To obtain the full proposition notice that∥∥∥ ∑
yi∈τρ

χTi

∥∥∥
∞

. (ρ/δ)n−1 (23)
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by the δ-separation hypothesis. The full result then comes from Lp-interpolation between (22) and (23):∫
Broad

( ∑
yi∈τρ

χTi

)p
. (ρn−1δ−(n−1))p−p0

∫
Broad

( ∑
yi∈τρ

χTi

)p0
/ C(K)−p0/kδ−(n−1)p+(n−1)(p0−e2)+e1ρ(n−1)p−(n−1)(p0−e2)− k−1

k
p0q0 .

Realizing that K = K(p), and thus C(K), depends only on p and not the collection of tubes completes

the proof.

Finally, note that the inequality in Proposition 4.3 can be lessened from a strict inequality to a weak

one by letting p approach its lower bound and absorbing the loss into the δ−ε term. This observation

combined with Propositions 4.3 and 4.4 proves Proposition 4.2 and thus Theorem 4.1.

As a result of Theorem 4.1, we obtain various linear estimates for collections of bent tubes.

Theorem 4.5. Let T be a collection of δ-separated tubes in Rn for n ≥ 3, then∥∥∥∑
T∈T

χT

∥∥∥
p
/ δ−(n−1)+n/p

for

p ≥

n+2
n

n even

n+1
n−1

n odd
.

Proof. Apply Theorem 4.1 letting k = n/2 + 1 if n is even and k = (n+ 1)/2 if n is odd, using Theorem

4 to assume that Kk,n
(

k
k−1

, 1, n , k
k−1

)
holds.

Remark 4.1. This recovers Wolff’s classical bound with an error term of δ−ε when n is even.

It is at this point that we remark on the utility of the multilinear bounds obtained using the polynomial

Wolff axioms. As it works out, the original endpoint cases of the Bennett-Carbery-Tao multilinear

estimates given by Theorem 4 produce better linear estimates than those given by Theorem 2.6. This is

due to the fact that Proposition 3.3 gives an improvement to the input bound for large sets of tubes at

the expense of a weaker bound for small sets of tubes. This in effect undermines the inductive element

used to prove the bound on narrow points resulting in worse bounds.

5 Mixing Multilinear Bounds

In the previous section we showed that the method introduced by Guth and Bourgain in [2] fails to make

good use of the improved multilinear bounds found by Guth and Zahl. However, it remains that the

improved multilinear bounds are at the heart of Guth and Zahl’s improved maximal function estimate

in R4. A way to circumvent the problems in the previous section would be to take an approach similar

to that used in [5].

The general approach is to strengthen the multilinear bounds further (via an approach applicable to

any collection of multilinear estimates) by deriving in a sense “anti”-multilinear bounds, i.e. bounds that

exploit sets of tubes that are k-linear but fail to be (k + 1)-linear.

Assume we want to improve a known k-linear bound. To gain extra mileage we assume that our

collections of tubes are k-linear but strongly fail to be (k + 1)-linear—otherwise we would simply apply

the (k + 1)-linear bound. Adding this assumption we can improve the k-linear bound. In the end, we

find that a collection of tubes that is k-linear will either strongly fail to be (k + 1)-linear or nearly be

(k+ 1)-linear, resulting in a new k-linear bound that lies somewhere between the original k-linear bound

and the (k+1)-linear bound. In [5], Guth and Zahl use this technique to improve the bilinear bound. By

combining this with the fact that collections of 1-linear tubes are easily handled by induction on scales

13



(allowing us to assume most pairs of tubes point in linearly independent directions), they simply apply

the improved bilinear bound and conclude their result. We sketch an outline to this technique.

We begin by introducing a couple definitions to help formalize this notion.

Definition 5.1 (Shadings). A shading of a tube T is any subset of T . We will denote a collection of

tubes, each having an associated shading, by (T, Y ) where for every T ∈ T, Y (T ) is the shading associated

to T .

Definition 5.2 (Robust Transversality). A collection of tubes with shadings (T, Y ) is said to be (s, k)-

robustly transverse if for every (k − 1)-plane Π and every x,

|{Ti ∈ T : x ∈ Y (Ti), ∠(vi(x),Π) ≥ s}| & |{T ∈ T : x ∈ Y (T )}|.

Definition 5.3 (Weak Transversality). A collection of tubes with shadings (T, Y ) is said to be (s, k)-

weakly transverse if for every (k − 1)-plane Π and every x,

|{Ti ∈ T : x ∈ Y (Ti), ∠(vi(x),Π) < s}| & |{T ∈ T : x ∈ Y (T )}|.

To improve an existing k-linear bound we will then consider the dichotomy of when the collection of

tubes is (θ, k+1)-robustly transverse and when it (θ, k+1)-weakly transverse. By choosing an appropriate

θ these two bounds will meet, and for any general collection of tubes the quantity of interest will either

be dominated by the contribution of robustly transverse points or weakly transverse points.

Theorem 5.4. Suppose that Kk+1,n(p0, q0, e1, e2) holds. Let (T, Y ) be a collection of tubes with shadings

that are (s, k)-robustly transverse and (θ, k + 1)-robustly transverse. If for every T ∈ T we have that

|Y (T )| ∼ λ|T |, then

∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ' (sp0q0 k−1

k+1 θ
p0q0
k+1 λp0δ(n−1)e2−e1(δn−1|T|)p0−e2

) 1
p0−1

.

Proof. After a refinement of the shadings we may assume that
∑
χT ∼ µχB . By the assumptions on the

robust transversality we have that for every x ∈ B,∑
T1,...,Tk+1∈T

χT1(x) . . . χTk+1(x)|v1(x) ∧ · · · ∧ vk+1(x)|q0 & µk+1sq0(k−1)θq0 . (24)

To see this, there are & µ choices for T1. By the fact that the collection is (s, k)-robustly trans-

verse, we have & µ options for T2 such that ∠(v2(x), v1(x)) ≥ s, & µ options for T3 such that

∠(v3(x), span(v1(x), v2(x))) ≥ s, and so on. Finally, since the collection of tubes is (θ, k + 1)-robustly

transverse, there are & µ choices for Tk+1 such that ∠(vk+1(x), span(v1(x), . . . , vk(x))) ≥ θ. Thus there

are & µk+1 choices for T1, . . . , Tk+1 all which obeying |v1 ∧ · · · ∧ vk+1| & sk−1θ.

Integrating (24) gives∫
B

( ∑
T1,...,Tk+1∈T

χT1(x) . . . χTk+1(x)|v1(x)∧· · ·∧vk+1(x)|q0
)p0/(k+1)

& |B|µp0sp0q0(k−1)/(k+1)θq0p0/(k+1).

(25)

However, by the assumption that Kk+1,n(p0, q0, e1, e2) holds we also have∫
B

( ∑
T1,...,Tk+1∈T

χT1(x) . . . χTk+1(x)|v1(x) ∧ · · · ∧ vk+1(x)|q0
)p0/(k+1)

/ δe1 |T|e2 . (26)

Combining (25) and (26) gives

|B|µp0sp0q0(k−1)/(k+1)θq0p0/(k+1) / δe1 |T|e2 .
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Using this and the fact that |B| ≈ λδn−1|T|µ−1 we have

∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≈ |B| ' (sp0q0 k−1

k+1 θ
p0q0
k+1 λp0δ(n−1)e2−e1(δn−1|T|)p0−e2

) 1
p0−1

.

The goal now is to prove the complementary “anti”-(k+ 1)-linear bound: One where we assume that

the tubes are (θ, k + 1)-weakly transverse. This is where new techniques are required. To demonstrate

the strategy we give an example of such a theorem.

Example 5.1. Assume that Kk,n(p0, q0, e1, e2) holds. Let (T, Y ) be a collection of tubes with shadings

that are (s, k)-robustly transverse and (θ, k + 1)-weakly transverse. If for every T ∈ T we have that

|Y (T )| ∼ λ|T |, then ∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ' sm1θ−m2λm3δm4(δn−1|T|)m5 .

Remark 5.1. Here all the exponents m1, . . . ,m5 are assumed to be non-negative. It is of note that in

this complementary bound, the exponent on θ is negative. Since θ . 1, a negative exponent implies a

stronger bound. This matches our intuition: Had we dropped the assumption that the collection of tubes

be (θ, k + 1)-weakly transverse we could simply use the fact that they are (s, k)-robustly transverse and

apply the k-linear bound, ignoring the θ term. The fact that the θ term has a negative exponent, and

thus strengthens the bound, reflects that assuming the tubes are (θ, k + 1)-weakly transverse adds new

information.

We finally present a manner by which to combine these two complementary bounds.

Theorem 5.5. Suppose that for all collections of tubes with shadings (T, Y ) that are (s, k)-robustly

transverse and (θ, k + 1)-robustly transverse, we have that∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ' sm1θm2λm3δm4(δn−1|T|)m5 , (27)

and for all collections of tubes with shadings (T, Y ) that are (s, k)-robustly transverse and (θ, k+1)-weakly

transverse, we have that ∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ' sm

′
1θ−m

′
2λm

′
3δm

′
4(δn−1|T|)m

′
5 . (28)

Then, for all collections of tubes with shadings (T, Y ) that are (s, k)-robustly transverse, we have that

∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ' λ

m3m
′
2+m′3m2

m2+m′2 δ
m4m

′
2+m′4m2

m2+m′2 min(sm1(δn−1|T|m5), sm
′
1(δn−1|T|m

′
5)).

Remark 5.2. Notice that this theorem allows us to gain a new k-linear bound. The assumption that the

tubes be (s, k)-robustly transverse for s sufficiently large is in essence saying most k-tuples of tubes point

in k linearly independent directions.

Proof. Let

θ0 =
(
δm
′
4−m4λm

′
3−m3

) 1
m2+m′2

and let X1 be the set of all point such that there exists a k-plane Π such that

|{Ti ∈ T : x ∈ Y (Ti), ∠(vi(x),Π) < θ0}| & |{Ti ∈ T : x ∈ Y (Ti)}|.

If X2 = Rn \X1 then we know that either∑
T∈T

|Y (T ) ∩X1| & λδn−1|T| (29)
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or ∑
T∈T

|Y (T ) ∩X2| & λδn−1|T| (30)

holds.

If (29) holds then we can replace each shading with Y ′(T ) = Y (T ) ∩X1 and find a set T′ ⊂ T with

|T′| ∼ |T| and Y ′(T ) ∼ λ|T | for every T ∈ T′. By (28) we have that

∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≥ ∣∣∣ ⋃

T∈T′
Y ′(T )

∣∣∣ ' sm
′
1λ

m3m
′
2+m′3m2

m2+m′2 δ
m4m

′
2+m′4m2

m2+m′2 (δn−1|T|)m
′
5 .

Similarly, if (30) holds then we can replace each shading with Y ′(T ) = Y (T ) ∩ X2 and find a set

T′ ⊂ T with |T′| ∼ |T| and Y ′(T ) ∼ λ|T | for every T ∈ T′. By (27) we have that

∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≥ ∣∣∣ ⋃

T∈T′
Y ′(T )

∣∣∣ ' sm1λ
m3m

′
2+m′3m2

m2+m′2 δ
m4m

′
2+m′4m2

m2+m′2 (δn−1|T|)m5 .

To go to a linear bound from these improved multilinear bounds there is always the naive method

of proving that we may assume the collections of tubes are (s, k)-robustly transverse for some large s

and directly applying the k-linear bound from Theorem 5.5. This is the route of Guth and Zahl in [5].

Since tubes pointing in a single direction can be easily handled by induction on scales, one can assume

(s, 2)-robust transversality, and directly apply the 2-linear bound obtained from the technique above.

6 Future Work

It remains unknown what the optimal multilinear bounds are under the assumption of the polynomial

Wolff axioms. As it currently stands, the best techniques are agnostic towards whether the tubes are

straight or bent, but it is unknown whether there will exist a disparity between optimal bounds for

straight versus bent tubes. However, if methods for proving optimal bounds are of a similar flavor to

existing ones, it is very possible that multilinear bounds produced under the polynomial Wolff axioms

extend to bent tubes.

If this is the case, then the straightness constraint on the tubes may lie squarely in going from

multilinear bounds to linear bounds. Another possibility is that the straightness hypothesis could only be

necessary so that, when combined with δ-separation, the polynomial Wolff axioms hold: the implication

of the polynomial Wolff axioms from straightness and δ-separation was proven by Katz and Rogers in

[7].

Results regarding complementary multilinear bounds, i.e. multilinear bounds that utilize information

about the tubes lying close to a k-plane, could also play an important role. Doing this would open the

doors to better multilinear bounds which could serve to gain improvements on estimates for both straight

and bent tubes.
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