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Abstract

A classical theorem due to Ramsey says the following: Given a finite number
of colors and a positive integer p, any edge-coloring of the complete graph Kn will
contain a monochromatic copy of Kp as long as n is sufficiently large. A related
problem is to consider colorings of Kn for which every copy of K4 uses at least
3 distinct colors, and ask for the minimum number of colors that can be used to
produce such a coloring. Here we present an alternate proof of the best known upper
bound, which is 2O(

√
logn).

We also consider the problem of covering a regular graph with regular bipartite
subgraphs. The motivation for this problem comes from the example of covering Kn

with complete bipartite subgraphs, which can be done with log2(n) many subgraphs.
Here we show that with high probability, a random d-regular graph with an even
number of vertices can be covered with c log d many regular bipartite subgraphs for
an absolute constant c.

1 Introduction

Ramsey theory is an area intersecting various fields of mathematics. This area began
with a theorem by Ramsey which said that for any positive integers p and q, any edge-
coloring of Kn with the colors red and blue contains a red copy of Kp or a blue copy
of Kq, as long as n is sufficiently large. Let R(p, q) denote the minimum possible such

n. Early work in this area produced a lower bound for R(p, p) of essentially 2
p
2 and an

upper bound of essentially 4p. In the many years since then, these bounds have only
seen marginal improvements [1].

Ramsey’s theorem can be extended to more colors and also to different subgraphs
and to hypergraphs. For example, one can define the multicolor Ramsey number rk(p)
to be the minimum n such that every edge-coloring of Kn with k colors will produce a
monochromatic copy of Kp [2]. Again, improving the existing bounds on such a function
is difficult, even in the case p = 3 [3]. Note that finding the minimum n such that every
edge-coloring of Kn will produce a monochromatic copy of Kp is equivalent to finding
the maximum n for which there exists an edge-coloring of Kn where every copy of Kp

uses at least 2 distinct colors. This motivates the following more general definition, as
given by Erdős and Gyárfás in [3]:

Definition 1.1. For positive integers p and q with p ≥ 3 and 2 ≤ q ≤
(
p
2

)
, a (p,q)-

coloring is an edge-coloring of Kn (from an arbitrary set of colors) where every copy of
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Kp has at least q distinct colors. We let f(n, p, q) be the minimal possible number of
colors of a (p, q)-coloring of Kn.

To see that f(n, p, q) must exist, note that simply giving every edge a distinct color
will produce a (p, q)-coloring. From our remark following the definition of the multicolor
Ramsey number, we see that determining f(n, p, 2) is equivalent to determining rk(p).
As stated above, finding asymptotics for these functions is difficult. However, for q ≥ 3
there have been many results found about the nature of f(n, p, q), for example in [3]. In
this paper, we present an alternate proof of the best known upper bound on f(n, 4, 3).

Another way of viewing graph coloring problems is that we are covering the graph
with subgraphs that have certain properties. In the problem above, this means choosing
subgraphs such that no q − 1 subgraphs together contain a Kp, and so that every edge
appears in exactly one subgraph. More generally, one can consider problems in which
we are covering a graph with subgraphs but we allow each edge to be covered more than
once. Here we consider the problem of covering a graph with regular bipartite subgraphs.

Fishburn and Hammer proved in [4] that one can find a collection of dlog2 ne complete
bipartite subgraphs of Kn that together cover every edge at least once. This means
finding a collection of pairs (Ai, Bi), where i ranges from 1 to dlog2 ne, such that Ai, Bi ⊂
V (Kn), Ai ∩ Bi = ∅, and for all xy ∈ E there exists an i with x ∈ Ai, y ∈ Bi or
y ∈ Ai, x ∈ Bi. Indeed, one can define Ai and Bi as follows: Label each vertex with a
distinct binary vector of dimension dlog2 ne, and let Ai be the set of vertices with a 1
in the ith coordinate and Bi = V (Kn)\Ai. Since any two vertices differ in at least one
coordinate, every edge appears in at least one complete subgraph.

More generally, one can consider graphs that are d-regular for some d; the above
is the special case d = n − 1. In this paper, we find a covering of d-regular graphs
that have an even number of vertices by regular bipartite subgraphs, where the number
of subgraphs needed grows logarithmically with the regularity d. This covering works
asymptotically almost surely, in the sense that if a graph is randomly chosen from all
d-regular graphs, the probability that the covering works approaches 1 as n approaches
infinity.

In Section 2 we discuss previous results on f(n, p, q) for various values of p and q.
In Section 3 we introduce our (4, 3)-coloring and prove its correctness. In Section 4 we
prove our result on covering with bipartite graphs. In Section 5 we discuss conclusions
and future work.

2 Previous Results on f(n, p, q)

The problem of finding upper and lower bounds on f(n, p, q) has a wide range of
difficulty, depending on the values p and q chosen. For example, the case p = q = 3
is easy because (3, 3)-colorings are equivalent to proper edge-colorings (those in which
no two adjacent edges have the same color). Thus f(n, 3, 3) equals the chromatic index
χ(Kn), which is n− 1 for n even and n for n odd, as shown in [3].

The next case, (p, q) = (4, 3), is substantially more difficult. Mubayi constructed a
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coloring in [5] which uses 2O(
√
logn) colors; this is the best upper bound known. The

lower bound was recently improved to Ω(log n) by Fox and Sudakov in [6].
Mubayi resolved the case (p, q) = (4, 4) by extending their coloring for (4, 3) to a

(4, 4) coloring which uses n1/2+o(1) colors [7]. Because f(n, 4, 4) ≥ n1/2 − 1 was already
known [3], this is optimal.

For more general formulas, Erdős and Gyárfás proved a variety of results about

f(n, p, q) in [3]. They proved the general bound f(n, p, q) ≤ cp,qn

p−2
(p2)−q+1 . However,

their proof is nonconstructive; they considered random colorings and showed that at

least one worked. They also showed that f(n, p, p) ≥ n
1
p−2 − 1, and raised the question

of whether f(n, p, p− 1) would be polynomial or subpolynomial in n. This was resolved
in [2], in which Conlon et al. showed that f(n, p, p − 1) is subpolynomial. Their proof
used a generalization of Mubayi’s (4,3)-coloring.

The problem of (4, 3)-colorings is the one we have chosen to focus on. Below we
present another coloring that achieves the same upper bound asymptotically as Mubayi’s.
However, this coloring shows room for improvement, because in one of the steps we choose
the simplest possible coloring that works, while it is possible that a more clever choice
would produce a better bound.

3 A (4,3)-Coloring

It will be helpful to first discuss the ideas behind Mubayi’s coloring in [5]. The first
step is to eliminate monochromatic triangles. One can check that, up to isomorphism,
the only K4’s that have at most 2 distinct colors but no monochromatic triangles are
the two shown in Figure 1.

Figure 1: K4’s with 2 distinct colors but no monochromatic triangles

Mubayi eliminated monochromatic triangles by labelling each vertex with a subset
of [m] with exactly t elements, for some t and m depending on n, and defining a coloring
as follows: An edge between A and B is colored by the smallest element of A∆B, the
symmetric difference of A and B. This removes monochromatic triangles: If AB,BC,CA
have the same color, without loss of generality let the smallest element of A∆B be in
A, and call this element i. Since A∆C also has color i, then i 6∈ C and i 6∈ B, so B∆C
cannot have the color i. One can think of this as partitioning the edges into edge-disjoint
bipartite graphs, each of which is made monochromatic. But in fact, one can show that
this coloring prevents the existence of any copies of the rightmost K4 in Figure 1. And
based on how m and t are chosen, this uses only O(log n) edges. So the main difficulty
is removing the leftmost K4.
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Now we discuss our (4, 3)-coloring. Let k = d2
√

log2 ne and t = d2
√

log2 ne. For

each i from 1 to k, let S
(i)
1 , . . . , S

(i)
t be a partition of [n] into sets whose cardinalities

are in {bnt c, d
n
t e}, chosen uniformly at random among all such partitions. We say an

edge e = {x, y} is crossing if there exists an i ∈ [k] and a, b ∈ [t], a 6= b, such that

x ∈ S(i)
a , y ∈ S(i)

b . For each edge e let Xe =

{
1 if e is noncrossing

0 if e is crossing
.

Note that

E[Xe] = Pr(e is noncrossing) ≤ (
dnt e − 1

n− 1
)k ≤ 1

tk
.

Then the expected number of noncrossing edges is

E[
∑
e

Xe] =
∑
e

E[Xe] ≤
(
n
2

)
tk
≤

(
n
2

)
(2
√

log2 n)2
√

log2 n
< 1.

So there exists a collection of partitions in which every edge is crossing.

Thus, we can assume that (S
(i)
1 , . . . , S

(i)
t )ki=1 has only crossing edges. Now, suppose

we have some coloring c on Kt. We color every edge e in our Kn with a triple of colors
(c1(e), c2(e), c3(e)), where the 1st coordinate c1(e) is the smallest i such that e crosses

between two sets S
(i)
a and S

(i)
b in the ith partition, the 2nd coordinate c2(e) is the color

of the edge {a, b} in the Kt, and the 3rd coordinate c3(e) is a binary string of length
k, where the jth entry is 1 iff e is crossing in the jth partition. Depending on which c
we chose, this coloring will satisfy certain properties we want. To actually get a (p, q)-
coloring, we choose c to be the simplest possible coloring - one in which every edge in
Kt has a unique color. This is where we see a place to improve our coloring.

Claim 3.1. If c contains no monochromatic triangles, then this coloring contains no
monochromatic triangles. If c produces no K4 with at most 2 distinct colors, then this
coloring does not contain a copy of the rightmost K4 in Figure 1. If c assigns to any
two edges in Kt different colors, then this coloring also does not contain a copy of the
leftmost K4 in Figure 1, and so it is a (4,3)-coloring that uses 2O(

√
logn) colors.

Proof. If xyz is a monochromatic triangle in Kn, then x ∈ S
(i)
a , y ∈ S

(i)
b , z ∈ S

(i)
c for

some i and a, b, c. We also have c2(xy) = c2(yz) = c2(xz), so abc form a monochromatic
triangle in the Kt colored with c. So if c contains no monochromatic triangles, this
coloring also contains no monochromatic triangles.

Now suppose that c produces no K4 with at most 2 distinct colors. The rightmost
bad K4 can be written as xyzw with xy, yz, zw the same color and xz, xw, yw the same
color. If c1(xy) = c1(xz), then x, y, z, w are in different sets Sia, S

i
b, S

i
c, S

i
d. But since

c2(xy) = c2(yz) = c2(zw) and c2(xz) = c2(xw) = c2(yw), abcd is a K4 with at most 2
distinct colors, which is impossible. So the 1st coordinates are different. Let the smaller
one be i, and without loss of generality let this be the 1st coordinate for xy, yz, zw.
Then in the ith partition, x and w are in the same set, as are x and z and y and z (as
otherwise c1(xw) would be ≤ i). But this is impossible since x and y are in different
sets. So this configuration is impossible.
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Now suppose c assigns different colors to any two edges in Kt. The other bad K4 is
when xy, yz, zw,wx are the same color and xz and yw are the same color. Let c1(xy) = i
and c1(xz) = j. Then j ≥ i, since x, y, z, w were in the same set until the ith partition.
And j 6= i, since otherwise in the ith partition x, y, z, w would be in four different sets
Sia, S

i
b, S

i
c, S

i
d, and so abcd would be a monochromatic K4 in the Kt, which is impossible.

So j > i. Thus in the ith partition x and z must be in the same set, and y and w must
be in the same set (otherwise the edge between them would have 1st coordinate ≤ i).
Since c2(xz) = c2(yw), xz and yw must cross between the same pair of sets in the jth
partition (because our coloring c assigns any two edges in Kt different colors). So in the
jth partition we can also guarantee that x and y (without loss of generality; otherwise
swap y and w) are in the same set, as are z and w. But then c3(xy) contains a 0 in
the jth entry, whereas c3(xw) contains a 1 in the jth entry. So this configuration is
impossible.

Finally, to see that in this case we achieve the upper bound, note that we use
t22k colors in total (as c1 is redundant with c3). This is asymptotically equal to

(2
√

log2 n)222
√

log2 n = 2O(
√
logn), as desired.

4 Covering with Bipartite Graphs

To begin, we introduce a few concepts from spectral graph theory.

Definition 4.1. Let G = (V,E) be a graph whose vertices are labelled v1, v2, . . . , v|V |.
The adjacency matrix of G, denoted A(G), is a |V | × |V | matrix that has a 1 in entry
ij if vivj ∈ E and a 0 otherwise.

Suppose that G is d-regular. Then d is an eigenvalue of A(G) for the eigenvector
(1, 1, . . . , 1)T . Furthermore, d is the largest eigenvalue of A(G), in absolute value, see
[8]. If λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of A(G), let λ(G) = max{|λ2|, |λn|}. Now
we introduce the following definition, as done in [9].

Definition 4.2. We say that G is an (n, d, λ)-graph if |V | = n, G is d-regular, and
λ(G) ≤ λ.

Bounding the size of λ(G) gives us control over the regularity of G, through the
following well-known lemma, known as the Expander Mixing Lemma [8]. First, we
introduce the following notation: For subsets S, T of the vertex set of a graph G = (V,E),
we let e(S, T ) = |{(x, y) ∈ S × T | xy ∈ E}|.

Lemma 4.3 (Expander Mixing Lemma). Let G = (V,E) be an (n, d, λ) graph, and let
S, T ⊂ V . Then ∣∣∣∣e(S, T )− d|S||T |

n

∣∣∣∣ ≤ λ√|S||T |.
An r-factor is a spanning r-regular subgraph. We will also need the following lemma,

which follows from a generalization of the Gale-Ryser theorem due to Mirsky [10], to
find r-factors.
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Lemma 4.4. Let G = (A∪B,E) be a balanced bipartite graph with |A| = |B| = m, and
let r be a positive integer. Then G contains an r-factor if and only if for every X ⊂ A
and Y ⊂ B,

e(X,Y ) ≥ r(|X|+ |Y | −m). (1)

To find our regular bipartite subgraphs, we first need a collection of almost-regular
bipartitions that together cover every edge of G at least once. We find this collection
using the following lemma, which is a variant on [9, Lemma 3.1] by Ferber and Jain.

Lemma 4.5. Let G = (V,E) be a d-regular graph on n vertices, where d = ω(1) and n
is an even and sufficiently large positive integer. Let t = d20 log de. Then there exists a
collection (Ai, Bi)

t
i=1 of balanced bipartitions such that:

Let Gi be the subgraph of G induced by EG(Ai, Bi). For all 1 ≤ i ≤ t we have
d

2
− d2/3 ≤ δ(Gi) ≤ ∆(Gi) ≤

d

2
+ d2/3.

For all e ∈ E(G), there exists an i ∈ [t] such that e ∈ E(Gi).

Proof. The proof is the same as in [9], except that there is a slight difference in the
inequalities due to the change in the size of t and the relaxation of the second condition.
We will choose our bipartitions (Ai, Bi) according to a random process. Let Di,v be an

indicator variable for the event dGi(v) 6∈
[
d

2
− d2/3, d

2
+ d2/3

]
, and Ae be an indicator

variable for the event |{i ∈ [t] | e ∈ E(Gi)}| ≤
t

100
. We wish to find a collection of

bipartitions for which none of these events occur, which for n and d sufficiently large
will imply that both of our desired properties hold.

First consider the case where d >

√
n

2
. Here we randomly choose t subsetsA1, A2, . . . , At

independently from the uniform distribution on all subsets of V of size
n

2
, and let

Bi = V \Ai. By Chernoff’s inequality [11],

Pr[Ae] ≤ exp

(
−

(4950)2t

4

)
≤ 1

e4.802 log d
=

1

d4.802
.

For n sufficiently large, this is at most
1

n2.4
. Taking the union bound over all edges e,

we obtain Pr[
⋃
e∈E Ae] ≤

1

n0.4
. Again using Chernoff’s inequality, we obtain Pr[Di,v] ≤

exp

(
−d

1/3

10

)
, which we note is at most

1

n3
for n sufficiently large. Taking the union

bound over all i and v, we obtain Pr[
⋃
i∈[t],v∈V Di,v] ≤

1

n
. So by the union bound,

the entire collection satisfies both of the desired properties with probability at least

1− 1

n0.4
− 1

n
. Hence we can find such a collection.
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Now consider the case where d ≤
√
n

2
. Define the graph G′ = (V,E′) by the following

rule: For all x, y ∈ V, we have xy ∈ E′ if and only if xy 6∈ E and there is no vertex v ∈ V
with xv, yv ∈ E. For any x ∈ V there are at most d2 many y ∈ V that do not have this
property, so δ(G′) ≥ n− d2 ≥ n

2 . Then we claim that G′ must have a perfect matching.
Suppose for the sake of contradiction that the maximum size of a matching is k < n

2 , and
let {x1y1, . . . , xkyk} be any such matching. Define S = {x1, x2, . . . , xk}∪{y1, y2, . . . , yk},
and let S′ = V \S. Note that for any u, v ∈ S′ we have uv 6∈ E′, as otherwise the matching
would not be maximal. Thus for any u, v ∈ S′, we know that u and v are each adjacent
to at least n

2 elements in S, so there exists an i ∈ [k] such that xiu, yiv ∈ E′ (without
loss of generality; otherwise swap u and v). But then {xjyj | j ∈ [k], j 6= i} ∪ {xiu, yiv}
is a larger matching, contradicting maximality.

So, let s = n
2 and take a perfect matching M = {x1y1, . . . , xsys} of G′. For each

i ∈ [t] let fi be a random function chosen independently and uniformly from the set
of functions mapping {x1, . . . , xs} to {±1}. Then we define the following partition:
Ai = {xj | fi(xj) = −1} ∪ {yj | fi(xj) = +1} and Bi = [n]\Ai. For each i ∈ [t], let
gi : V (G) → {Ai, Bi} indicate whether a vertex is mapped to Ai or Bi. Then for each
v ∈ V (G), the choices gi(w) for w ∈ NG(v) (the neighborhood of v in G) are mutually
independent.

We wish to apply the Symmetric Local Lemma [11] to the collection of events con-
sisting of all the Di,v’s and all the Ae’s. Note that Di,v and Dj,u are independent unless
i = j and either distG(u, v) ≤ 2 or uv ∈M . Also, Di,v and Ae are independent unless an
endpoint of e is within distance 1 of v in either G or M . Therefore, each Di,v depends
on at most 2d2 events in the collection. Furthermore, Ae and Ae′ are independent unless
e and e′ share an endpoint in G or if any of the endpoints of e are matched to any of
the endpoints in M . So the maximum degree of the dependency graph is 2d2. Using
Chernoff’s inequality as before we see that 2ed2 Pr[Ae] and 2ed2 Pr[Di,v] are bounded
above by 1, so by the Local Lemma there exists a collection of bipartitions satisfying
both properties.

Next we require the following lemma, which is based on [12, Lemma 16] by Kühn,
Osthus, and Treglownin, but is adapted for our purposes.

Lemma 4.6. Let G be a bipartite graph with parts U and V satisfying |U | = |V | = n

2
.

Let the edges of G be partitioned into sets E1 and E2 where the degree of any vertex is
at most m in the subgraph induced by E1. If for some positive integer t ≥ m we have

eE2(A,B) ≥ min
(
|A|t−

(n
2
− |B|

)
(t−m), |B|t−

(n
2
− |A|

)
(t−m)

)
(2)

for all A ⊂ U and B ⊂ V , then there exists a subset E′ ⊂ E2 such that the subgraph
induced by E1 ∪ E′ is t-regular.

Proof. For each i from 1 to n
2 , let xi be the degree of the ith vertex ui in U and yi be

the degree of the ith vertex vi in V , both in the subgraph induced by E1 (implying that
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these satisfy
∑
xi =

∑
yi). Then we wish to find a subset E′ ⊂ E2 that induces a graph

in which ui has degree ci = t− xi and vi has degree di = t− yi.
Like in [12], we create a network by adding vertices s and t to the graph induced

by E2, along with edges sui and vit for each i, and directing every edge in E2 from U
to V . We give each edge sui capacity ci, each edge vit capacity di, and every other
edge capacity 1. Suppose we have some valid flow on this network. We define a subset
E′2 ⊂ E2 consisting of all edges uivj that have flow 1. The degree of ui in the graph
induced by E′2 is then the flow coming out of ui, which equals the flow of edge sui.
Similarly, the degree of vi in the graph induced by E′2 is the flow coming into vi, which
equals the flow of edge vit. Therefore, if we can find a flow such that every edge sui has
flow ci and every edge vit has flow di, E

′
2 will be our desired set E′. Since ci and di are

the capacities of these edges, any flow is bounded above by
∑
ci =

∑
di, so it suffices

to show that there exists a flow with value
∑
ci. By the max-flow min-cut theorem, it

suffices to show that any cut has capacity at least
∑
ci.

For a given cut, let A be the subset of U contained in the source set and B be
the subset of V contained in the sink set. Let A = U\A and B = V \B. Then the
capacity of the cut is

∑
ui∈A ci +

∑
vi∈B di + eE2(A,B), so we just need to show that

eE2(A,B) ≥
∑

ui∈A ci −
∑

vi∈B di. Since xi, yi ∈ [0,m], we have ci, di ∈ [t−m, t], so∑
ui∈A

ci −
∑
vi∈B

di ≤ |A|t−
(n

2
− |B|

)
(t−m).

Similarly, ∑
vi∈B

di −
∑
ui∈A

ci ≤ |B|t−
(n

2
− |A|

)
(t−m).

Note that
∑

ui∈A ci −
∑

vi∈B di =
∑

vi∈B di −
∑

vi∈A ci. So by (2) and the inequalities
above, we obtain eE2(A,B) ≥

∑
ui∈A ci −

∑
vi∈B di as desired.

Using the above lemmas, we can now prove our main theorem of this section.

Theorem 4.7. There exist n0, d0 ∈ N such that if G is a random d-regular graph on
n vertices with n ≥ n0, d ≥ d0, and n even, then with high probability there exists a
collection of at most c log d regular bipartite subgraphs that together cover every edge of
G at least once, where c is an absolute constant.

Proof. By [13], for d sufficiently large G is an (n, d, λ) graph with λ = O(
√
d) asymptot-

ically almost surely. If we can find a covering collection of regular bipartite subgraphs
for each such graph, then it follows that we can find such a collection for a random graph
with high probability. So in what follows, we assume that λ(G) is negligible compared
to d0.5+ε for constants ε > 0 by taking n and d sufficiently large.

Consider the collection of bipartitions found in Lemma 4.5. Let r =

⌊
d

2
− d0.9

⌋
. For

each bipartition (Ai, Bi), we first need an r-factor of the subgraph induced by EG(Ai, Bi).
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We show that an r-factor exists using Lemma 4.4. To see that (1) holds, take any X ⊂ A
and Y ⊂ B, where without loss of generality |X| ≤ |Y |. If |X| < |Y | then the right hand
side of Equation 1 is negative, so there is nothing to show. So we assume that |X| ≥ |Y |.
First consider the case |X| ≤ n

d0.3
. By Lemma 4.3 we then have

e(X,Y ) ≤ d|X||Y |
n

+ λ

√
|X||Y | ≤ d0.7|X|+ λX.

From the regularity of our bipartition we know that e(X,Bi) ≥
(
d

2
− d2/3

)
|X|. Com-

bining this with the inequality above, we obtain

e(X,Y ) = e(X,Bi)− e(X,Y ) ≥
(
d

2
− d2/3 − d0.7 − λ

)
|X|.

The desired lower bound is

(
d

2
− d0.9

)
(|X| − |Y |), so we can rewrite the desired in-

equality as

(d0.9 − d2/3 − d0.7 − λ)|X|+
(
d

2
− d0.9

)
|Y | ≥ 0,

which holds for d sufficiently large.

Now consider the case |Y | ≥ |X| > n

d0.3
. We assume that

d0.9
√
|X||Y |
n

> λ because

this holds for d sufficiently large. Now using Lemma 4.3, we have

e(X,Y ) ≥ d|X||Y |
n

− λ
√
|X||Y | ≥ |X||Y |

n
(d− d0.9).

The desired lower bound is

(
d

2
− d0.9

)
(|X| + |Y | − n

2
), so we can rewrite the desired

inequality as
|X||Y |
n

(d− d0.9)−
(
d

2
− d0.9

)
(|X|+ |Y | − n

2
) ≥ 0.

For fixed |X|, consider the left hand side as a function of |Y |. At |Y | = |X| the left
hand side is a quadratic in |X| with discriminant (d− 2d0.9)2 − (d− d0.9)(d− 2d0.9) < 0

and positive constant term, so the inequality holds. At |Y | =
n

2
, the inequality holds

trivially. Since it holds at both endpoints of
[
|X|, n

2

]
, and the left hand side is linear in

|Y | for fixed |X|, it follows that it holds for the whole interval.
In either case, we have that Equation 1 holds, so by Lemma 4.4 we can find an

r-factor Hi of each bipartition. Now, we wish to apply Lemma 4.6 to each bipartition,

where t = b d
10
c,m = 2bd0.9c + 2, E2 = EHi and E1 = EG(Ai, Bi)\EHi . To see why

Equation 2 holds, consider any two subsets X ⊂ Ai and Y ⊂ Bi, where without loss

of generality |X| ≤ |Y |. If
n

2
− |Y | ≥ |X|(1 + 20d−1/3) then the right hand side of our

9



desired inequality is negative, and hence is less than e(X,Y ). Otherwise suppose that
n

2
− |Y | < |X|(1 + 20d−1/3). For d sufficiently large the right hand side is at most 2|X|,

so we may assume that
∣∣Y ∣∣ < 2|X|.

First suppose that |X| < n

10
. By Lemma 4.3 we then have

eHi(X,Y ) ≤ e(Ai,Bi)(X,Y ) ≤
d|X|

∣∣Y ∣∣
n

+λ
√
|X|

∣∣Y ∣∣ ≤ 2d|X|2

n
+λ
√

2|X| < d|X|

(
1

5
+
λ
√

2

d

)
.

From the regularity of Hi we know that eHi(X,Bi) = r|X| = d|X|
(

1

2
+O(d−0.1)

)
.

Combining this with the inequality above, we obtain

eHi(X,Y ) = eHi(X,Bi)− eHi(X,Y ) ≥ d|X|
(

3

10
+O(d−0.1)

)
,

using our assumption that λ is negligible compared to d. The right hand side above is

certainly at least
d|X|
10

for d sufficiently large. Hence we satisfy the desired lower bound

from Equation 2, which is
d|X|
10
−
(n

2
− |Y |

)( d

10
−m

)
.

Now consider the case when |X| ≥ n

10
. For d sufficiently large we have

d

20
−m ≥ λ,

which combined with our bound on |X| and the fact that |X| ≤ |Y | gives us
d
√
|X||Y |
2n

−

m

√
|X|
|Y |
≥ λ. Thus by Lemma 4.3 we have

eHi(X,Y ) ≥ e(Ai,Bi)(X,Y )−m|X| ≥ d|X||Y |
n

− λ
√
|X||Y | −m|X| ≥ d|X||Y |

2n
.

The desired lower bound from Equation 2 is
(
|X|+ |Y | − n

2

) d

10
−m|Y |. Therefore, it

suffices to show that
|X||Y |

2n
− 1

10

(
|X|+ |Y | − n

2

)
≥ 0. For fixed |X|, consider this as

a function of |Y |. At |Y | = |X|, the left hand side factors as
1

2

(
|X|√
n
−
√
n

5

)2

+
3n

100
, so

the inequality holds. At |Y | =
n

2
, the inequality holds trivially. Since it holds at both

endpoints of
[
|X|, n

2

]
, and the left hand side is linear in |Y | for fixed |X|, it follows that

it holds for the whole interval.
In either case, we have that Equation 2 holds. So we can apply Lemma 4.6 as

desired, obtaining for each i a subset E′i ⊂ EHi such that the subgraph induced by

(EG(Ai, Bi)\EHi)∪E′i, which we denote H ′i, is regular. Then {Hi}d20 log dei=1 ∪{H ′i}
d20 log de
i=1

is our desired collection, because every edge in G is contained in EG(Ai, Bi) for some i,
and Hi and H ′i together cover every edge of EG(Ai, Bi).

10



5 Conclusions and Future Work

We gave an alternate proof of the upper bound 2O(
√

logn) for the first problem. To
improve the upper bound, one can try to improve our coloring above. This would mean
choosing a c that uses fewer colors but still ensures that there is no bad K4 of the first
type. It is possible one could do this by considering c to be a good coloring (for some
meaning of the word good) and then showing that this will produce a good coloring in
the Kn, to recursively produce a bound. It is not enough to say that good means that c
contains no monochromatic triangles or K4’s with at most 2 distinct colors, as the last
part of our argument will not work with only such a coloring (we could have xz and yw
crossing between different pairs of sets).

Another direction would be to attempt to prove the lower bound. We believe the
correct value is closer to the upper bound (though it is not clear whether the upper
bound leaves room for improvement). We hope that working on the upper bound can
provide intuition for what properties optimal colorings need, which one could use to
come up with an argument that strengthens the lower bound (finding a way to ensure
that any coloring with at most k colors has a bad K4).

For the second problem, we found a covering of random d-regular graphs with c log d
regular bipartite subgraphs that works asymptotically almost surely, for an absolute
constant c.
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