
Computer science problems.

About the problems. For this year’s problem set you will explore a data
structure prefix tree (also known as trie) and its variants radix tree (radix trie)
and Patricia tree.

What you need to do. For these problems we ask you to write a program
(or programs), as well as write some “paper-and-pencil” solutions (use any text
editor that you see fit, or scan an actual handwritten solution; convert the result
to pdf format if possible). You may use any programming language you want
for your programs, as long as its full implementation is available at no cost and
with an easy installation for both a Mac and Windows. It is best to implement
each problem as a separate function so that we can run them separately. We
will be looking for the following in your submissions:

• Correct code that we can run. You need to send us all your code files,
including the header files for languages like C++. If you are using standard
libraries, make sure to include all “import” statements, as required by the
language you are using. Make sure to send the files under the correct
names, including the file extension (.java, .c, etc). Make sure that the file
names do not contain any identifying information about you, such as your
first or last name.

• Test data for your code that you have used (you can write it in comment
or in a separate file). Make sure to test your code well – you don’t want
it to fail our tests!

• Code documentation and instructions. If you are submitting your answers
to non-code problems in a separate file, also make sure that it does not
have your name in the contents or in the file name. The only place where
you specify your name is the zip file with your solutions which must be
of the form yourlastname-CS-solution.zip (replace yourlastname by
your actual last name). Make sure that you use zip compression,
and not any other one, such as tar. In the beginning of each file
specify, in comments:

1. Problem number(s) in the file. If you have a file with “helper” func-
tions, mark it as such.

2. The programming language, including the version (Java 1.7 or 1.8, for
instance), the development framework (such as Visual Studio) that
you used, unless you were using just a plaintext editor (notepad,
emacs, etc), and the platform (such as Windows, Mac, Linux)

3. Instructions for running your program (how to call individual func-
tions, pass the input (if any), etc), either in comments in your pro-
gram file or as a separate file, clearly named. Your program may get
input from the user (i.e. it asks to enter some data and then reads it)
or you may store the data in specific variables within your program.
You need to clearly explain how to input or set the data.



4. Some of your code may be commented out if it is not used in the
final run of your program. Make sure it is clear what needs to be
uncommented to run code for each of the problems.

5. All of your test data.

6. If you were using sources other than the ones listed here (i.e. text-
books, online resources, etc) for ideas for your solutions, please clearly
credit these contributions. This is a courtesy to work of others and
a part of ethics code for scholars.

• Clear, understandable, and well-organized code. This includes:

1. Clear separation between problems; comments that help find individ-
ual problems and explain how to run the corresponding functions.

2. Breaking down code into functions that are clearly named and de-
scribed (in comments), using meaningful names for variables and
function parameters. Your code should be as self-explanatory as
possible. While using comments helps, naming a variable average

is better that naming it x and writing a comment “x represents the
average”.

3. Minimization of code repetition. Rather than using a copy-paste
approach, use functions for repeated code and reuse these functions.

4. Using well-chosen storage structures (use an array or a list instead of
ten variables, for instance) and well-chosen programming constructs
(use loops or recursion when you can, rather than repeated code).

5. While we are not asking for the fastest program (it’s better to make
it more readable), you should avoid unnecessary overhead.

For this problem set you will implement and explore a data structure
known as a prefix tree and its space-optimized variants known as a radix tree
(sometimes called radix trie or compact prefix tree) and Patricia tree. Prefix trees
were first described by René de la Briandais in 1959. However, the name “trie”
was suggested later by Edward Fredkin, and was based on the word retrieval.
It can be pronounced as “try” or as “tree”. Patricia trees are a variant of radix
trees and is named after an algorithm by Donald Morrison called PATRICIA,
which is an acronym for “Practical Algorithm to Retrieve Information Coded
in Alphanumeric”.

In this problem set we will be using the term “tree”, and not “trie”.
For more information on prefix trees and many more advanced data struc-

tures see [1].
A prefix tree is a tree for storing strings (or any other items that can be

viewed as strings over some alphabet, such as phone numbers, IP addresses,
etc.) that allows quick searching, insertion, and deletion. Each node can have
as many children as the size of the alphabet. The root of the tree corresponds to
an empty string, and each node contains a string that’s a common prefix of all



strings in the subtree rooted at that node. A straightforward implementation
adds one symbol per level of the tree.

For instance, the following prefix tree stores words bee, bear, cab, cat:

b

e

a

r

e

c

a

b t

Notations. For all the problems we denote the number of characters in the
alphabet by M and assume that the tree contains N strings of lengths l1, . . . , lN ,
respectively.

Problem 1. One small issue with this way of storing strings of arbitrary
length is that there needs to be some way of indicating whether a node is just
a prefix of strings below it or has a complete string in it. For instance, in the
tree above the node be could be a word “be” that was inserted in the tree, or
just the common prefix of bee and bear.

• Give another example of a small prefix tree of English words in which
there is ambiguity of whether a node corresponds to a word in the tree.

• Draw your example as a tree and mark nodes that contain words by
double-circling. Note that leaf nodes always contain a word.

Problem 2.

1. Draw a prefix tree with words lead, leaf, lot, key, kin, king, kiwi,
make sure to mark nodes that contain words.

2. What is the maximum number of nodes to traverse in order to find a string
in the tree or determine that it’s not there? Describe this procedure for
strings leaf and least.

3. What is the maximum number of nodes to traverse in order to insert a
new string into the tree? Describe the process of adding the string least.
Generalize this procedure to any string, be careful with strings in inner
nodes.

4. What is the maximum number of nodes to traverse in order to remove a
string from the tree? Describe the process of removing the strings lead
and king.

Problem 3. Compute storage requirements for the prefix tree: count mem-
ory that’s used for storing string characters. Also count the number of edges



and of nodes. For what kind of a set of N strings is the storage maximal? For
what set of N strings is it minimal?

Problem 4. Radix tree is based on prefix trees, but it reduces the number
of nodes by merging every node that is the only child of its parent with the
parent node. For instance, the tree in Problem 1 can be compressed into the
following:

·

be

ar e

ca

b t

This is the most beneficial for sparse trees that have long sequences since it
reduces the number of nodes that need to be traversed. The radix r of the tree
is the maximum number of children a node may have. It corresponds to what
is considered the smallest comparable portion of the key that determines the
item’s position. For instance, if the items are case-insensitive strings of letters
in the English alphabet then the radix of that tree is r = 26.

1. Draw a picture of a radix tree corresponding to the tree in Problem 2.

2. What is the radix of a tree storing US phone numbers, compared digit-
by-digit?

Problem 5. Assume an alphabet of M characters and the comparisons
done character-by-character. For instance, if I am comparing a string leaf to a
string least, I would make four character comparisons to determine that they
aren’t equal, assuming that I start at the beginning; however, if I came from a
node that shares their common prefix lea then I only need to make one more
comparison to determine that they aren’t the same.

1. How much storage is required for storing N strings of lengths l1, . . . , lN?
Count the storage of the characters and also the number of nodes and
edges. For what kind of a set of N strings is the storage maximal? For
what set of N strings is it minimal?

2. Describe an algorithm for searching for a string in a given radix tree. How
many character comparisons does it make in the worst case? How many
nodes does it traverse in the worst case?

3. Describe an algorithm for adding a string to a given radix tree. How many
character comparisons does it make in the worst case? How many nodes
does it visit (by traversing or creating) in the worst case?

4. Describe an algorithm for removing a string from a given radix tree. How
many character comparisons does it make in the worst case? How many
nodes does it visit in the worst case? How many nodes would you need to
delete in different cases?



Problem 6 (implementation). Implement a radix tree to store DNA seg-
ments. Assume that DNA encoding consists only of letters A, C, G, T. Here is
an example of a DNA fragment: CTGCACGTGTCCCTGAAGGCTTCCAGAGGAAGCTTTACA.
Segments can be between 10 and 100 characters long. You can use randomly
generated strings for testing, although in reality there are dependencies in DNA
sequences. No symbols other than A, C, G, T may appear in the data. Note
that a valid fragment may also be a prefix of another valid fragment. Your
implementation must have:

• A method to add a string.

• A method to delete a string.

• A method to search for a string.

• A method to find out how many strings are in the tree.

• A method to find out how many nodes are in the tree.

• A method to print out all of the strings in alphabetical order.

• A method to print all nodes in the tree and what prefixes they correspond
to.

Your goal should be to optimize the storage, so make sure that you are storing
any repeated data only once. Also make sure that your way of looking for a
string is efficient and avoids unnecessary comparisons and lookups. Explain, in
comments, your implementation choices.

Problem 7. For your implementation please compute an expected amount
of storage (characters and any overhead generated by storing nodes and edges)
to store N randomly generated sequences of A, C, G, T of lengths between
10 and 100. Also estimate the storage that a non-optimized prefix tree (as in
Problem 2) would have for the same data.

Problem 8. In your implementation, assuming that there are N strings
stored in the tree, how many steps would it take, on average, to find a string of
length 50 (or determine that it’s not in the tree)? Please list what these steps
are and what is the best case and the worst case.

Problem 9. Inputs to the radix tree are often treated as strings of zeros
and ones. For r = 2 strings are compared bit-by-bit and a node corresponds to
a binary string of common prefixes. For instance, if you have two strings 010101
and 010100, their parent node would have the common prefix 01010, and the
strings themselves would be the two descendants of that node.

If inputs to a radix tree are strings of zeros and ones and radix of a tree
is higher than 2, the radix then must be r = 2a for a positive integer a, and
strings are compared in chunks of a bits. For instance, if we consider the same
two strings and r = 4 then the strings consist of three two-bit chunks: 010101
consists of the chunks 01, 01, 01, and 010100 consists of 01, 01, 00. Thus their
common prefix is two chunks 01, 01, and they differ in the last chunk: 01 versus
00.



Explain the tradeoffs between the two representations, r = 2 and r = 4.
What are the factors that would determine which of the two you would use?
Describe a data set for which r = 2 is preferred and a data set for which r = 4
(or higher) is preferred.

Problem 10. In 1968 Donald Morrison proposed a further optimization of
radix trees known as Patricia trees. The original paper [2] has all of the details
of the implementation and is quite complicated. A simplified explanation of a
binary Patricia tree is given here:
http://users.monash.edu/~lloyd/tildeAlgDS/Tree/PATRICIA/.
The idea is that there is no need to compare every character in order to deter-
mine where a string is (or could be) positioned in the tree: only a few characters
in the string determine its position. Thus each internal node only stores a num-
ber: the index of the position that needs to be checked. If the position has a 0
(or a, as in the example at the link), the search continues to the left. If it’s a
1 (a b in the example), the search continues to the right. Once a leaf node is
reached the rest of the characters in the search string are compared. If any of
them don’t match, the string isn’t actually there.

Note that if a string is a prefix of other strings in the tree, the corresponding
internal node would have to indicate that and store the string. This is illustrated
in the last picture at the link.

1. Draw a Patricia tree over the alphabet 0, 1 that has strings 10110, 110,

100, 001, 00110, 001011

2. Describe the search in this tree for the following strings: 0, 00110, 01110
(the search determines whether the string is in the tree). For each string
also show the number of character comparisons performed and the number
of visited nodes.

3. Prove that in a non-empty tree if no string is a prefix of any other string
in the tree then each internal node has 2 children (you might want to use
induction for your proof).

4. How does the number of nodes and comparisons compares to a straight-
forward radix tree with r = 2? What are the tradeoffs between the two
implementations, and when would you recommend one, and when the
other one?

Problem 11 (design, implementation, experimenting). There are
other variations of prefix trees, such as suffix trees that store strings based on a
common suffix (i.e. ending) rather than prefix.

Now that you have learned various variations of prefix trees, you need to
design and experiment with your own version for storing English text. Specifi-
cally, your program will have to take input as a plaintext file and store all words
in the text (converted to lower-case) into a tree. If a word appears twice, it
should only be stored once. However, do not preprocess your data to eliminate
duplicates or sort: try to add each word into the tree, and if it’s there, just do
not add it again.

http://users.monash.edu/~lloyd/tildeAlgDS/Tree/PATRICIA/


You may convert words into any other encoding. For instance, you may treat
them as ASCII characters, or encode a as five zeros, b as four zeros followed by
a 1, etc. You don’t need to actually use machine-level bitwise operations.

In order to easier get statistics on character comparisons, please set up a
counter for character comparisons and increment it every time you perform a
comparison. Note that depending on your implementation, the characters may
be English characters or binary.

As an example of data, use any wikipedia page, such as
https://en.wikipedia.org/wiki/Grace_Hopper

(note that not all words are dictionary words, and some may be acronyms). The
data set that your program will be tested on is similar to that.

Your implementation needs to support insertion, search (that returns true
or false, depending on whether a string is in the tree), and deletion.

Your solution will be evaluated for correctness. Correct solutions will be also
evaluated on the following:

1. The total number of bits necessary to store characters. Note that if you
use a binary encoding, 0 and 1 count as one bit each, even if in practice
they take more in your implementation. Letters of the English alphabet
are counted as 5 bits, unless your encoding is specifically different.

2. The total storage needed to store nodes and edges. For instance, if edges
or nodes contain string fragments that are not a part of the data storage
above, they would be counted. Numbers, arrays (filled in or empty),
pointers to other nodes also need to be counted.

3. The number of bitwise comparisons to create the tree for a given file
(i.e. the number of comparisons multiplied by the length of the character
encoding).

4. The number of bitwise comparisons to find a string in the tree. Your
program will be tested on data in which roughly a half of the strings are
in the tree, and the half aren’t.

5. The total number of nodes visited when tested on a search data set as
specified in the previous item.

Make sure that your program clearly specifies how to input a file for testing
(both to create a tree and to test if strings appear in the tree).

References

[1] Peter Brass. Advanced Data Structures. Cambridge University Press, New
York, NY, USA, 1st edition, 2008.

[2] Donald R. Morrison. Patricia: Practical algorithm to retrieve information
coded in alphanumeric. J. ACM, 15(4):514–534, October 1968.

https://en.wikipedia.org/wiki/Grace_Hopper

