### Elliptic Curves and Mordell's Theorem

Aurash Vatan, Andrew Yao

MIT PRIMES

December 16, 2017

Aurash Vatan, Andrew Yao (MIT PRIMES) Elliptic Curves and Mordell's Theorem

December 16, 2017

### Definition (Diophantine Equations)

Diophantine Equations are polynomials of two or more variables with solutions restricted to  $\mathbb Z$  or  $\mathbb Q.$ 

• For two variables, D.E. define plane curves

Aurash Vatan, Andrew Yao (MIT PRIMES) Elliptic Curves and Mordell's Theorem

### Definition (Diophantine Equations)

Diophantine Equations are polynomials of two or more variables with solutions restricted to  $\mathbb Z$  or  $\mathbb Q.$ 

- For two variables, D.E. define plane curves
- So rational solutions correspond to points with rational coordinates

### Definition (Diophantine Equations)

Diophantine Equations are polynomials of two or more variables with solutions restricted to  $\mathbb Z$  or  $\mathbb Q.$ 

- For two variables, D.E. define plane curves
- So rational solutions correspond to points with rational coordinates
- Ex. Fermat's theorem:  $x^n + y^n = 1$ , n > 2,  $x, y \in \mathbb{Q}$  equivalent to  $x^n + y^n = z^n$ ,  $x, y, z, \in \mathbb{Z}$

(4回) (日) (日)

### The Rational Points on Fermat Curves

Two examples of Diophantine equations with rational solutions marked:  $x^4 + y^4 = 1$  and  $x^5 + y^5 = 1$ .



December 16, 2017

### **Diophantine Equations**

### Definition (Diophantine Equations)

Diophantine Equations are polynomials of two or more variables with solutions restricted to  $\mathbb Z$  or  $\mathbb Q.$ 

- For two variables, D.E. define plane curves
- So rational solutions correspond to points with rational coordinates
- Ex. Fermat's theorem:  $x^n + y^n = 1$ , n > 2,  $x, y \in \mathbb{Q}$  equivalent to  $x^n + y^n = z^n$ ,  $x, y, z, \in \mathbb{Z}$
- Question: finite or infinite number of rational points?

< 回 ト < 三 ト < 三 ト

### **Diophantine Equations**

### Definition (Diophantine Equations)

Diophantine Equations are polynomials of two or more variables with solutions restricted to  $\mathbb Z$  or  $\mathbb Q.$ 

- For two variables, D.E. define plane curves
- So rational solutions correspond to points with rational coordinates
- Ex. Fermat's theorem:  $x^n + y^n = 1$ , n > 2,  $x, y \in \mathbb{Q}$  equivalent to  $x^n + y^n = z^n$ ,  $x, y, z, \in \mathbb{Z}$
- Question: finite or infinite number of rational points?
- Question: given some known rational points on a curve, can we generate more?

・ 「 ・ ・ ・ ・ ・ ・ ・

# **Diophantine Equations**

### Definition (Diophantine Equations)

Diophantine Equations are polynomials of two or more variables with solutions restricted to  $\mathbb Z$  or  $\mathbb Q.$ 

- For two variables, D.E. define plane curves
- So rational solutions correspond to points with rational coordinates
- Ex. Fermat's theorem:  $x^n + y^n = 1$ , n > 2,  $x, y \in \mathbb{Q}$  equivalent to  $x^n + y^n = z^n$ ,  $x, y, z, \in \mathbb{Z}$
- Question: finite or infinite number of rational points?
- Question: given some known rational points on a curve, can we generate more?
- Mordell's Theorem: finite number of rational points generate all rational points for a class of cubic curves (elliptic curves)

イロト 不得下 イヨト イヨト

# Rational Points on Conics

#### Definition

### General Rational Conic: $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ , $A, B, C, D, E, F \in \mathbb{Q}$ .



#### Theorem

Take a general conic with rational coefficients and a rational point  $\mathcal{O}$ . A point P on the conic is rational if and only if the line through P and  $\mathcal{O}$  has rational slope.

- Theorem gives geometric method for generating rational points
- Method can be described
  - algebraically + < = + < = + = =

Aurash Vatan, Andrew Yao (MIT PRIMES)

Elliptic Curves and Mordell's Theorem

December 16, 2017

#### Examples

Take the unit circle with  $\mathbb{O} = (-1, 0)$ . The line through  $\mathbb{O}$  with rational slope *t* intersects the circle again at  $\left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$ .

### Theorem (Generation of Pythagorean Triples)

(a, b, c) is an in integer solution to  $x^2 + y^2 = z^2$  if and only if  $(a, b, c) = (n^2 - m^2, 2mn, n^2 + m^2)$  for  $n, m \in \mathbb{Z}$ .

• Pythagorean triples correspond to rational points on  $x^2 + y^2 = 1$ 

・ 回 ト ・ ヨ ト ・ ヨ ト …

#### Examples

Take the unit circle with  $\mathbb{O} = (-1, 0)$ . The line through  $\mathbb{O}$  with rational slope t intersects the circle again at  $\left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$ .

### Theorem (Generation of Pythagorean Triples)

(a, b, c) is an in integer solution to  $x^2 + y^2 = z^2$  if and only if  $(a, b, c) = (n^2 - m^2, 2mn, n^2 + m^2)$  for  $n, m \in \mathbb{Z}$ .

- Pythagorean triples correspond to rational points on  $x^2 + y^2 = 1$
- We already have  $\frac{a}{c} = \frac{1-t^2}{1+t^2}$  and  $\frac{b}{c} = \frac{2t}{1+t^2}$

・ 回 ト ・ ヨ ト ・ ヨ ト …

#### Examples

Take the unit circle with  $\mathbb{O} = (-1, 0)$ . The line through  $\mathbb{O}$  with rational slope *t* intersects the circle again at  $\left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$ .

### Theorem (Generation of Pythagorean Triples)

(a, b, c) is an in integer solution to  $x^2 + y^2 = z^2$  if and only if  $(a, b, c) = (n^2 - m^2, 2mn, n^2 + m^2)$  for  $n, m \in \mathbb{Z}$ .

- Pythagorean triples correspond to rational points on  $x^2 + y^2 = 1$
- We already have  $\frac{a}{c} = \frac{1-t^2}{1+t^2}$  and  $\frac{b}{c} = \frac{2t}{1+t^2}$
- Plugging in  $t = \frac{m}{n}$ ,

$$\frac{a}{c} = \frac{n^2 - m^2}{n^2 + m^2}, \qquad \frac{b}{c} = \frac{2mn}{n^2 + m^2}$$

(本部) (本語) (本語) (二語)

#### Examples

Take the unit circle with  $\mathbb{O} = (-1, 0)$ . The line through  $\mathbb{O}$  with rational slope *t* intersects the circle again at  $\left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$ .

### Theorem (Generation of Pythagorean Triples)

(a, b, c) is an in integer solution to  $x^2 + y^2 = z^2$  if and only if  $(a, b, c) = (n^2 - m^2, 2mn, n^2 + m^2)$  for  $n, m \in \mathbb{Z}$ .

- Pythagorean triples correspond to rational points on  $x^2 + y^2 = 1$
- We already have  $\frac{a}{c} = \frac{1-t^2}{1+t^2}$  and  $\frac{b}{c} = \frac{2t}{1+t^2}$
- Plugging in  $t = \frac{m}{n}$ ,

$$\frac{a}{c} = \frac{n^2 - m^2}{n^2 + m^2}, \qquad \frac{b}{c} = \frac{2mn}{n^2 + m^2}$$

• We see that this implies  $c = n^2 + m^2$  and the rest follows

- Moving to cubics, our method for conics fails
- Given one rational point on a cubic curve, can we get more?
- Bachet studied rational solutions to  $C: y^2 = x^3 + c$  for  $c \in \mathbb{Z}$
- Discovered formula in (1621!) that takes one rational point on C and returns another

### Bachet's Formula

### Theorem (Bachet's Formula)

Bachet's formula says that for a cubic  $C : y^2 = x^3 + c$  with  $c \in \mathbb{Z}$ , if  $(x_1, y_1)$  is a rational solution of C, then so is  $\left(\frac{x^4 - 8cx}{4y^2}, \frac{-x^6 - 20cx^3 + 8c^2}{8y^3}\right)$ .

There is a geometric procedure equivalent to applying Bachet: find the second intersection of the tangent at  $(x_1, y_1)$  and C.



### Bachet's Formula

Take the example  $C: y^2 = x^3 + 3$ . One rational point by inspection is (1,2). Applying Bachet's formula yields

- (1,2) •  $\left(-\frac{23}{16},-\frac{11}{64}\right)$ •  $\left(\frac{2540833}{7744},-\frac{4050085583}{681472}\right)$
- And so on... This formula almost always generates infinitely many rational points.

Can often find one solution by inspection, so being able to generate infinitely many is a huge improvement.

But Bachet does not generate all solutions.

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $y^2 = x^3 - 26$  has two "easy" rational roots: (3,1) and (35,207). Applying Bachet to each repeatedly:

•  $(3,1) \rightarrow \left(\frac{705}{4}, \frac{18719}{8}\right) \rightarrow \left(\frac{247043235585}{5606415376}, \frac{-122770338185379457}{419785957693376}\right) \rightarrow \dots$ 



 $y^2 = x^3 - 26$  has two "easy" rational roots: (3,1) and (35,207). Applying Bachet to each repeatedly:





 $y^2 = x^3 - 26$  has two "easy" rational roots: (3,1) and (35,207). Applying Bachet to each repeatedly:



Aurash Vatan, Andrew Yao (MIT PRIMES)

Elliptic Curves and Mordell's Theorem

December 16, 2017

# • $(3,1) \rightarrow (\frac{705}{4}, \frac{18719}{8}) \rightarrow (\frac{247043235585}{5006415376}, \frac{-122770338185379457}{419785957693376}) \rightarrow \dots$ • $(35, 207) \rightarrow (\frac{167545}{19044}, \frac{-67257971}{2628072}) \rightarrow (\frac{1028695651552397952865}{344592394091494400016}, \frac{6396737528620859270011033599936}{5396737528620859270011033599936}) \rightarrow \dots$ • $(\frac{881}{256}, \frac{15735}{4096})$ does not show up in either sequence

December 16, 2017

# • $(3,1) \rightarrow (\frac{705}{4}, \frac{18719}{8}) \rightarrow (\frac{247043235585}{5606415376}, \frac{-122770338185379457}{419785957693376}) \rightarrow \dots$

- $(35, 207) \rightarrow (\frac{167545}{19044}, \frac{-67257971}{2628072}) \rightarrow (\frac{1028695651552397952865}{344592394091494400016}, \frac{4970551157449683117229613279377}{6396737528620859270011033599936}) \rightarrow \dots$
- $\left(\frac{881}{256}, \frac{15735}{4096}\right)$  does not show up in either sequence
- But it **can** be generated from (3,1) and (35,207)

# • $(3,1) \rightarrow \left(\frac{705}{4}, \frac{18719}{8}\right) \rightarrow \left(\frac{247043235585}{5606415376}, \frac{-122770338185379457}{419785957693376}\right) \rightarrow \dots$

- $(35, 207) \rightarrow (\frac{167545}{19044}, \frac{-67257971}{2628072}) \rightarrow (\frac{1028695651552397952865}{344592394091494400016}, \frac{4970551157449683117229613279377}{6396737528620859270011033599936}) \rightarrow \dots$
- $\left(\frac{881}{256}, \frac{15735}{4096}\right)$  does not show up in either sequence
- But it can be generated from (3, 1) and (35, 207)
- We need a method for generating new rational points from 2 inputs

# Group Law



# Definition (The Group Law on Rational Points in C)

Let distinct  $A, B \in C$  have coordinates in  $\mathbb{Q}$ . Define A + B as the reflection over the x - axis of the third intersection point, A \* B, of line  $\overline{AB}$  with C. If A = B, we define A + B as the reflection of the second intersection point of the tangent line to C at A with C.

#### The Identity

We define the identity as  $\mathcal{O}$ . If A and B share a x-coordinate, we say  $\overline{AB}$  intersects C "at infinity" at  $\mathcal{O}$ .

December 16, 2017

We can generalize Bachet's formula to more general cubics, namely rational elliptic curves.

### Definition (Rational Elliptic Curves)

We define rational elliptic curves as non-singular algebraic plane curves described by polynomials of the form  $y^2 = x^3 + ax^2 + bx + c$ ,  $a, b, c \in \mathbb{Q}$ , plus a "point at infinity"  $\mathcal{O}$ .

#### Definition

The group of rational points on an elliptic curve C is denoted by  $C(\mathbb{Q})$ .

- 4 週 ト - 4 三 ト - 4 三 ト

### Examples

Below are the graphs of two elliptic curves in  $\mathbb{R}^2$ :  $y^2 = x^3 + x^2 + 1$  and  $y^2 = x^3 - 2x^2 + 1.$ 

Aurash Vatan, Andrew Yao (MIT PRIMES) Elliptic Curves and Mordell's Theorem

December 16, 2017

- 4 同 6 4 日 6 4 日

### Non-Examples

These curves are singular and therefore are **not** elliptic curves:  $y^2 = x^3$  and  $y^2 = x^3 + x^2$ . Notice that all have either a cusp, or self-intersection (node).



December 16, 2017

We are interested in the generation of  $C(\mathbb{Q})$ .

#### Definition

A group G is finitely generated if there exists a finite set  $\{g_1, g_2, ..., g_n\} \subset G$  such that for all  $a \in G$  there exist  $\{a_1...a_n\} \subset \mathbb{Z}$  such that  $a = \sum_{i=0}^n g_i a_i$ .

#### Theorem (Mordell's Theorem)

Let C be a non-singular cubic curve given by an equation

$$C: y^2 = x^3 + ax^2 + bx,$$

with  $a, b \in \mathbb{Z}$ . Then  $C(\mathbb{Q})$ , the group of rational points on C, is a finitely generated abelian group.

- Restricted to elliptic curves with a root at (0,0).
- This means there exists a finite set of points so that all rational points can be obtained by inductively applying the group law.

• Consider the subgroup  $2C(\mathbb{Q})$  of  $C(\mathbb{Q})$ . Then take representatives  $A_1, A_2, \dots$  of its cosets.

December 16, 2017

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Consider the subgroup  $2C(\mathbb{Q})$  of  $C(\mathbb{Q})$ . Then take representatives  $A_1, A_2, \dots$  of its cosets.
- For any P, there are some points  $P_1$  and  $A_i$  such that

$$P=2P_1+A_i.$$

- Consider the subgroup  $2C(\mathbb{Q})$  of  $C(\mathbb{Q})$ . Then take representatives  $A_1, A_2, \dots$  of its cosets.
- For any P, there are some points  $P_1$  and  $A_i$  such that

$$P=2P_1+A_i.$$

• Repeat this process for  $P_1$  to find a  $P_2$ , and then a  $P_3$ , and so forth.

۲

- Consider the subgroup  $2C(\mathbb{Q})$  of  $C(\mathbb{Q})$ . Then take representatives  $A_1, A_2, \dots$  of its cosets.
- For any P, there are some points  $P_1$  and  $A_i$  such that

$$P=2P_1+A_i.$$

• Repeat this process for  $P_1$  to find a  $P_2$ , and then a  $P_3$ , and so forth.

$$P = 2P_1 + A_{i_1}$$

$$P_1 = 2P_2 + A_{i_2}$$

$$P_2 = 2P_3 + A_{i_3}$$

$$P_3 = 2P_4 + A_{i_4}$$

- Consider the subgroup  $2C(\mathbb{Q})$  of  $C(\mathbb{Q})$ . Then take representatives  $A_1, A_2, \dots$  of its cosets.
- For any P, there are some points  $P_1$  and  $A_i$  such that

$$P=2P_1+A_i.$$

• Repeat this process for  $P_1$  to find a  $P_2$ , and then a  $P_3$ , and so forth.

$$P = 2P_1 + A_{i_1}$$

$$P_1 = 2P_2 + A_{i_2}$$

$$P_2 = 2P_3 + A_{i_3}$$

$$P_3 = 2P_4 + A_{i_4}$$

• Repeating *m* times and back-substituting,

$$P = A_{i_1} + 2A_{i_2} + 4A_{i_3} + \dots + 2^{m-1}A_{i_m} + 2^m P_m$$

#### Lemma

 $\exists$  finite S independent of P such that for large enough m,  $P_m \in S$ .

#### Lemma

 $\exists$  finite S independent of P such that for large enough m,  $P_m \in S$ .

• Take the Elliptic Curve  $y^2 = x^3 - 2$ . Pick starting point

$$P = \left(\frac{30732610574763}{160280942564521}, \frac{4559771683571581358275}{2029190552145716973931}\right)$$

#### Lemma

 $\exists$  finite S independent of P such that for large enough m,  $P_m \in S$ .

• Take the Elliptic Curve  $y^2 = x^3 - 2$ . Pick starting point

$$P = \left(\frac{30732610574763}{160280942564521}, \frac{4559771683571581358275}{2029190552145716973931}\right)$$

$$P = \left(\frac{2340922881}{58675600}, \frac{113259286337279}{449455096000}\right) + (3,5)$$
$$= 2\left(\frac{129}{100}, \frac{-383}{1000}\right) + (3,5)$$

#### Lemma

 $\exists$  finite S independent of P such that for large enough m,  $P_m \in S$ .

• Take the Elliptic Curve  $y^2 = x^3 - 2$ . Pick starting point

$$P = \left(\frac{30732610574763}{160280942564521}, \frac{4559771683571581358275}{2029190552145716973931}\right)$$

$$P = \left(\frac{2340922881}{58675600}, \frac{113259286337279}{449455096000}\right) + (3,5)$$
$$= 2\left(\frac{129}{100}, \frac{-383}{1000}\right) + (3,5)$$
$$\left(\frac{129}{100}, \frac{-383}{1000}\right) = 2(3,5) + 0$$

#### Lemma

 $\exists$  finite S independent of P such that for large enough m,  $P_m \in S$ .

• Now,

$$P = \left(\frac{30732610574763}{160280942564521}, \frac{4559771683571581358275}{2029190552145716973931}\right)$$
$$P_1 = \left(\frac{129}{100}, \frac{-383}{1000}\right)$$
$$P_2 = (3, 5).$$

#### Lemma

 $\exists$  finite S independent of P such that for large enough m,  $P_m \in S$ .

• Now,

$$P = \left(\frac{30732610574763}{160280942564521}, \frac{4559771683571581358275}{2029190552145716973931}\right)$$
$$P_1 = \left(\frac{129}{100}, \frac{-383}{1000}\right)$$
$$P_2 = (3, 5).$$

• Notice numerators and denominators decrease as *m* increases

#### Lemma

 $\exists$  finite S independent of P such that for large enough m,  $P_m \in S$ .

• Now,

$$P = \left(\frac{30732610574763}{160280942564521}, \frac{4559771683571581358275}{2029190552145716973931}\right)$$
$$P_1 = \left(\frac{129}{100}, \frac{-383}{1000}\right)$$
$$P_2 = (3, 5).$$

- Notice numerators and denominators decrease as *m* increases
- $\exists K \in \mathbb{Z}$  dependent only on C such that for sufficiently large m, numerator and denominator of x-coordinate of  $P_m$  less than K

#### Lemma

 $\exists$  finite S independent of P such that for large enough m,  $P_m \in S$ .

• Now,

$$P = \left(\frac{30732610574763}{160280942564521}, \frac{4559771683571581358275}{2029190552145716973931}\right)$$
$$P_1 = \left(\frac{129}{100}, \frac{-383}{1000}\right)$$
$$P_2 = (3, 5).$$

- Notice numerators and denominators decrease as *m* increases
- $\exists K \in \mathbb{Z}$  dependent only on C such that for sufficiently large m, numerator and denominator of x-coordinate of  $P_m$  less than K
- S is the set of P ∈ C(Q) with x-coordinate's with numerator and denominator less than K

#### Lemma

The number of cosets of  $2C(\mathbb{Q})$  in  $C(\mathbb{Q})$  is finite.

Aurash Vatan, Andrew Yao (MIT PRIMES) Elliptic Curves and Mordell's Theorem

December 16, 2017

< ロ > < 同 > < 三 > < 三

#### Lemma

The number of cosets of  $2C(\mathbb{Q})$  in  $C(\mathbb{Q})$  is finite.

- Equivalent to the index  $(C(\mathbb{Q}) : 2C(\mathbb{Q}))$  being finite.
- This result is known as Weak Mordell's Theorem

#### Lemma

The number of cosets of  $2C(\mathbb{Q})$  in  $C(\mathbb{Q})$  is finite.

- Equivalent to the index  $(C(\mathbb{Q}) : 2C(\mathbb{Q}))$  being finite.
- This result is known as Weak Mordell's Theorem

Note that

$$P = A_{i_1} + 2A_{i_2} + 4A_{i_3} + \ldots + 2^{m-1}A_{i_m} + 2^m P_m.$$

\* (四) \* \* (日) \* \* (日)

#### Lemma

The number of cosets of  $2C(\mathbb{Q})$  in  $C(\mathbb{Q})$  is finite.

- Equivalent to the index  $(C(\mathbb{Q}) : 2C(\mathbb{Q}))$  being finite.
- This result is known as Weak Mordell's Theorem

Note that

$$P = A_{i_1} + 2A_{i_2} + 4A_{i_3} + \ldots + 2^{m-1}A_{i_m} + 2^m P_m.$$

• Lemma 1 tells us there is a finite set S of  $P_m$ .

#### Lemma

The number of cosets of  $2C(\mathbb{Q})$  in  $C(\mathbb{Q})$  is finite.

- Equivalent to the index  $(C(\mathbb{Q}) : 2C(\mathbb{Q}))$  being finite.
- This result is known as Weak Mordell's Theorem

Note that

$$P = A_{i_1} + 2A_{i_2} + 4A_{i_3} + \ldots + 2^{m-1}A_{i_m} + 2^m P_m.$$

- Lemma 1 tells us there is a finite set S of  $P_m$ .
- Lemma 2 tells us that there is a finite set of  $A_i$ .

#### Lemma

The number of cosets of  $2C(\mathbb{Q})$  in  $C(\mathbb{Q})$  is finite.

- Equivalent to the index  $(C(\mathbb{Q}) : 2C(\mathbb{Q}))$  being finite.
- This result is known as Weak Mordell's Theorem

Note that

$$P = A_{i_1} + 2A_{i_2} + 4A_{i_3} + \ldots + 2^{m-1}A_{i_m} + 2^m P_m.$$

- Lemma 1 tells us there is a finite set S of  $P_m$ .
- Lemma 2 tells us that there is a finite set of  $A_i$ .
- Thus, generating set  $G = S \cup \{A_1, A_2, ...\}$  is finite.

< ロト < 同ト < ヨト < ヨト

### Generalizations

- Mordell's theorem holds for all rational elliptic curves, not only those with a root at (0,0).
- Mordell made a conjecture about higher degree curves that was proved in 1983 by Falting.

#### Theorem

Falting's Theorem] A curve of genus greater than 1 has only finitely many rational points.

### Definition (Genus)

The genus g of a non-singular curve can be defined in terms of its degree d as  $\frac{(d-1)(d-2)}{2}$ .

Notice that elliptic curves therefore have genus 1.

We would like to thank

• Our mentor, Andrew Senger

Image: A match a ma

We would like to thank

- Our mentor, Andrew Senger
- MIT PRIMES

∃ >

< 4 **₽** ► <

We would like to thank

- Our mentor, Andrew Senger
- MIT PRIMES
- Our parents

.∃ >